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STABILITY OF AN ION BEAM IN SYNCHROTRONS
WITH DIGITAL FILTERS IN THE FEEDBACK LOOP

OF A TRANSVERSE DAMPER
V. M. Zhabitsky

Joint Institute for Nuclear Research, Dubna

The stability of an ion beam in synchrotrons with digital ˇlters in the feedback loop of a transverse
damper is treated. A transverse feedback system (TFS) is required in synchrotrons to stabilize the
high-intensity ion beams against transverse instabilities and to damp the beam injection errors. The TFS
damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from
the closed orbit at the location of the beam position monitor (BPM). The digital signal processing unit
in the feedback loop between BPM and DK ensures a condition to achieve optimal damping. Damping
rates of the feedback systems with digital ˇlters are analyzed in comparison with those in an ideal
feedback system.
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INTRODUCTION

Transverse feedback systems (TFS) are used widely in synchrotrons for damping of coher-
ent oscillations. A classical bunch-by-bunch feedback (see Fig. 1) consists of a beam position
monitor (BPM), a damper kicker (DK) and an electronic feedback path with appropriate sig-
nal transmission from the BPM to the DK [1]. The damper kicker corrects the transverse
momentum of a bunch in proportion to its displacement from the closed orbit at the BPM
location. The digital signal processing unit (DSP) ensures the suppression of all the revolu-
tion harmonics in the signal from BPM, the adjustment of the signal's phase and the betatron
phase advance from BPM to DK in order to achieve optimal damping. The total delay τdelay

in the signal processing from BPM to DK is adjusted to be equal to τPK, the particle time of
	ight from BPM to DK, plus an additional delay of q turns:

τdelay = τPK + qTrev, (1)
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Fig. 1. Layout of a classical transverse feedback system

where Trev is the revolution period of a particle in the synchrotron. Values of q = 0 or q = 1
are used in practice for TFS [2].

The damping rates of the TFS can be obtained from the characteristic equation [3]

z2
k−

[
2 cos (2πQ̃) + ga0z

−q
k H(zk) sin (2πQ̃ − ψPK)

]
zk+1−ga0z

−q
k H(zk) sin ψPK = 0, (2)

where Q̃ is the beam tune; ψPK is the betatron oscillation phase advance from BPM to DK;
g > 0 is the feedback gain; H(z) is the Z-transform of the DSP transfer function, and a0 is
deˇned for zQ = exp (−j2π Re Q̃) such that

|a0z
−q
Q H(zQ)| = 1, a0 sin

(
arg

(
z−q

Q H(zQ)
)

+ ReψPK

)
> 0. (3)

In the general case, Q̃ is a complex function depending on z. The real part of Q̃ is the number
of betatron oscillations per turn: Re Q̃ = Q. The imaginary part of Q̃ is determined by the
transverse instability rise time: 2π| Im Q̃| = Trev/τinst. The beam is stable if eigenvalues zk

from Eq. (2) lie inside the unit circle:

|zk| < 1. (4)

Damping rates of the coherent betatron oscillations are deˇned by the absolute value of zk:

Trev

τk
= − ln |zk|, (5)

where τk is the time constant of the betatron oscillation amplitude decay. Fractional parts
{Re Q̃k} of the betatron frequency of a particle in the presence of TFS

{Re Q̃k} =
1
2π

arg (zk) (6)

are the fractional tunes (−0.5 < {Re Q̃k} � 0.5).
In the general case a DSP unit in the feedback loop is a cascade of FIR (ˇnite impulse

response) and IIR (inˇnite impulse response) digital ˇlters. Hence, the DSP transfer function
H(z) is a ratio of two polynomials. If Q̃ depends weakly on z, then the characteristic
equation (2) with the function H(z) can be converted to a polynomial. It can be solved with
the use of a root-ˇnding algorithm or analytically for a polynomial of degree less than ˇve [3].
Therefore, solving the characteristic equation (2) with different functions H(z) allows one to
calculate the achievable damping rates as a function of instability growth rate, feedback gain
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and parameters of the signal processing. It should be emphasized that the damping rates in
the linear approximation with |g| � 1 are expressed by the formula [3]

Trev

τ±
≈ ga0 exp (± Im Ψ̃PK)

2
sin (Re Ψ̃PK) ± 2π Im Q̃, (7)

where
Ψ̃PK = ψPK + 2πqQ̃ + ϕ, ϕ = arg

(
H(z = exp (−j2πQ̃))

)
. (8)

The best damping of coherent transverse oscillations is achieved by optimally choosing the
positions of BPM and DK yielding a phase advance of Re Ψ̃PK equal to an odd multiple of
π/2. The special case with ϕ = 0, q = 0 and the betatron phase advance of Re ψPK equal to
an odd multiple of π/2 corresponds to the ideal transverse feedback system which provides
the best damping. Consequently, feedbacks with digital electronics should be designed with
parameters close to those of the ideal TFS.

DIGITAL FEEDBACK SYSTEMS

As minimum a notch ˇlter to suppress all the revolution harmonics (DC included) is
required in the feedback loop [3]. The magnitude of the difference signal from the BPM
electrodes, after passing through the notch ˇlter, is proportional to the bunch deviation from
the closed orbit. The system transfer function of the notch ˇlter is

H(z) = HNF(z) = 1 − z−1. (9)

It is clear from (9) that the notch ˇlter changes the gain g and the phase ϕ of the open loop
transfer characteristics. For example, if Q = 6.73, then {Q} = −0.27 and arg (HNF(zQ)) =
ϕNF = 41.4◦. The gain |HNF| = 2| sin ({Q}π)| = 1.5 can be adjusted by an ampliˇer
a0 in the feedback loop in accordance with (3). However, according to the approximation
formula (7), the damping rates for the TFS with the notch ˇlter still change due to the phase
shift ϕNF resulting in slower damping than for the case of the ideal TFS.

It was proposed in [4] to correct a phase shift in the feedback loop by a Hilbert ˇlter with
the system transfer function

HHF(z) = h0z
−3 + h1z

−2(1 − z−2) + h3(1 − z−6), (10)

where

h0 = cos (Δϕ), h1 = − 2
π

sin (Δϕ), h3 = − 2
3π

sin (Δϕ)

are the Hilbert transform impulse response coefˇcients. For example, the phase shift needed
for compensation of ϕNF = 41.4◦ is obtained by using the Hilbert ˇlter with Δϕ =
−72.8◦ [3]. However, the Hilbert ˇlter has six one-turn delays in its electrical circuit that
increases a transition time of TFS.

The unwanted phase shift ϕNF can be compensated also by an all-pass ˇlter [5] with
a frequency-response magnitude that is constant but a phase advance which is variable and
adjustable. The transfer function of the ˇrst-order all-pass ˇlter is

HAF(z) =
z−1 − a∗

1 − az−1
, (11)
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where a is a free ˇlter parameter for the adjustment of the phase, and a∗ denotes its complex
conjugate. For example, the phase shift needed for compensation of ϕNF = 41.4◦ is obtained
by using the all-phase ˇlter with a = −0.501 [3]. However, the all-pass ˇlter is an IIR ˇlter,
and its recursive circuit that corresponds to the denominator in (11) can be a source of an
unwanted noise during a long time for any 	uctuation in the BPM signal.

A cascade of two FIR ˇlters of the ˇrst order can be used for providing damping rates
close to the ideal TFS. The ˇrst FIR ˇlter (see Fig. 2) is a notch ˇlter, and the second one
is designed with the parameter a2 for obtaining best damping. The transfer function for the
cascade of two FIR ˇlters is

H2(z) = (1 − z−1) · (1 + a2z
−1), (12)

and the characteristic equation (2) is a polynomial of the fourth power that can be solved
analytically. Dependences of damping rates Trev/τinst on gain g for the ideal TFS, for the
TFS with a notch ˇlter and with two FIR ˇlters are shown in Fig. 3 (the tune of Q = 6.73
was used [6], and the instability rise time of τinst = 100Trev was assumed).

It should be emphasized that the damping regime is obtained at a2 > 0. Consequently, the
gain transfer characteristic of the feedback loop with the cascade of two FIR ˇlters (see Fig. 3)
has a poor-frequency response at f = 0.5frev and maximum values near betatron frequencies.
Therefore, a cascade of a notch ˇlter and an FIR ˇlter of the ˇrst order in the case of beam
stability corresponding to a2 > 0 provides an additional advantage of the feedback loop for a
signal to noise ratio.

Fig. 2. Block diagram of feedback loop with a cascade of two FIR ˇlters

Fig. 3. Dependences of damping rates Trev/τinst on gain g (a) and gain on frequency (b) for the ideal

TFS (solid curve), for the TFS with a notch ˇlter (dashed curve) and with two FIR ˇlters in the case of

a2 = 0.5 (short-dashed curve), a2 = 0.7 (dash-dotted curve), a2 = 0.9 (dotted curve)



746 Zhabitsky V. M.

Fig. 4. Dependences of damping rates Trev/τinst on gain g for the ideal TFS (solid curve), for the
TFS with a notch ˇlter (dashed curve), two FIR ˇlters (a2 = 0.7, short-dashed curve), an all-pass ˇlter

(a = 0.501, dash-dotted curve) and a Hilbert ˇlter (Δϕ = −72.8◦, dotted curve)

Dependences of damping rates Trev/τinst on gain g for the ideal TFS, for the TFS with
a notch ˇlter, two FIR ˇlters, an all-pass ˇlter and a Hilbert ˇlter are shown in Fig. 4 in the
case of optimal damping regimes mentioned above at Q = 6.73 and τinst = 100Trev. It is
shown that for small gains of the feedback loop the optimum damping characteristics of the
ideal TFS can be restored in the presence of a notch ˇlter using a ˇrst-order all-pass ˇlter
or a six-order Hilbert ˇlter or a cascade of notch and FIR ˇlters with optimized parameters.
However, the widest beam stability range for TFS with digital ˇlters discussed corresponds
to a cascade of a notch ˇlter and an FIR ˇlter.

The damping time τd of TFS must be shorter than the instability rise time τinst to suppress
instability: τd < τinst. In addition to that the damping time must be chosen to limit the
emittance growth due to the beam injection errors. If einj is the maximum assumed amplitude
of a beam deviation from the closed orbit due to displacement and angular errors at injection,
then the relative emittance growth Δε/ε is [7]

Δε

ε
=

e2
inj

2σ2
F 2

a , Fa =
(

1 +
τdec

τd
− τdec

τinst

)−1

, (13)

where σ is the initial RMS beam size and τdec is the beam decoherence time. As a rule,
Fa < 0.1 is assumed that corresponds to τd ≈ 40Trev for τinst > 100Trev and τdec > 500Trev.
The damping time τd = 40Trev is used commonly as the design speciˇcation of TFS for
damping of ion beams in synchrotrons [2,3]. It should be emphasized that the gain g of TFS
with the notch ˇlter only in accordance with dependences in Fig. 4 must be ≈ 1.3 times higher
in the case of τd = 40Trev than, for example, for TFS with the cascade of the notch and
FIR ˇlters with optimized parameters. Thus, tuning of digital ˇlters for obtaining zero phase
advance on the betatron frequency leads to the optimum damping characteristics of TFS.
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