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Theory of computer calculations strongly depends on the nature of elements the computer is made of.
Quantum interference allows one to formulate the Shor factorization algorithm turned out to be more
effective than any one written for classical computers. Similarly, quantum wave packet reduction allows
one to devise the Grover search algorithm which outperforms any classical one. In the present paper
we argue that the quantum incoherent tunneling can be used for elaboration of new algorithms able to
solve some NP-hard problems, such as the Traveling Salesman Problem, considered to be intractable in
the classical theory of computer computations.
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INTRODUCTION

Quantum parallel computations strongly differ from parallel calculi on the usual computers
in a sense they use the same physical processor for all parallel operations. For example, if
one wants to solve some property recognition problem one can prepare an initial state in the
form:

|v0〉 =
1√
2

∑
x

|x, 0〉,

where x describes a possible assignment to binary variables, xi, of the problem, x =
(x1, x2, . . . , xn), xi = 0; 1, and the last bit in the array v0 is left to store a result of
calculations, f(x), which is also presented in the binary form:

f(x) = 1,
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if the set (x1, x2, . . . , xn) has a required property, and

f(x) = 0

otherwise. Calculations are performed during time t when the quantum computer evolves
under unitary evolution operator,

|v0〉 → |vt〉 = Ut|v0〉 =
1√
2

∑
x

|x, f(x)〉. (1)

In that way the results of calculations for all possible assignments of the variables
x1, x2, . . . , xn turn out to be simultaneously evaluated and recorded on the same physical
equipment.

It is clear that this method of computation gives a great economy of computer's time and
memory. Unfortunately, the described straightforward strategy is hampered by the following
essential reason. Quantum mechanics says that if you try now to read out the results of
calculations, you will succeed in observing only one of them, corresponding to some particular
assignment of x, and all other results will be irrevocably lost. Furthermore, the typical state of
affairs with hard combinatorial problems is that results of calculations for most of assignments
of x are equal to 0, and there are very few of them (and, namely, they are of interest!) which
correspond to f(x) = 1. According to quantum mechanics, for the vector |vt〉 in form (1),
any particular result of observation of f(x) will occur with probability P (x) = 1/2n. It is
deˇnitely forbidden to pick out at will any particular result of calculations on the stage of
reading out. You can amplify the contribution of a result you want to know in the total wave
packet only on the stage of the dynamical evolution described, as in the above-given example,
by the unitary evolution operator Ut, or in the general case, by more general operator taking
into account dissipation and/or measurement processes. In other case, the property recognition
problem cannot be efˇciently resolved (is intractable) since the probability of observation of
a necessary result is exponentially suppressed as P ∼ 2−n.

Actually, there is no difference between calculations by quantum computers and the sto-
chastic (Monte Carlo) calculations by classical computers, if one does not use some distinctive
features of quantum systems to increase the probability of the result you want to obtain. For
example, the quantum interference was used by P. Shor to determine a period of unknown
function in his famous factorization algorithm [1]. This application of quantum mechanics
is similar to usage of the interference for determination of a period of a crystal by Bragg's
scattering method. The Grover search algorithm increases the probability of the desired event
with the help of the quantum wave packet reduction [2]. For the above-considered example
of property recognition problem, it is necessary to obtain after dynamical evolution a wave
packet at which the components with f(x) = 1 are present with probabilities much bigger
than the components with f(x) = 0.

In this paper we give some plausible arguments in favor of possibility of application of
the quantum incoherent tunneling for solving some NP-hard combinatorial problems.

1. ANALOG VERSUS DIGITAL COMPUTATIONS

The main difference between analog and digital computers consists in a manner of repre-
sentation of numbers in them. In digital computers, the digital (usually binary) encoding of
numbers is used, e.g., the value of x may be represented as 100101. In analog computers,
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different physical values, such as electrical currents, angles of rotation of gear wheels, etc.,
are representatives of mathematical values. Because of this, the digital computers are much
more compact and their size, L, scales with the quantity, n, of bits used for representa-
tion of the numbers as L ∼ n. Enclosing such numbers in analog computers requires much
more large physical storage device, L ∼ en, and, therefore, corresponding resources, such as
energy, forces, etc., necessary for operations with the numbers are also exponentially large
in this case.

One more difference following also from the manner of number representation concerns
the property of universality: digital computers are ordinarily universal, analog computers
are designed for solving some special problems only. For each particular digital computer,
universality should be proved, i.e., every arithmetic, logical, and other operations should be
constructed of the basic operations with digits.

Usually merely computations that do not use resources that grow exponentially are of
interest (so-called efˇcient computations). For them the Strong Church's Thesis was formu-
lated [3]: any ˇnite analog computer can be simulated efˇciently by a digital computer, in
a sense that the time required by the digital computer to simulate the analog computer is
bounded by a polynomial function of the resources used by the analog computer. This Thesis
resulted from a great experience gained during elaboration of classical computers and has a
clear sense: every classical physical process can be efˇciently simulated with the help of the
digital computers.

Due to a great progress in development of digital computer techniques, analog computers
are used now extremely seldom. Nevertheless, they survived in a virtual form inside digital
computers as analog algorithms and turned into powerful heuristic methods for solution of
optimization problems. The analog algorithms inherited from their natural ancestors the cor-
respondence of computational schemes to some real physical processes in nature. Thus, the
steepest descent method is based on gradient equations often used for far-from-equilibrium
physical system description [4]. It is used to ˇnd local minima. Simulated annealing de-
scribes the opposite situation when a physical system is very close to the equilibrium state
at each moment of its slow dynamical evolution. It is an example of analog algorithms for
minimization of a function called energy which imitates the process of physical annealing
known in practice of crystal growing. It is experimentally discovered and theoretically under-
stood that molten matter, to be subjected to slowly cooling, transforms into a crystalline state
corresponding to the minimum of its free energy. Simulated annealing was the only method
(in addition, of course, to the honest looking over all variants) which gave hope to ˇnd the
global minimum of combinatorial problems. However, rigorous consideration showed that in
fact the global minimum can never be reached [6], because simulated annealing with cooling
schedule

T1, T2, . . . , Tn → 0,

requires an exponential computation time:

tn ∼ exp(A/Tn), A = const.

Main computation time losses take place at the lowest temperature reached during calculations
and the minimum becomes more and more inaccessible at each step of cooling. Even a very
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Fig. 1. Minimization problem corresponding

to a biased double-well energy function re-
quires the cooling schedule Tn ∼ D/ ln n and

an exponential computational time in the frame

of the simulated annealing algorithm

Fig. 2. Tunneling with dissipation allows par-

ticle to penetrate the potential barrier in a ˇnite
space of time and then to stay at the point of

the global minimum

simple minimization problem corresponding to a biased double-well energy function shown
in Fig. 1 requires the cooling schedule

Tn ∼ D/ ln n

and an exponential computational time, t ∼ exp n, and, therefore, is intractable in the frame
of this algorithm.

It appears at ˇrst sight, one can somehow accelerate cooling if does not require reaching
the energy minimum on certainty. Then, after several reiterations, the position of the global
minimum could be selected among all local minima found. But this strategy is, of course,
wrong because no predictions about possibility to recognize the global minimum could be
done if the true cooling schedule is broken.

Description of quantum systems often requires consideration of exponentially large num-
ber of different variants, e.g., a numerical realization of the path integral approach, and in
particular for this purpose R. Feynman suggested quantum computers would be especially
effective [5]. For quantum computations no statements similar to the Strong Church's Thesis
were formulated so far and, therefore, both analog and digital approaches are still of equal
interest. Below, we discuss approaches to solution of the Traveling Salesman Problem by a
quantum analog computing machine.

2. INCOHERENT TUNNELING

In this section plausible reasoning is given in favor of incoherent tunneling as an effective
remedy for solution of minimization problems on the stage of low temperatures when the
simulated annealing algorithm is inoperative. To this goal let us consider again a biased
double-well potential shown in Fig. 2 and a particle localized initially in the left local minimum
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at point q0. Due to quantum tunneling effect, the particle can penetrate the potential barrier
and fall into the global minimum at q1. When the motion of the particle is accompanied by
dissipation, there is a chance that the particle will stay at the global minimum and, hence, an
optimization problem will be resolved.

A probable picture sketched above may be rigorously grounded. In the case when thermal
energy, kBT , is much less than energy, �ω, of classical oscillations at the positions of minima
and the latter is, in its turn, much less than the height of the potential barrier, Vbar, between
the wells,

kBT � �ω � Vbar,

the process of tunneling with dissipation can be described on the base of multi-instanton
calculations in the framework of the imaginary time functional integral approach [7]. For
temperature close to zero, the tunneling rate from q0 to q1 is given by an expression:

γ(q0 → q1) =
π

2
�2

ω

1
Γ(2α)

(σ

ω

)2α−1

,

while the inverse transitions are suppressed,

γ(q1 → q0) = 0.

Here α = ηd2/2π� is dimensionless damping coefˇcient, d = q1 − q0 is the tunneling length,
η describes the force of friction, F = −η dq/dt, and � is the tunnel matrix of undamped and
unbiased system. The time of transition to the minimum, τ , is ˇnite now:

τ ∼ �

γ
.

Thus, at least for the double well, tunneling with dissipation, or incoherent tunneling, can
be effectively applied for solving the minimization problem in the vicinity of zero tem-
peratures.

In the case of a tilted periodic potential, displayed in Fig. 3, it is also possible to fulˇl
calculations explicitly and show that the time of transition from one local minimum to another
is ˇnite. An average position of the particle may be expressed as [7]

〈q(t)〉 = vt,

where v is mean drift velocity,

v =
d�

γ
tanh

(
β�σ

2

)
, β =

1
kBT

.

Therefore, the time of minimization is proportional now to the sum of the tunneling time
through all potential barriers on the way to the global minimum. It is naturally to suggest that
a similar picture remains in the general case when the slope of the ®hill¯ is variable. Thus,
the main question left to be discussed is how many local minima actually are on the way
to the global minimum. In the case of the exponential number of them the problem would
remain open.
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Fig. 3. Particle moves down the tilted periodic potential hill with a constant speed

The practice of solving optimization problems shows that usually there are much less of
energy local minima than all possible (nonminimal) values of energy. For example, number of
local minima of the energy function was thoroughly investigated for the Hopˇeld Network [8]
which was suggested as a mathematical model of the associative memory in human brain.
Here each local minimum H(x) is used to retain an information about x (called a pattern)
since for a small deviation from x, x → x + δx, the system returns back into x if it is
navigated with the help of the gradient equations. It was shown that for random created
patterns the number of local minima M can be estimated as

M = 0.138n,

where n is a number of artiˇcial neuron cells [9]. Thus, M is only a linear function of
the size, n, of the input. A similar result was obtained for an associative memory based on
Q-state Potts-glass with biased patterns [10].

Further increase of the number of stored pattern up to α = 1 converts the Hopˇeld
Network into a spin-glass [11]. The problem of ˇnding the ground state in a spin-glass was
studied in [12]. This problem was shown to belong to the class of NP-hard problems both for
three-dimensional case and for two-dimensional lattice within a magnetic ˇeld. Inˇnite-ranged
models of spin-glasses were considered in [13]. Numerical experiments have shown the total
number of local minima increases as some small power of n, rather than exp(n).

A drastic decrease of the number of local minima with different energies in the vicinity
of the global one, for any system in the thermodynamic limit, follows also from the Nernst
theorem for entropy,

lim
T→0

S(T ) = 0,

if there are no gaps of function S(T ) near T = 01.
It is a commonly accepted method to demonstrate an efˇciency of a new quantum algorithm

with the help of a classical computer simulation of corresponding quantum calculations. But
in our case there is no need to do so, because this has been already done. Actually, some kind

1In principle, the gaps are possible in the case of presence of phase transitions of the ˇrst kind at T close to zero.
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of incoherent tunneling was used efˇciently many times as an optimizing procedure during
simulated annealing. For instance, in [13] not only neighboring (in the Hamming sense)
conˇguration of spin was checked during minimization, but also states which were 2, 3 and 4
steps away. When energy of a trial state was found to be less than energy of the current state,
the system was transmitted to the trial state. This corresponds to the under-barrier transitions
through the potential barriers with 1, 2 and 3 Hamming's steps of width. Of course, such
a strategy is hampered for classical computers for more wider potentials barriers by a huge
number of possible trial states. Quantum incoherent tunneling turns out to be much more
effective because it allows running over all local energy minima only, without examination
of all possible values of energy for all possible trial states.

3. ELASTIC NET APPROACH TO THE TRAVELING SALESMAN PROBLEM
AND ITS QUANTIZATION

The Traveling Salesman Problem (TSM problem) is formulated as follows: given positions
of cities, what is the shortest tour in which each city is visited once? It is evident that the total
number of possible tours increases exponentially with the increase of number, n, of cities:

Ntours ∼ eCn,

and their sequential consideration requires computing time which increases faster than any
power of n. Therefore, problem is considered as intractable in the classical theory of compu-
tation. In this section we show how the problem can be solved, at least in principle, using the
quantum calculation technique. We consider the analog approach, because practical construc-
tion of quantum digital computers is still confronted with serious difˇculties. Therefore, it is
quite possible that quantum analog computers will win the digital ones, despite the opposite
situation in the ˇeld of the classical computations.

Quantum analog computers for solving TSM problem can be constructed on the base of the
Elastic Net analog algorithm elaborated for the usual digital computers [14]. The algorithm
is grounded on a discrete form of the gradient equation,

dyj

dt
= − ∂F

∂yj
,

with free energy, F :

F = −αk2
∑

i

ln
∑

j

e−|xi−yj|/2k2
+ βk

∑
j

|yj+1 − yj |2.

For �t = 1 it is possible to write

�yj 	 − ∂F

∂yj
, �F 	

∑
j

∂F

∂yj
�yj 	 −

∑
j

(
∂F

∂yj

)2

< 0.

This means that the algorithm directs the system to a local minimum of F in accordance with
the steepest descent method. The explicit form of F was devised in [14] using a very clear
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Fig. 4. The process of solution of TSM problem by the domain wall analog computer: an input, i,

corresponding to a local minimum spontaneously decays into the ˇnal state, f , describing the global
minimum

physical picture. Positions of cities are described by xi, points with coordinates yj lie on an
elastic string. Each point moves under the in�uence of two types of force. The ˇrst moves
it towards those cities to which it is nearest; the second pulls it towards its neighbors on the
string, acting to minimize the total string length.

The authors described an iteration procedure which consists in a gradual decrease of the
value of a parameter K describing a force and a range of interaction between xi and yj in
such a way that at K approaching to zero the range is transformed from a big value to very
small one and the force is strongly increased. After applying this iteration procedure, an initial
string in a form of a small circle placed nearby the cities' centre of mass is converted into a
salesman tour of a very high quality. Comparative analysis fulˇlled in [15] has shown that
the performance of the Elastic Net algorithm is even of higher quality than that of Simulated
Annealing. Therefore, one can use any of them, or some other described in [15], to ˇnd a
preliminary solution to TSM problem as an input for a further quantum computation.

Elastic string can be created as a physical computation device in the form of a meso-
scopic domain wall in an antiferromagnetic thin ˇlm at low temperature. Tunneling of the
domain walls in ferromagnetic and antiferromagnetic insulators through potential barriers (see,
e.g., [16]) is described in a similar way as incoherent tunneling of particles, considered in pre-
vious section. The role of the barriers can play defects or other singular points in the lattice.
The domain wall has a variety of dissipative couplings to the magnons, photons, impurities,
defects, and phonons. Nevertheless, it was shown that large domain walls, containing up to
1010 spins can behave as quantum objects at low temperatures [17]. Both theory and exper-
iment revealed a ˇnite tunneling time of domain walls through potential barriers [16]. This
gives an opportunity of devising an analog quantum computer using the incoherent tunneling
effect. The process of solution of TSM problem by this computer is shown schematically
in Fig. 4. Firstly, one creates an input, i, corresponding to some local minimum found with
the help of the classical computer, and then, after a time, obtains a ˇnal state, f , as the
solution. Points in the ˇgure denote ®cities¯, which are some kind of defects in the lattice
that pin the domain wall to necessary locations. They may be some implanted atoms with
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high value of spins, or strongly magnetized atoms. Tension of the string can be regulated by
a change of the mutual orientation of directions of spins on either side of the domain wall. It
is clear that a value of tension should be small enough to prevent the string from a temptation
to pass round some cities to minimize its length. This means that directions of spins on
either side of the domain wall should not be much differing. Such a slack string limit exactly
corresponds to the strong short-range interaction between the string and the cities considered
as the last step of the iteration procedure in the classical Elastic Net analog algorithm [14].

Thus, setting aside purely engineering problems concerned with creation of the domain
wall described above, one may conclude that the Traveling Salesman Problem can be solved,
at least theoretically, by a quantum analog computer.
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