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The basic ideas of description methods of physical ˇelds and elementary par-
ticle interactions are discussed. One of such ideas is the conception of space-time
geometry. In this connection experimental measurement methods are analyzed. It is
shown that measure procedures are the origin of geometrical axioms. The connection
between space symmetry properties and the conservation laws is considered.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
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Talk dedicated to the 150th jubilee of M. Planck

1. INTRODUCTION

Where did physics and geometry go to at the end of the XX century? Is
geometry the only simplest physics? Or, conversely, is physics the image of
geometry? Where are geometrical axioms coming from?

These and other questions are the subject of this talk.
It is well known that in ancient Egypt geometry was experimental science.

It consisted of the different prescriptions how length, area and volume must
be measured. Axioms of Euclidean geometry came from experimental data.
The ancient measurement procedures based on congruence of the object under
consideration with standard [1].

For attainment congruence the object with standard it was necessary to move
them in space. S. Lie and F. Klein noted that it is only possible in the special
case of homogeneous space. The space of such kind is symmetrical one as a
whole. Invariants of its motion group characterize the properties of ˇgures in this
space.

S. Lie and F. Klein meant equality as congruence. It was in 1872 [2].
But in 1854 (published in 1868) B. Riemann [3] proposed the quite differ-

ent geometry conception. He remarked that really we cannot have the space as
a whole. Any experiment is performed in the restricted domain of the space.
Therefore in practice we must fulˇl our measurements step by step. We can
only introduce the inˇnitesimal element of length dl2 = gikdxidxk, where dxi Å
differentials of coordinates, dl Å element of length, gik Å metric tensor. Mea-
surement of the ˇnite interval is fulˇlling sequentially step by step. Symmetry
properties of such space as a whole are unknown. Congruence of standard with
the inˇnitesimal element of length is only approximately possible.

For a long time LieÄKlein's and Riemannian points of view were considered
inconsistent with each other. Physicists of XX century inherit this problem.

The teacher of M. Planck, H. Helmholtz developed his own geometry close
to Riemannian one [4]. Einstein used Riemannian geometry in General Relativity.
Planck and Einstein were friends.

But Special Relativity, where Einstein worked also, is based on homogeneous
4D space-time having the global symmetry of LieÄKlein's type. In a broad fashion
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H. Weyl [5] and P.A.M. Dirac [6] used Klein's geometry conception in quantum
mechanics.

Are the above-mentioned points of view really inconsistent with each other?
Both of them are experimentally conˇrmed!

In 1925, E. Cartan proposed to construct inhomogeneous Riemannian space
from inˇnitesimal homogeneous Klein's spaces step by step [7]. In that way
LieÄKlein space symmetry group became the local one. This point of view was
extended to the spaces of any connections. These spaces were named the ˇbre
bundle spaces. They were used by me in the geometrical interpretation of the
gauge ˇelds in 1967Ä1969 and later [8Ä10].

Now the problem is: How must the experiment be set up to conˇrm this
point of view?

2. EXPERIMENTS IN SPACES WITH GLOBAL GEOMETRY

Geometry of spaces possessing a symmetry group as a whole is named
global geometry. Axiomatics of global geometry was proposed by F. Klein in his
Erlangen program in 1872 [2]. It is based on the Lie theory of transformation
groups [11].

In a globally symmetric space properties of ˇgures are independent on their
positions in this space. They are characterized by a set of the space symmetry
group invariants. Therefore the group of global space symmetry can be only
simple or semisimple Lie group. The space-time symmetry groups in Special
Relativity, classical and quantum mechanics are the groups of precisely this kind.
Energy, momentum and spin are the invariants of corresponding space-time sym-
metry groups [12].

The law of energy conservation was established in 1847 by H. Helmholtz.
More precisely, Helmholtz demonstrated physical sense of this law in different
physical and chemical processes and proved its universality and great meaning.
Later Helmholtz demonstrated universality and great physical sense of least action
principle.

The problem of the meaning of energy was offered by Faculty of Philosophy
of University of Géottingen for awarding of prize for 1887. The work represented
by M. Planck was awarded the second prize (the ˇrst prize did not present to
anybody). This success permitted Planck to become the extraordinary professor of
theoretical physics in Kiel University. Planck was happy. At that time theoretical
physics was not a separate subject [13].

In 1918, E. Noether proved the theorem (the ˇrst Noether theorem) [14],
which established close connection of symmetry properties of action integral with
conservation laws, in particular, the energy conservation law. According to this
theorem the energy conservation law appears when the space-time symmetry
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group includes time translations as its invariant subgroup. Poincar�e, Galilei and
Lorentz groups include this invariant subgroup. Therefore in Special Relativity,
classical and quantum mechanics energy conservation law is realized. Momemtum
conservation law corresponds to space translations considered as invariant sub-
group of the global space-time symmetry group. Poincar�e, Galilei and Lorentz
groups contain space translations as their invariant subgroup. Therefore in Special
Relativity, classical and quantum mechanics momentum conservation law is also
realized. When time and space translations united with each other in invariant sub-
group of Lorentz group we obtained one conservation law of energy-momentum
instead of four isolated conservation laws of energy and 3-momentum.

In a globally symmetric space-time an experimenter measures values of dy-
namical constants corresponding with the conservation laws generated by the
symmetry group of space-time as a whole. Elementary particle classiˇcation is
realized by invariants of the above-mentioned symmetry group.

But what is ®as a whole¯? The difference between Lobachevski and Euclid-
ean geometries consists in the only one axiom. In Euclidean geometry each
straight line has only one straight line parallel to it and passing through the given
point outside it. In the Lobachevski geometry each straight line has an inˇnite
number of such lines. Where can we really have the inˇnite Euclidean plane?
Nowhere. But replacement of inˇnite plate by ˇnite one leads to replacement
of Euclidean geometry by Lobachevski one, because in ˇnite domain of space
there are many straight lines which do not intersect with given one (i. e., they are
parallel to it in terms of Lobachevski geometry). Modern physics does not take
into account this fact.

The straight lines of Euclidean geometry are the images of the trajectories,
which describe the inertial motion of the centres of mass of the real objects (i. e.
without any interaction). They are inobservable lines because any observation
implies some interaction! In order that a light ray became visible it must pass
through some dispersive medium, for example, dust. In vacuum a light ray is
invisible. As well known in practice, a light ray can be used as realization of
straight line.

In 1828, Hamilton found such representation of the corpuscular light theory
according to that determination of a light ray path passing through any inhomo-
geneous (but isotropic) medium is a special case of usual mechanical problem of
material point motion [15]. In 1891, Klein saw that in spaces of higher dimen-
sions each mechanical problem can be reduced to determination of a light ray
path passing through some relevant medium [16].

It is necessary to note that in spherical geometry there are not any parallel
straight lines, which are in this case named geodesic one. All straight lines
passing through two different points nonbelonging to the same straight line are
mutually intersect (as meridians on a globe). The parallels on a globe are not
straight lines in spherical geometry with the exception of meridian.
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3. EXPERIMENTS IN SPACES WITH LOCAL GEOMETRY

The spaces possessing locally given geometry are named the spaces with
local geometry. This geometry can be given by inˇnitesimal quadratic form:
ds2 = gikdxidxk, where ds2 Å inˇnitesimal interval, dxi, dxk Å differentials
of coordinates xi, xk and gik Å metric tensor.

The spaces with global geometry can be given by ˇnite quadratic form:
s2 = gikxixk.

The symmetry group of this space is the group preserving given quadratic
form (i. e., the quadratic form is invariant of space symmetry group). Just so the
geometry is given in Special Relativity.

As stated above, the space with local geometry as a whole can be asymmetric.
Are the experiments possible in such space? What values can we measure in it?

Riemannian space of General Relativity is the space with local geometry. Let
us consider experiment problem in General Relativity.

In 1915, in the paper ®Foundation of Physics¯ D. Hilbert [17] proved the
theorem according to that invariance of the integral depending on 14 potentials
(tensor gik and vector qi components) with respect to arbitrary continuous co-
ordinate transformations in 4D Riemannian space-time leads to appearance of
connection between left-hand sides of the Euler equations and their derivatives.
Therefore four identities appear and four equations of the Euler system are su-
per	uous, namely, four equations become the corollary of the other equations.

The Hilbert theory discribed two classical ˇelds: gravity (by tensor gik)
and electromagnetic ˇeld (by vector qi). The Euler equation system consisted
of ten gravitational equations and four electromagnetic ones. Appearance of
four identities Hilbert decided to use for realization of Mie ideas of uniˇed ˇeld
theory. He proposed that four electromagnetic equations are the corollary of
ten gravitational ones. Then the electrodynamic phenomena follow from gravity.
Hence, electromagnetic energy just as a total one can be expressed in terms of
curvature scalar R and its derivatives.

Hilbert derived the Maxwell equations from his gravitational one. His gravi-
tational equation had the form

Rik − 1
2
gik = T em

ik , (1)

where Rik Å Ricci tensor, T em
ik Å tensor of density of electromagnetic energy-

momentum (in modern terms).
It is evident that in absence of electromagnetic ˇeld the Hilbert gravitational

equations coincide with the Einstein vacuum gravitational one.
As Hilbert hoped this uniˇed theory will describe processes inside atoms. In

his opinion by this way the possibility appears to turn physics into science similar
to geometry which is excellent example of the axiomatic method.
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Unfortunately, in this paper Hilbert introduced a vector of energy regard-
less of the conservation law of it and have used arbitrary out of theory values:
vector pj and tensor pμν . But in reality the conservation laws of energy and
3-momentum disappeared! This is also the corollary of invariance of the Hilbert
theory with regards to the arbitrary continuous coordinate transformations, which
Einstein proposed.

Against the background of success of Special Relativity created in 1905 this
fact was perceived by scientists as a catastrophe. General Relativity principle led
to disappearance of the energy conservation law. Scientists tried to go around this
difˇculty introducing various pseudotensors for artiˇcial construction of the lost
conservation law. Unnecessary variables removed by the gauge condition choice.
After this procedure the number of equations became equal to the number of the
variables and equations became solvable one.

But in 1918, E. Noether generalized the result of her teacher Hilbert and
proved the second theorem (second Noether theorem) [14]. This theorem states
that the situation discovered by Hilbert is a total one. When an action integral
depending on arbitrary number of variable is invariant with respect to the group
which transformations depend on the coordinate functions, the identities between
the left-hand sides of Euler equations and their derivatives appear. If the group
transformations depend on r coordinate functions then r corresponding identities
will arise. Naturally, r conservation laws predicted by the ˇrst Noether theorem
will disappear.

In other words, when the symmetry group transformations become depending
on the point of space (or space-time) and the space symmetry becomes a local one,
instead of r conservation laws arising in the case of the global space symmetry
we shall have r identities between left-hand sides of the Euler equations and
their derivatives. These Noether identities reduce the number of independent
equations by r.

So, General Relativity acquired its isolated place between other physical
theories.

Gradually it became clear that any pseudotensors cannot help to solve the
energy problem in GR. The way out of the situation went in the other direction.

In 1921, Einstein wrote ®The Meaning of Relativity¯, where he analyzed the
experimental situation described by his theory [18]. Equivalence principle was,
in his opinion, so signiˇcant physical one that all difˇculties which GR met in its
development must be regarded as negligible.

In the above paper Einstein connected his famous equations with the density
energy conservation law, which he postulated in covariant form. He noted that
such a form did not permit to integrate it and derive from it the integral energy
conservation law. But this problem he disregarded.

Moreover from his equation having in the right-hand side Maxwellian energy-
momentum tensor of electromagnetic ˇeld Einstein derived both pairs of the
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Maxwell equations under conditions that a current is null. In addition from
his covariant energy conservation law Einstein obtained the equation of particle
motion along the geodesical line.

The meaning of covariant conservation law of energy-momentum tensor T μν

Einstein saw in the following. Instead of the Newtonian motion equation of
material point

d

dt
P i = F i, (2)

where P i Å momentum, F i Å external force, in GR we can use the covariant
energy-momentum tensor conservation law in the form:

∂μT μν = fν , (3)

where fμ Å density of external forces in analogy with classical mechanics. As
in Newtonian case the momentum P i is 3D space integral of the components of
energy-momentum tensor T α0 (α = 1, 2, 3), the last equation can be regarded as
similar to the Newtonian one for the densities of corresponding values. He hoped
to apply new equations for explanation of cosmic processes but not atomic one.
Supporters of Hilbert's point of view criticized Einstein's approach as improper.

Einstein regarded GR as the theory describing a set of experimenters dis-
posed in each point of space. Each of them has the local rulers and watch for
measurements of space and time segments. Due to equivalence principle such
experimenter falling freely in gravitation ˇeld does not feel this ˇeld. In its
inˇnitesimal domain the space-time seems to him the Minkowski one. Therefore
instead of Riemannian space experimenters study inˇnite set of local Minkowski
space-times, which connected with each other by afˇne connection. The afˇne
connection coefˇcients are the images of forces of classical mechanics.

This approach was noticed by E. Cartan, which in 1925 proposed new for-
mulation of Riemannian geometry known as Riemannian geometry in orthogonal
frame [7]. By Cartan Riemannian space is constructed step by step from Euclidean
spaces associated with each point of Riemannian space. New geometrical objects
necessary for this procedure and absent in global geometry are the connection
coefˇcients. It is evident that this formulation permits us to take into account
approximate character of the local measurements fulˇlled by freely falling exper-
imenters of Einstein. With the help of new mathematics it became possible to
describe real experimental situation.

Other important problem of GR is a test body problem. In correspondence
with GR axiomatics a test body must be subjected to gravity ˇeld action but has
not any back in	uence on this ˇeld. What real objects can be the objects of such
a kind? At ˇrst sight, it seems that a test body must be a small one. But more
careful analysis shows that the role of the test bodies can play more correctly the
massive bodies of big size. Centres of mass of these bodies must move along
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the geodesic lines of Riemannian space-time of GR. These lines are similar to
the straight lines of Euclidean space-time in some respect, namely, the motion of
test bodies along the geodesic lines performs by inertia. In order to have mutual
in	uence of massive test bodies small, these bodies must be located far enough
from each other. The estimate shows that masses of test bodies and distances
between them must be of cosmic size. Therefore Einstein's theory of gravity is
really the theory of cosmic space [19,20].

4. EXPERIMENTS IN THE FIBRE BUNDLE SPACE AND GAUGE FIELDS

The Cartan approach turns Riemannian space-time of GR into the ˇbre bundle
space, where the ˇbre is each local Minkowski space-time associated with some
point of original Riemannian space-time named in this case the base of given
ˇbre bundle space.

Einstein considered the local Minkowski spaces as the images of the frames
where the local experimenter fulˇlled his measurements by local rules and watches.
Three space and one time dimensions correspond with the instruments used by
experimenter for his geometrical investigations.

But what will happen if experimenter intends to measure nongeometrical
parameters or to investigate electromagnetic ˇeld instead of gravity? How can
we geometrically describe this situation? For a long time this question has not
any answer. In the '60s of XX century when the ˇbre bundle space geometry
was created the above question got the answer [21].

Set of the local frame origins must belong to the same Riemannian space-time
of GR. But the ˇbre will be differ from the local Minkowski space-time. It must be
the image of other instruments for measurements. Since any measurement results
form some manifold they can be represented in some space of the parameters.
Just this parameter space will play a role of a ˇbre of a new ˇbre bundle space.
Such a geometrical construction was proposed by me in 1965. It permitted to
geometrize all fundamental interactions known in modern physics [9].

In proposed by me uniˇed geometrical theory of all interactions the merits and
problems of GR became total. Due to more general approach some of them were
solved. For example, the problem of integration of the covariant conservation
law of energy-momentum tensor T μν . The answer consists in the new procedure
of invariant integration in Riemannian space. As T μν is a symmetric tensor of
rank two the Gauss theorem cannot be used for integration of its divergence all
over 4D Riemannian space-time. It is necessary to input some vector ξa

ν , which
satisˇes conditions: ξa

(ν;μ) = 0. Then the value paμ = T μνξa
ν is divergence-free

vector in Riemannian space-time. Index a is related to the parameter space which
is the ˇbre and does not take part in the base operations. After integration of
relation paμ; μ = 0 with application of the Gauss theorem we shall obtain the
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set of a integrals invariant with regards to arbitrary continuous tranformations of
base coordinates [22].

In GR the physical sense of this procedure becomes clear when the motion
groups of Riemannian space are regardered as its symmetry groups. Then vector
P a =

∫
pa0d3x turns into the multiplet of a motion integrals, for example,

the energy-momentum components. The number of these components depends
on the number of motion group parameters. Minkowski, de Sitter and anti
de Sitter spaces have 10-parametric motion group. But it is necessary to note that
only in Minkowski space we can obtain 4-component invariant set of integrals
which corresponds to 4-vector energy-momentum. In de Sitter and anti de Sitter
cases energy, momentum and angular momentum form the single multiplet in
correspondence with algebra structure of the motion group.

In the geometrical gauge ˇeld theory of interactions the vector-potential of
each gauge ˇeld is the image of connection coefˇcients of proper ˇbre bundle
space. The ˇbre of this space is the group space of the gauge group. As the
gauge symmetry is considered a local one, each copy of the gauge group space is
associated with each point of base. The base is the space of GR. This geometrical
picture is being used in all my works, beginning with 1965.

In spite of the fact that metric tensor gμν is not a connection coefˇcients,
its interpretation as the gauge ˇeld was also obtained by me in 1967 [23]. The
corresponding equations of gμν found by me coincides with the Einstein equations.
The equation system of the nongravitational gauge ˇelds and gravity generalizes
the system of equations of Maxwell and Einstein. The energy-momentum tensor
of this ˇeld system is sum of the energy-momentum tensors of each gauge ˇeld.
The covariant conservation law of the total energy-momentum tensor permits one
to obtain the particle motion equations as a corollary of the ˇeld system equations,
as it is in GR [24,25].

The fundamental question of the role of the Einsteinian equations in the
elementary particle theory is now connected with the question of vacuum structure
in this theory [26].

5. CONCLUSION

So, it can be chosen two independent directions of geometry and physics
linking in XX century. One of them begins from the Hilbert VI problem of
physics axioms [27,28]. Another one was created by Einstein [29]. Hilbert based
on the ideas of the Mie electrodynamics which offered to use only ˇelds without
material particles for explanation of physical phenomena. Einstein analyzed the
nature of gravity and inertia in accordance with Mach ideas.

When Hilbert discovered that locality of the coordinate transformations in
4D Riemannian space-time leads to reduction of independing equation number,
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and this fact is connected with general relativity principle, he joined the grav-
ity equations for metric tensor gμν and Maxwell equations for vector potential
Aμ in the single system. In this way he, in his opinion, carried the number of
independent equations into correspondence with the number of independent vari-
ables. Hilbert regarded the obtained equation system as the equations of a single
electromagnetic-gravitational ˇeld which govern atomic processes. Riemann also
assumed a nature unity of above ˇelds.

But Weyl in 1918 called his attention to the local gauge invariance in Maxwell
electrodynamics. This is one-parameter transformation of Aμ dependent on co-
ordinates of space-time. The second Noether theorem was known to him. It
followed that in the system of the Hilbert equations one more equation is su-
per	uous. Weyl offered new approach to the problem of electromagnetism and
gravity uniˇcation. He decided to connect the local gauge invariance in electro-
dynamics and local space symmetry. To this end he input additional principle in
GR, namely, the local gauge invariance of 4D interval: ds2′ = λ(x)ds2.

Unexpectedly, new Weyl principle led to the theory incompatible with GR
and Riemannian geometry. Weyl took ˇrst step in generalization of Riemannian
geometry having applied new connection coefˇcients disconnected with metrics.

In contrast to Hilbert, Einstein was interested in explanation of nature unity
of gravitational and inertial ˇelds. He began with the equivalence principle. In
GR the equations of geodesic motion of material particles are simultaneously used
with the gravity equations. Einstein added four equations of the inertial motion to
the gravity equations instead of four Maxwell equations in Hilbert theory. Here
any hidden local invariance is absent. Due to the local coordinate invariance the
geodesic lines equations follow from the gravity one. Einstein demonstrated this
fact using the covariant conservation law of the energy-momentum tensor. He
regarded GR as the theory of cosmic objects motion.

Extension of Weyl point of view taking account of Einstein and Klein posi-
tions permitted Cartan to formulate Riemannian geometry in a new fashion and
create the base of the geometry of ˇbre bundle spaces. In last geometry unre-
stricted number of interacting ˇelds can be described. New moment in modern
situation consists in the fundamental role of GR in determination of vacuum
structure in the elementary particle theory.

As the ˇnal result, we can see that the ˇbre bundle space geometry and the
geometrical gauge ˇeld theory unite all fundamental interactions of elementary
particles and, on the other hand, permit to describe the processes in the Universe.
They include all points of view which were regarded as incompatible for a long
time.
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