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STABILITY OF AN ION BEAM IN SYNCHROTRONS
WITH DIGITAL FILTERS IN THE FEEDBACK LOOP

OF A TRANSVERSE DAMPER
V. M. Zhabitsky

Joint Institute for Nuclear Research, Dubna

The stability of an ion beam in synchrotrons with digital filters in the feedback loop of a transverse
damper is treated. A transverse feedback system (TES) is required in synchrotrons to stabilize the
high-intensity ion beams against transverse instabilities and to damp the beam injection errors. The TFS
damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from
the closed orbit at the location of the beam position monitor (BPM). The digital signal processing unit
in the feedback loop between BPM and DK ensures a condition to achieve optimal damping. Damping
rates of the feedback systems with digital filters are analyzed in comparison with those in an ideal
feedback system.

[IpuBoznsaTCA pe3y/lbT Thl TEOPETUUECKOIO UCCIIEIOB HUSA YCTOMYUBOCTU HOHHOIO IIyYK B CUHXPOTPO-
H X B 3 BUCUMOCTH OT II P MeTPOB LU(POBBIX (DHIBTPOB B Lieli OOp THOW CBS3M CHUCTEM IOA BIICHUS
(CII) xorepeHTHBIX TornepeyHbIX Kone6 Huil mydk . CII mpuMeHSIoTcS B CHHXPOTPOH X C LETIBIO CO-
30 HUSI YCIOBHM JUIS TIPENOTBP LIEHHS P 3BUTHUS KOTEPEHTHBIX IIONEPEYHBIX HEYCTOMYMBOCTEH MyuK ,
T KXe JUI JeMIupoB HUS OCT TOYHBIX Kome® Huil 4 ctun nocie nmxekuuu. CIT obecrieuns 1ot
KOPPEKLHIO TONEePEeYHOrO MMITYJbC CTYCTKOB H K XJIOM 00OpOTE ¢ HMOMOIIBI0 JeIeKTOp ¢ y4eToM
I HHBIX O CMEIIEHHM LEHTP TIKECTH Iy4K , U3MEPEHHBIX J TYMKOM IOJIOXeHUs. [Ind HOCTHXEeHUS
OIITUM JIBHBIX YCIIOBHMI JeMII(HPOB HUs IONEPEYHbIX KOeO HUil CIyCTKOB HCIIOJIB3YIOTCS LM(pPOBbIE
MeTonbl 06p OOTKM CHIH JIOB B Llelu oOp THOH CBS3M MeXIy I TYMKOM IOIOXEHHUS U Ae(IIeKTOpOM.
ITpuBOnATCSA 1 HHBIE O 3 BUCHMOCTSIX TEMI IO BICHHS KOTEPEHTHBIX K0je® HHil JUId p 3JMYHBIX IT -
P MeTpoB LU(POBLIX (PHIBTPOB.

PACS: 29.20.Lq; 29.27.Bd

INTRODUCTION

Transverse feedback systems (TFS) are used widely in synchrotrons for damping of coher-
ent oscillations. A classical bunch-by-bunch feedback (see Fig. 1) consists of a beam position
monitor (BPM), a damper kicker (DK) and an electronic feedback path with appropriate sig-
nal transmission from the BPM to the DK [1]. The damper kicker corrects the transverse
momentum of a bunch in proportion to its displacement from the closed orbit at the BPM
location. The digital signal processing unit (DSP) ensures the suppression of all the revolu-
tion harmonics in the signal from BPM, the adjustment of the signal’s phase and the betatron
phase advance from BPM to DK in order to achieve optimal damping. The total delay Tgelay
in the signal processing from BPM to DK is adjusted to be equal to 7pk, the particle time of
flight from BPM to DK, plus an additional delay of ¢ turns:

Tdelay — TPK + qTrevv (D
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Fig. 1. Layout of a classical transverse feedback system

where Ty is the revolution period of a particle in the synchrotron. Values of g=0or ¢ =1
are used in practice for TFS [2].
The damping rates of the TFS can be obtained from the characteristic equation [3]

22— |2cos (27Q) + gaozy, "H (z1) sin (27Q — ¢pk) | ze+1—gaoz, “H (zx) sin Ypx = 0, (2)

where C~2 is the beam tune; Ypk is the betatron oscillation phase advance from BPM to DK;
g > 0 is the feedback gain; H(z) is the Z-transform of the DSP transfer function, and ag is

defined for zq = exp (—j27 Re Q) such that
laozg H(2q)| = 1, agp sin (arg (zéqH(zQ)) + Re ’(/JPK) > 0. (3)

In the general case, @ is a complex function depending on z. The real part of C~2 is the number
of betatron oscillations per turn: Re @ = . The imaginary part of () is determined by the
transverse instability rise time: 27| Im Q| = Tyev/Tinst- The beam is stable if eigenvalues zj
from Eq. (2) lie inside the unit circle:

26| < 1. )
Damping rates of the coherent betatron oscillations are defined by the absolute value of zj:

Trev

Tk

— lnjl, (5)

where 7 is the time constant of the betatron oscillation amplitude decay. Fractional parts
{Re Q} of the betatron frequency of a particle in the presence of TFS

{ReQr} = % arg (2 (6)

are the fractional tunes (—0.5 < {Re Qy} < 0.5).

In the general case a DSP unit in the feedback loop is a cascade of FIR (finite impulse
response) and IIR (infinite impulse response) digital filters. Hence, the DSP transfer function
H(z) is a ratio of two polynomials. If @) depends weakly on z, then the characteristic
equation (2) with the function H(z) can be converted to a polynomial. It can be solved with
the use of a root-finding algorithm or analytically for a polynomial of degree less than five [3].
Therefore, solving the characteristic equation (2) with different functions H(z) allows one to
calculate the achievable damping rates as a function of instability growth rate, feedback gain
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and parameters of the signal processing. It should be emphasized that the damping rates in
the linear approximation with |g| < 1 are expressed by the formula [3]

Trev + I CI} . T ~
Lrev ., 990D (£ Im Wpy) sin (Re Upk) £+ 27 Im Q, (7)

T+ 2

where _ ~ ~
Upic = vpi +274Q +¢, = arg (H(z = exp (=j27Q)) ) - ®)

The best damping of coherent transverse oscillations is achieved by optimally choosing the
positions of BPM and DK yielding a phase advance of Re Upk equal to an odd multiple of
7/2. The special case with ¢ = 0, ¢ = 0 and the betatron phase advance of Re ¢pk equal to
an odd multiple of 7/2 corresponds to the ideal transverse feedback system which provides
the best damping. Consequently, feedbacks with digital electronics should be designed with
parameters close to those of the ideal TFS.

DIGITAL FEEDBACK SYSTEMS

As minimum a notch filter to suppress all the revolution harmonics (DC included) is
required in the feedback loop [3]. The magnitude of the difference signal from the BPM
electrodes, after passing through the notch filter, is proportional to the bunch deviation from
the closed orbit. The system transfer function of the notch filter is

H(z) = Hyp(z) =1—2"% ©)

It is clear from (9) that the notch filter changes the gain g and the phase ¢ of the open loop
transfer characteristics. For example, if @ = 6.73, then {Q} = —0.27 and arg (Hxr(2g)) =
onF = 41.4°. The gain |Hnr| = 2|sin({Q}7)| = 1.5 can be adjusted by an amplifier
ao in the feedback loop in accordance with (3). However, according to the approximation
formula (7), the damping rates for the TFS with the notch filter still change due to the phase
shift N resulting in slower damping than for the case of the ideal TFS.

It was proposed in [4] to correct a phase shift in the feedback loop by a Hilbert filter with
the system transfer function

Hyr(z) = h02_3 + h12_2(1 — 2_2) + hs(1 — 2_6), (10)

where 5 5
ho = cos (Ap), hy = ——=sin (Ap), hs = ——sin (Ay)
s 3T

are the Hilbert transform impulse response coefficients. For example, the phase shift needed
for compensation of ynrp = 41.4° is obtained by using the Hilbert filter with Ay =
—72.8° [3]. However, the Hilbert filter has six one-turn delays in its electrical circuit that
increases a transition time of TFS.

The unwanted phase shift onF can be compensated also by an all-pass filter [5] with
a frequency-response magnitude that is constant but a phase advance which is variable and

adjustable. The transfer function of the first-order all-pass filter is
Z_l _ a*
H = - 11
ar(2) = T, (1D
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where a is a free filter parameter for the adjustment of the phase, and a* denotes its complex
conjugate. For example, the phase shift needed for compensation of pnp = 41.4° is obtained
by using the all-phase filter with @ = —0.501 [3]. However, the all-pass filter is an IIR filter,
and its recursive circuit that corresponds to the denominator in (11) can be a source of an
unwanted noise during a long time for any fluctuation in the BPM signal.

A cascade of two FIR filters of the first order can be used for providing damping rates
close to the ideal TFS. The first FIR filter (see Fig.2) is a notch filter, and the second one
is designed with the parameter ay for obtaining best damping. The transfer function for the
cascade of two FIR filters is

Hy(z) = (1 =271 (1 4+agz™1), (12)

and the characteristic equation (2) is a polynomial of the fourth power that can be solved
analytically. Dependences of damping rates Tyey/Tinst On gain g for the ideal TFS, for the
TFS with a notch filter and with two FIR filters are shown in Fig.3 (the tune of Q) = 6.73
was used [6], and the instability rise time of 7,5 = 1007}, Was assumed).

It should be emphasized that the damping regime is obtained at az > 0. Consequently, the
gain transfer characteristic of the feedback loop with the cascade of two FIR filters (see Fig. 3)
has a poor-frequency response at f = 0.5 f,ey and maximum values near betatron frequencies.
Therefore, a cascade of a notch filter and an FIR filter of the first order in the case of beam
stability corresponding to as > 0 provides an additional advantage of the feedback loop for a
signal to noise ratio.
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Fig. 3. Dependences of damping rates Trev/Tinst ON gain g (a) and gain on frequency (b) for the ideal
TFES (solid curve), for the TFS with a notch filter (dashed curve) and with two FIR filters in the case of
a2 = 0.5 (short-dashed curve), as = 0.7 (dash-dotted curve), a2 = 0.9 (dotted curve)
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Fig. 4. Dependences of damping rates Trev/Tinst On gain g for the ideal TFS (solid curve), for the
TFS with a notch filter (dashed curve), two FIR filters (a2 = 0.7, short-dashed curve), an all-pass filter

(a = 0.501, dash-dotted curve) and a Hilbert filter (A = —72.8°, dotted curve)

Dependences of damping rates Tyey/Tinst On gain g for the ideal TFS, for the TFS with
a notch filter, two FIR filters, an all-pass filter and a Hilbert filter are shown in Fig.4 in the
case of optimal damping regimes mentioned above at ) = 6.73 and Tipgt = 1007 yey. It is
shown that for small gains of the feedback loop the optimum damping characteristics of the
ideal TFS can be restored in the presence of a notch filter using a first-order all-pass filter
or a six-order Hilbert filter or a cascade of notch and FIR filters with optimized parameters.
However, the widest beam stability range for TFS with digital filters discussed corresponds
to a cascade of a notch filter and an FIR filter.

The damping time 74 of TFS must be shorter than the instability rise time Ti,g to suppress
instability: 74 < Tinst. In addition to that the damping time must be chosen to limit the
emittance growth due to the beam injection errors. If ej,; is the maximum assumed amplitude
of a beam deviation from the closed orbit due to displacement and angular errors at injection,
then the relative emittance growth Ac/e is [7]

A ei2n' ec ec !
0= g2 Fa=<1+Td — Teo ) : (13)

- b
€ 202" ¢ T4 Tinst

where o is the initial RMS beam size and 74.. iS the beam decoherence time. As a rule,
F, < 0.1 is assumed that corresponds to 74 ~ 407}y for Tingg > 1007 ey and Tgec > 5007 ey
The damping time 74 = 407}, is used commonly as the design specification of TFS for
damping of ion beams in synchrotrons [2,3]. It should be emphasized that the gain g of TFS
with the notch filter only in accordance with dependences in Fig. 4 must be ~ 1.3 times higher
in the case of 74 = 40T}, than, for example, for TFS with the cascade of the notch and
FIR filters with optimized parameters. Thus, tuning of digital filters for obtaining zero phase
advance on the betatron frequency leads to the optimum damping characteristics of TFS.
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