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1. INTRODUCTION

There is a project to measure directly n−n collision for checking charge
symmetry of nuclear forces [1]. It is accepted that the best neutron source
to perform such measurements is the Russian YAGUAR pulsed reactor. Some
preliminary measurements and numerical simulations for expected experimental
geometry had been performed [2]. We want to show here an analytical approach
to calculations. First, we obtain analytical momentum spectrum of scattered
neutrons, then the time-of-�ight spectrum of neutrons detected by a single counter.
After that we consider coincidence scheme where we have two detectors, and
calculate the time-of-�ight spectrum for one detector and delay the time spectrum
for the second one. We considered coincidence scheme because from the very
beginning of discussions about the project, and all the time during preparation of
the experiment, many people continue to express the opinion that the coincidence
scheme has an advantage comparing to the single detector measurement. They
claim that loss of intensity, which they usually estimated at the level of 20%,
will be surpassed by much higher suppression of background. We show here
analytically, for everybody could check our calculations, that in the coincidence
scheme effect is so much suppressed, that the question about the background level
becomes irrelevant.

2. ESTIMATION OF THE EFFECT

The scheme of the experiment is presented in Fig. 1 borrowed from [1]. The
YAGUAR reactor gives a pulse of length tp = 0.68 ms, during which a huge
amount of neutrons with �ux density Φ = 0.77 · 1018 n/cm2s is released. After a
moderator at room temperature T neutrons in the thermal Maxwellian spectrum
arrive at the volume (V = 1.13 cm3), where they collide with each other and some
of them after collision �y along the neutron guide with collimators, and arrive at
the detector, where they are registered with ∼ 100% efˇciency. The collimators
determine the solid angle ΔΩ = 0.64 · 10−4, at which the volume V is visible by
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Fig. 1. Scheme of the experiment on di-
rect measurement of n − n scattering [1].
1 Å reactor core; 2 Å volume of colli-
sions; 3 Å neutron guide; 4 Å collima-
tors; 5 Å detector; 6 Å neutrons trap; 7 Å
shield

the detector. The estimatid number of
neutrons that can be registered at a sin-
gle pulse is equal to

Ne = 2n2V tpvT |b|2dΩ, (1)

where factor 2 takes into account that
the detector can register scattered neu-
tron or neutron-scatterer. The square of
the scattering amplitude |b|2 is deˇned
as |b|2 = |b0|2/4, where b0 is the sin-
glet scattering amplitude, which is ac-
cepted to be 18 fm, and factor 1/4 is
statistical weight of the singlet scatter-
ing. Therefore |b|2 = 8.1 · 10−25 cm2.
The speed vT corresponds to the thermal
speed vT = 2200 m/s, and the factor
vT |b|2 determines number of collisions
in the neutron gas per unit time. The
factor n2 is the square of the neutron
density: n = Φ/vT = 3 · 1012 cm−3.
After substitution of all the parameters
into (1) we ˇnd Ne ≈ 170 neutrons per
pulse. However it is the estimation num-
ber. To ˇnd real number counted by the
single detector, Ns, it is necessary to calculate the scattering process. Calculation
shows that Ns = FNe, where factor F is of the order of unity. Monte Carlo
calculations in [1] give F = 0.83. Analytical calculations presented below give
F = 0.705. The number of neutrons per pulse counted at coincidence, if the
neutrons trap is replaced by another detector, can be estimated as

Nec = NsdΩτ/tT , (2)

where τ is the width of the coincidence window, tT = L/vT is the average
length of measurement time after the reactor pulse, and L ≈ 12 m is the average
distance between collision volume and the detectors. In the experimental scheme
of Fig. 1 the time tT is of the order of 5 ms. If we accept τ ≈ tp = 0.5 ms,
then the ratio τ/tp is 0.1. The factor dΩ is included in (2), because only
neutrons in this solid angle will be registered by the second detector. The total
factor, which suppresses the estimated number of neutrons registered per single
pulse in coincidence scheme, is of the order of 10−5, therefore the estimated
number of counts in coincidence scheme will be 10−3, so the experiment becomes
nonfeasible, and the level of the background, which is determined by neutron
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scattering on the gas atoms present at even very good vacuum conditions, becomes
irrelevant. The analytical calculations, presented below, show that the real number
of counted neutrons in coincidence scheme contains even additional small factor
Fc = 0.15.

3. THE ANALYTICAL CALCULATION OF NEUTRON SCATTERING
IN THE THERMAL NEUTRON GAS

Our calculations will be based on the standard scattering theory of neutron
scattering in the atomic gas. Our main feature is that we shall make calculations
directly in the laboratory reference frame without transition to the center-of-mass
system. First, we remind all the deˇnitions of the standard scattering theory and
then present analytical calculations of all the required integrals.

3.1. The Standard Scattering Theory. The standard scattering theory starts
with the Fermi golden rule, according to which one can write down the probability
of the neutron scattering per unit time on an arbitrary system as

dw(ki → kf , λi → λf ) =

=
2π

�
|〈λf , kf |U |λi, ki〉|2 δ(Efk + Efλ − Eik − Eiλ)ρ(Efk), (3)

where |ki >, |λi > are initial, |kf >, |λf > are ˇnal states of the neutron and
system with energies Eik , Eiλ, Efk, Efλ, respectively; U is the neutron-system
interaction potential, which in the neutron atom scattering is accepted in the form
of the Fermi pseudopotential

U =
�

2

2m
4πbδ(r1 − r2). (4)

Here r1, r2 are positions of the neutron and the system, ρ(Efk) is the density of
the neutron ˇnal states

ρ(Ek) =
(

L

2π

)3

d3k, (5)

Ek = �
2k2/2m, m is the neutron mass, and L is the size of some arbi-

trary space cell.
We suppose that the system is an atom with mass M = m, and momentum p.

The initial and ˇnal states of the neutron and atom are described with similar wave
functions

|ki,f >=
1

L3/2
exp(iki,fr), |λi,f >≡ |pi,f >=

1
L3/2

exp(ipi,fr), (6)

where ki,f and pi,f are initial and ˇnal neutron and atom momenta, respectively.
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The �ux density of the single incident neutron is

ji = �ki/mL3. (7)

The scattering cross section at the given initial and ˇnal states is the ratio

dσ(ki → kf , pi → pf ) =
1
ji

dw(ki → kf , pi → pf ). (8)

At the next step we need to sum this cross section over ˇnal states of the system
and average over initial states. In our case, summation over the system ˇnal
states is the integration over density of the atomic ˇnal states

ρ(Epf ) =
(

L

2π

)3

d3pf . (9)

This integration gives the cross section for the given initial states as

dσ(ki → kf , pi) = 2
2πm

�2ki

L9d3kf

(2π)6∫
d3pf

∣∣〈pf , kf |U |pi, ki〉
∣∣2 δ(Efk + Efp − Eik − Eip), (10)

where Ep = �
2p2/2M , Ek = �

2k2/2m, and the additional factor 2 means that
the atom and neutron are the same particles, therefore we can detect with the
same probability the scattered neutron in the phase element d3kf or an atom in
the element d3pf .

For our experiment we need not a cross section, but the number of neutrons
dN(ki, pi, kf ) scattered in the element d3kf . This number is determined by the
number of collisions of neutrons with atoms, so the number of scattered neutrons
is equal to

dN(ki, pi, kf ) = dna(pi)dnn(ki)ΔV dt0vdσ(pi, ki → kf ), (11)

where dna(pi), dnn(ki) are the number densities of atoms and neutrons with
initial momenta pi and ki, respectively; v = �|pi−ki|/m is the relative neutronÄ
atom velocity, and ΔV , dt0 are elements of volume and time, where collisions
create detectable neutrons.

Since our atoms and neutrons have the same Maxwellian distribution with
the temperature T , the densities dna(pi) and dnn(ki) are

dna(q) = dnn(q) = n
d3q

(2πT )3/2
exp

(
− q2

2T

)
, (12)
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where n is the average neutrons density, the letter T denotes reduced temperature
T = mkB[T ]/�

2, and [T ] is the temperature in Kelvin degrees. To ˇnd the total
number of neutrons dN(kf ) scattered into element d3kf of the ˇnal momentum
space we must integrate (11) over dna(pi)dnn(ki), after which we get

dN(kf ) = 2n2ΔV dt0
1

(2πT )3
L9d3kf

(2π)6
2π

�

2m

�2

∫
d3ki

∫
d3pi

|pi − ki|
ki

×

× exp
(
−p2

i + k2
i

2T

) ∫
d3pf

∣∣〈pf , kf |V |pi, ki〉
∣∣2 δ(k2

f + p2
f − k2

i − p2
i ). (13)

The matrix element of the potential (4) is

〈pf , kf |V |pi, ki〉 = 4πb
�

2

2m

(2π)3

L6
δ(pi + ki − pf − kf ), (14)

and its square is

∣∣〈pf , kf |V |pi, ki〉
∣∣2 = |4πb|2

(
�

2

2m

)2 (2π)3

L9
δ(pi + ki − pf − kf ). (15)

After substitution of (15) into (13), we can integrate over ΔV and dt0, i. e.,
replace them by V and tp, we can also extract |b|2 from the square of the matrix
element, dΩ from d3kf and introduce the thermal speed vT = �

√
2T/m. As a

result, we obtain

dN(kf ) = Neg(kf )
dkf√
2T

, (16)

where Ne is given in (1), and g(kf ) is

g(kf ) =
2
π3

k2
f

(2T )3

∫
d3ki

∫
d3pi

|pi − ki|
ki

×

×
∫

d3pf exp

(
−

p2
f + k2

f

2T

)
δ(pi + ki − pf − kf )δ(k2

f + p2
f − k2

i − p2
i ). (17)

Integration over d3pi gives

g(kf ) =
2
π3

k2
f

(2T )3

∫
d3pf exp

(
−

p2
f + k2

f

2T

)
∫

d3ki
|P − 2ki|

ki
δ(k2

f + p2
f − k2

i − (P − ki)2), (18)

where P = pf + kf is the total momentum of two particles.
With all these deˇnitions in hands we can directly calculate the spectrum of

scattered neutrons.
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3.2. Analytical Calculation of the Integrals. First, we calculate the integral

Q(kf , pf ) =
∫

d3ki
|P − 2ki|

ki
δ(k2

f + p2
f − k2

i − (P − ki)2) =

= 2
∫

d3ki

ki
|2ki − P |δ((kf − pf )2 + (2ki − P )2). (19)

After change of variables 2ki − P = u we obtain

Q(kf , pf ) =
1
2

∫
u

d3u

|u + P |δ(u
2 − q2), (20)

where q2 = (kf − pf )2.
After representation ud3u = (u2du2/2)dϕd cos θ, where polar axis is chosen

along the vector P , we can integrate over dϕ and d(u2). As a result, we get

Q(kf , pf ) =
∫

πq2d cos θ

2
√

q2 + 2Pq cos θ + P 2
. (21)

Integration over d cos θ gives

Q(kf , pf ) =
πq

2P
(q + P − |q − P |). (22)

The last factor is equal to 2q, if q < P , and it is equal to 2P , if q > P . Which
one of these inequalities is satisˇed depends on the angle θf between vectors kf

and pf . Inequality q < P is satisˇed, when cos θf > 0, and inequality q > P is
satisˇed, when cos θf < 0. Therefore Eq. (22) is represented in the form

Q(kf , pf ) = πq
(
Θ(cos θf < 0) + Θ(cos θf > 0)

q

P

)
, (23)

where Θ(x) is the step function equal to unity, when inequality in its argument
is satisˇed, and to zero in the opposite case.

3.3. The Spectrum of Neutrons, Counted by a Single Detector. Substitution
of (23) into (18) gives

g(kf ) =
∫

d3pfw(kf , pf ), (24)

where

w(kf , pf ) =
2
π3

k2
f

(2T )3
exp

(
−

p2
f + k2

f

2T

)
Q(kf , pf ). (25)
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To obtain spectrum of neutrons counted by a single detector we represent d3pf =
p2

fdpfdΩf , and integrate Q(k, p) over dΩf . As a result, we obtain (in the
following we omit subscripts f of variables)

I(k, p) =
∫

Q(k, p)dΩ = 2π2

(∫ 0

−1

d cos θ|k − p| +
∫ 1

0

d cos θ
(k − p)2

|k + p|

)
=

= 2π2

(∫ 1

0

d cos θ|k + p| +
∫ 1

0

d cos θ

[
2(k2 + p2)
|k + p| − |k + p|

])
=

=
(2π)2

pk
(p2 + k2)(p + k −

√
p2 + k2). (26)

Substitution of (26) into (25) and change of variables x = p/k, y =
k/

√
2T give

g(kf ) ≡ f(y) =
2
π

exp(−y2)y2J(y), (27)

where

J(y) = 2y4

∫ ∞

0

2xdx exp(−x2y2)(1 + x2)
[
(x + 1) −

√
x2 + 1

]
. (28)

Integration by parts gives

J(y) = 2y2

∫ ∞

0

dx exp(−x2y2)(1 + 2x + 3x2 − 3x
√

x2 + 1) = y
√

π + J1(y),

(29)
where

J1(y) = 2y2

∫ ∞

0

xdx exp(−x2y2)(2 + 3x − 3
√

x2 + 1) =

= −1 + 3
∫ ∞

0

xdx exp(−x2y2)(1 − x√
x2 + 1

) =

= −1 + 3
√

π

2y
{1 − ey2

[1 − Φ(y)]}, (30)

and

Φ(y) =
2√
π

∫ y

0

dx exp(−x2). (31)

Substitution of (30) into (29) gives

J(y) = y
√

π − 1 + 3
√

π

2y
{1 − ey2

[1 − Φ(y)]}. (32)

The momentum spectrum f(y) from Eq. (27) with account of (32) is shown in
Fig. 2. Numerical integration of this function gives F =

∫ ∞
0

f(y)dy = 0.705.
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Fig. 2. Spectrum y2F (y) exp(−y2) of the neutrons detected by a single detector in di-
mensionless units y = v/vT

3.4. Time-of-Flight Spectrum of a Single Detector. In the experiment the
time-of-�ight (TOF) spectrum is measured. To transform (27) into TOF spectrum
we multiply it by unity

1 = dtδ(t − L/vT y), (33)

where L is the distance between scattering volume and the detector, and integrate
over dy. After that we obtain

Ṅs(y(t)) = f(L/vT t)
L

vT t2
= f(y)

y

t
. (34)

4. REGISTRATION BY TWO DETECTORS IN COINCIDENCE

Let us consider the case, when neutrons are registered in coincidence by two
detectors on the opposite sides of the collision volume. It means that the angle
between kf and pf is approximately 180◦. Since we register both neutrons,
we should not integrate (23) over d3pf . Instead we should accept kfpf < 0,
pf ≈ −kf , and d3pf = p2

fdpfdΩ with the same dΩ as in d3kf . Taking into
account Eq. (16), (24) and (25), we can represent the number of neutrons counted
by two detectors as

dN(kf , pf ) = NedΩpf
2
π2

k2
fdkf

(2T )7/2
qp2

fdpf exp

(
−

p2
f + k2

f

2T

)
. (35)

After transformation to dimensionless variables y = kf/
√

2T and z = pf/
√

2T
we get

dN(kf , pf ) = NedΩpG(y, z)dydz, (36)
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where

G(y, z) =
2y2z2

π2
(y + z) exp(−y2 − z2), (37)

and we replaced q by kf + pf .
To get TOF spectrum in one detector and coincidence count in the second

one with window coincidence τ we must multiply (36) by the unit

1 = dtδ(t − L/vT y)dt′δ(t′ − L/vT z + t) (38)

and integrate over dydz. As a result, we obtain

Ṅc ≡ dN(kf , pf )/dt = N0dΩpG

(
L

vT t
,

L

vT (t + t′)

)
dt′L2

v2
T t2(t + t′)2

. (39)

After integration over dt′ in the range of the window coincidence τ we can
put z ≈ y, and ˇnally get

Ṅc ≈ N0dΩp
4y7

π2
exp(−2y2)

τ

t2
. (40)

For comparison of TOF spectrum of two and single detectors it is useful to
ˇnd ratio of (40) to (34). This ratio is

W =
Ṅc

Ṅs

= dΩp
τ

t
R(y), (41)

where

R(y) =
4y6

π2f(y)
exp(−2y2). (42)

Fig. 3. Dependence of R(y) on y = k/
√

2mT
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The function R(y) is shown in Fig. 3. Its integral
∫

dyR(y) is equal to 0.15. So
we can tell that the ratio is approximately

W ≈ 0.1dΩ
τ

t
, (43)

as is said in Sec. 2.

5. CONCLUSION

We have shown that the effect of n − n scattering experiment and spectrum
of detected neutrons in a single detector can be calculated analytically with the
standard scattering theory without transformation to the center-of-mass system.
Analytically calculated factor F = 0.705 is close to that one F = 0.83, calculated
by Monte Carlo method. The difference can be attributed to slightly different
spectra of neutrons in the collision volume. In Monte Carlo calculations spectrum
contained Maxwellian part and epithermal tail, while for analytical calculations we
used only Maxwellian part. We did not calculated background which is related to
scattering of neutrons on gas molecules, but we claim that it also can be calculated
analytically. One of the main conclusions of this paper is that scheme coincidence
for this type of experiment is absolutely impractical, because the effect becomes
so low, that the level of the background becomes irrelevant.
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this problem and to W. Furman, E. Lychagin and A.Muzichka for interest and
discussion.
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