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Beam Stability in Synchrotrons with Digital Filters in the Feedback Loop

of a Transverse Damper
The stability of an ion beam in synchrotrons with digital ˇlters in the feedback loop of

a transverse damper is treated. Solving the characteristic equation allows one to calculate the

achievable damping rates as a function of instability growth rate, feedback gain and parameters
of the signal processing. A transverse feedback system (TFS) is required in synchrotrons to

stabilize the high intensity ion beams against transverse instabilities and to damp the beam

injection errors. The TFS damper kicker (DK) corrects the transverse momentum of a bunch
in proportion to its displacement from the closed orbit at the location of the beam position

monitor (BPM). The digital signal processing unit in the feedback loop between BPM and DK
ensures a condition to achieve optimal damping. Damping rates of the feedback systems with

digital notch, Hilbert and all-pass ˇlters are analyzed in comparison with those in an ideal

feedback system.
The investigation has been performed at the Veksler and Baldin Laboratory of High

Energy Physics, JINR.
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INTRODUCTION

Heavy ion beams of a high quality are required by many physicists for ex-
perimental studies. Gold ion beams are accelerated now in RHIC (BNL) [1], it
is planned to accelerate lead ions in LHC [2]. Future accelerator facilities at GSI
(FAIR project [3]) and JINR (NICA project [4]) are designed for acceleration
of uranium beams. These facilities include a linear accelerator and several syn-
chrotrons. For example, the CERN accelerator chain for ion beams consists of
Linac Ä LEIR Ä PS Ä SPS Ä LHC. In the framework of the FAIR project the exist-
ing GSI accelerators serve as injectors for new synchrotrons SIS100 and SIS300.
It is planned to build a booster as the injector for the Nuclotron operated now with
a linac at JINR and to use the Nuclotron as the injector for a collider designed
in the framework of the NICA project. It is clear that injection errors during the
beam path from the linac to synchrotrons can lead to the undesirable growth of
a beam emittance. It should be emphasized also that high intensity beams will
be provided by these accelerators. The ultimate intensities after injection into
the LHC will be about 4.8 · 1010 ions for the 208Pb82+ beam with an energy
of 177 GeV/u. The peak intensities of particles after injection into the SIS100
will be about 5 · 1011 for the 238U28+ beam with an energy of 0.2 GeV/u. These
intensities can lead to coherent transverse instabilities. Theoretical predictions
for the instability rise time τinst correspond to hundreds revolution periods Trev

of particles in the synchrotron. Therefore, it is necessary to cure the transverse
instabilities as well as to damp the transverse oscillations of the beam due to
injection errors.

Transverse feedback systems (TFS) are used widely in synchrotrons for damp-
ing of coherent oscillations. The damping time τd of TFS must be shorter than
the instability rise time τinst to suppress instability: τd < τinst. In addition to that
the damping time must be chosen to limit the emittance growth due to the beam
injection errors. If einj is the maximum assumed amplitude of a beam deviation
from the closed orbit due to displacement and angular errors at injection, then the
relative emittance growth Δε/ε is [5, 6]

Δε

ε
=

e2
inj

2σ2
F 2

a ; Fa =
(

1 +
τdec

τd
− τdec

τinst

)−1

, (1)
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Fig. 1. Dependences of Fa on τinst/Trev

where σ is the initial RMS beam size and τdec is the beam decoherence time.
Dependences of the form factor Fa on the instability rise time τinst for several
values of the damping time τd and the beam decoherence time τdec are shown
in Fig. 1. As rule Fa < 0.1 is assumed that corresponds to τd ≈ 40Trev for
τinst > 100Trev and τdec > 500Trev. The damping time τd = 40Trev is used
commonly as the design speciˇcation of TFS for synchrotrons [7, 8].

1. BASIC DESCRIPTION

A classical transverse feedback system (see Fig. 2) consists of a beam position
monitor (BPM), a damper kicker (DK) and an electronic feedback path with
appropriate signal transmission from BPM to DK [9]. The damper kicker corrects
the transverse momentum of a bunch in proportion to its displacement x[n, sP]
from the closed orbit at the BPM location sP of the synchrotron's circumference
C0 at the nth turn. The digital signal processing ensures the adjustment of the
phase advance and the correction of the time of �ight for optimum damping. The
total delay τdelay in the signal processing of the feedback loop from BPM to DK
is adjusted to be equal to τPK, the particle �ight of time from BPM to DK, plus
an additional delay of q turns

τdelay = τPK + qTrev. (2)
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Fig. 2. Layout of a classical transverse feedback system

For the practical realization in a particle accelerator, we note that q = 0 or q = 1
are used [8].

Following the matrix description of the free oscillation of a particle in syn-
chrotrons, the matrix equation for the bunch states at the BPM location sP at the
(n + 1) and nth turns after a small kick by the DK is given by [10]

X̂ [n + 1, sP] = X̂[n, sP + C0] = M̂0X̂[n, sP] + B̂T̂ΔX̂[n, sK], (3)

where elements of the column matrix X̂[n, s] are the bunch displacement x[n, s]
and the angle x′[n, s] of its trajectory, M̂0 is the revolution matrix, B̂ is an
ordinary transfer matrix from the point [n, sK] on the closed orbit at the DK
location to the point [n, sP + C0] at the BPM position at the nth turn, T̂ is the
2× 2 matrix in which T21 = 1 and the other elements are zero. The ˇrst element
of the column matrix ΔX̂ in Eq. (3) is equal to the kick value Δx′

Δx′[n, sK] = SKVout[n], (4)

where SK is the transfer characteristic of the damper kicker. The second element
of the column matrix ΔX̂ can be an arbitrary value due to the form of the
matrix T̂ . The output voltage Vout[n] of the feedback loop depends on the input
voltage Vin[n, sP] at the BPM. In the general case of linear systems the output
voltage can be written as follows:

Vout[n] = u[n − q]
n−q∑

m=−∞
h[n − m]Vin[m, sP], (5)

where elements h[m] are determined by the electronics in the feedback loop,
u[n] is the Heaviside step function and q corresponds to the number of turns for
delay (see Eq. (2)). For a bunch injected at n = 0, the input voltage Vin[n, sP]
depends on the bunch displacement at the BPM location:

Vin[n, sP] = SPu[n] (x[n, sP] + δx) , (6)
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where SP is the BPM sensitivity and δx is a deviation of the BPM electric
centre from a closed orbit. It should be emphasized that Eqs. (3), (4), (5) and (6)
correspond to the bunch-by-bunch feedback where the correction kick for a given
bunch is computed based only on the motion of that bunch. Applying the bilateral
Z-transform (see [11])

y(z) =
∞∑

n=−∞
y[n]z−n

in Eqs. (3), (4), (5) and (6) we obtain from (3):

X̂(z) =
zÎ − M̂−1 det M̂

det(zÎ − M̂)

⎛
⎝z

(
x[0, sP]
x′[0, sP]

)
+

z−qK(z)√
β̂Pβ̂K

B̂T̂

(
δx/(1 − z−1)

0

)⎞
⎠,

(7)
where Î is the identity matrix, the matrix M̂(z) is given by

M̂(z) = M̂0 +
z−qK(z)√

β̂Pβ̂K

B̂T̂ , (8)

the betatron amplitude function at the point sP of the synchrotron's circumference
is β̂P = β̂(sP), and β̂K = β̂(sK). The transfer function K(z) is determined by
the system transfer function H(z) of the electronics in the feedback loop in
accordance with parameters h[n] in (5):

K(z) =
√

β̂Pβ̂KSPSKH(z), H(z) =
∞∑

n=−∞
z−nh[n]. (9)

Consequently the bunch dynamics is determined by the poles zk of X̂(z) which
are roots of the characteristic equation:

det
(
zkÎ − M̂(zk)

)
= z2

k − 2zk TrM̂(zk) + det M̂(zk) = z2
k −

[
2 cos(2πQ̃)+

+ z−q
k K(zk) sin(2πQ̃ − ψPK)

]
zk + 1 − z−q

k K(zk) sin ψPK = 0, (10)

where Q̃ is the beam tune, ψPK is the betatron oscillation phase advance from
BPM to DK.

In the general case, Q̃ is a complex function depending on z [12, 13]. The
real part of Q̃ is the number of betatron oscillations per turn: Re Q̃ = Q. The
imaginary part of Q̃ is determined by the increment of the transverse instability:
2π Im Q̃ = Trev/τinst, where τinst is the transverse instability rise time.

The beam is stable if eigenvalues zk from Eq. (10) lie inside the unit circle:

|zk| < 1. (11)
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Damping rates of the coherent betatron oscillations are deˇned by the absolute
value of zk:

Trev

τk
= − ln |zk|, (12)

where τk is the time constant of the betatron oscillation amplitude decay. Frac-
tional parts {Re Q̃k} of the betatron frequency of a particle in presence of the
transverse feedback system

{Re Q̃k} =
1
2π

arg(zk) (13)

are the fractional tunes (−0.5 < {Re Q̃k} � 0.5).
If |K(z)| = 0, then the solution of Eq. (10)

z
(0)
± = exp(±j2πQ̃) (14)

corresponds to the solution for frequencies of the betatron motion equation of a
particle in synchrotrons. Let us assume that for small values of |K(z)| we can
write:

z−qK(z) = g exp(∓jϕ) exp(∓j2πqQ̃), (15)

where the gain |g| � 1 and the phase shift

ϕ = arg
(
H(z(0)

− )
)

(16)

of the feedback loop depend weakly on z, so that we can neglect dependences of
g and ϕ on z in Eq. (10), and zero approximation from (14) can be used for g
and ϕ at betatron frequencies. Let us assume also that the fractional part of the
tune is not close to 0 or 0.5. In this case the solutions of Eq. (10) in the linear
approximation with |g| � 1 are expressed by the formula:

z± ≈
(
1 − g

2
exp(±j(

π

2
− Ψ̃PK))

)
exp(±j2πQ̃), (17)

where
Ψ̃PK = ψPK + 2πqQ̃ + arg

(
H(z = exp(−j2πQ̃))

)
. (18)

Using deˇnitions (12) and (13) the damping rates follow as

Trev

τ±
≈ g exp(± Im Ψ̃PK)

2
sin(Re Ψ̃PK) ± 2π Im Q̃, (19)

and the fractional parts of tunes are

{Re Q̃±} ≈ ±{Q} ∓ g exp(± Im Ψ̃PK)
4π

cos(Re Ψ̃PK). (20)
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Therefore, the best damping of coherent transverse oscillations is achieved by
optimally choosing the positions of BPM and DK yielding a phase advance of
Re Ψ̃PK equal to an odd multiple of π/2:

Re Ψ̃PK =
π

2
(2k + 1), (21)

where k is an integer. Hence, the overall damping rate is

Trev

τ
≈ g exp(− Im Ψ̃PK)

2
cos(πk) − 2π Im Q̃ =

Trev

τd
− Trev

τinst
,

where τd is the damping time constant of the TFS without instability.
In the following transverse feedback systems satisfying the optimal condi-

tions (2) and (21) are considered. We call the special case with ϕ = 0 and q = 0
hereafter the ideal transverse feedback system.

If Q̃ depends weakly on z, then the characteristic equation (10) with the
feedback transfer function

z−qK(z) = ga0z
−qH(z)

can be converted to a polynomial. It can be solved with the use of a root-ˇnding
algorithm or analytically for a polynomial of degree less than ˇve. However, it is
clear from (20) that {Re Q̃k} ≈ {Q} for |g| � 1 in the case of (21). Therefore,
dependences of damping rates |zk| on gain g for the TFS with digital ˇlters can
be compared with those for the ideal TFS if a0 is deˇned for zQ = exp(−j2πQ)
such that

|a0z
−q
Q H(zQ)| = 1, a0 sin

(
arg

(
z−q
Q H(zQ)

)
+ Re ψPK

)
> 0. (22)

Hence, the damping regime corresponds to g > 0. The calibration condition (22)
will be used hereafter for all dependences of TFS damping parameters on gain g.

2. DIGITAL FEEDBACK SYSTEMS

Taking into account the ˇnal value theorem [11] and the solution (7) for
X̃(z) we can conclude that

X̂[∞, sP] = lim
z→1

(1 − z−1)X̃(z) = 0, if K(z = 1) = 0. (23)

Therefore, as minimum a notch ˇlter to suppress all the revolution harmonics (DC
included) is required in the feedback loop. The magnitude of the difference signal
from the BPM electrodes, after passing through the notch ˇlter, is proportional
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to the bunch deviation from the closed orbit. The system transfer function of the
notch ˇlter is [11]

H(z) = HNF(z) = 1 − z−1. (24)

It is clear from (24) that the notch ˇlter changes the gain g and phase ϕ of the
open loop transfer characteristics. For example, if Q = 6.73, then {Q} = −0.27
and in accordance with (16) the phase ϕ is arg(HNF(zQ)) = ϕNF = 41.4◦. The
gain |HNF| = 2| sin({Q}π)| = 1.5 can be adjusted by an ampliˇer a0 in the
feedback loop in accordance with (22). However, according to the approximation
formula (19), the damping rates for the TFS with the notch ˇlter still change
due to the phase shift ϕNF resulting in slower damping than for the case of the
ideal TFS.

The unwanted phase shift ϕNF due to the notch ˇlter can be compensated by
a Hilbert ˇlter [14] with the system transfer function

HHF(z) = h0z
−3 + h1z

−2(1 − z−2) + h3(1 − z−6), (25)

where

h0 = cos(Δϕ), h1 = − 2
π

sin(Δϕ), h3 = − 2
3π

sin(Δϕ)

are the Hilbert transform impulse response coefˇcients.
The electric circuit of a feedback loop with the notch and Hilbert ˇlters is

shown in Fig. 3. The difference signal Vin from the electrodes of the beam position
monitor (BPM) is ampliˇed by front electronics with the gain gin. Then the signal
proceeds through the notch ˇlter and the Hilbert ˇlter. The synchronization
needed is adjusted by the digital delay τdd. The output voltage Vout on the
damper kicker (DK) is supplied by the high power ampliˇer with the gain gout.
The notch ˇlter has the standard conˇguration. It includes a one-turn delay Trev,
an invertor and a summator. The Hilbert ˇlter includes six one-turn delays, four

Fig. 3. Block diagram of feedback loop with the notch and Hilbert ˇlters
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summators, two inverting ampliˇers and three ampliˇers h0, h1, h3. For example,
the phase shift needed for compensation of ϕNF = 41.4◦ is obtained by using the
Hilbert ˇlter with Δϕ = −72.8◦.

The unwanted phase shift ϕNF due to the notch ˇlter can be compensated also
by an all-pass ˇlter [11] with a frequency-response magnitude that is constant but
a phase advance which is variable and adjustable. The notch and Hilbert ˇlters are
FIR (ˇnite impulse response) ˇlters but the all-pass ˇlter is IIR (inˇnite impulse
response) ˇlter. The transfer function of the ˇrst order all-pass ˇlter is

HAF(z) =
z−1 − a∗

1 − az−1
, (26)

where a is a free ˇlter parameter for the adjustment of the phase, and a∗ denotes
its complex conjugate. For example, the phase shift needed for compensation of
ϕNF = 41.4◦ is obtained by using the all-phase ˇlter with a = −0.501.

The electric circuit of a feedback loop with the notch and all-pass ˇlters is
shown in Fig. 4. The all-pass ˇlter includes a one-turn delay Trev, an inverting
ampliˇer (−1/a∗) in the non-recursive electric circuit, an ampliˇer a in the
recursive electric circuit and two summators. An additional inverting ampli-
ˇer (−a∗) in the output electric circuit is ensuring |HAF| = 1 for all frequencies
independently of the ˇlter parameter a. It allows one to adjust phase shifts in
the feedback loop by varying the parameter a but keeping the gain of the TFS
constant.

Dependences of damping rates |zk| on gain g for the ideal TFS, the TFS
with notch and the TFS with notch and all-pass ˇlters are shown in Fig. 5 (the
tune of Q = 6.73 was used [15]). In case of the feedback loop with notch ˇlter
only Eq. (10) is a characteristic polynomial of the third degree. The characteristic
equation (10) is a characteristic polynomial of the fourth degree in case of the TFS
with notch and all-pass ˇlters. Therefore, all dependences in Fig. 5 correspond to
analytical solutions of Eq. (10). It is clear from Fig. 5 that the damping rates of the
TFS with the notch ˇlter are worse than those of the ideal TFS for all magnitudes

Fig. 4. Block diagram of feedback loop with the notch and all-pass ˇlters
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Fig. 5. Dependences of damping rates |zk| on gain g for the ideal TFS (solid curves), for
the TFS with the notch ˇlter (dashed curves) and for the TFS with the notch and all-pass
ˇlters (dotted curves), parameter a = −0.501; shown is the case of the tune of Q = 6.73
and an assumed instability rise time of τinst = 100Trev

Fig. 6. Dependences of overall damping rates Trev/τ on gain g for feedbacks: the ideal
TFS (solid curve), with the notch ˇlter (dashed curve), with the notch and all-pass ˇlters
for a = −0.501 (dotted curve), with the notch and Hilbert ˇlters for Δϕ = −72.8◦

(dash-dotted curve); shown is the case of the tune of Q = 6.73 and an assumed instability
rise time of τinst = 100Trev

of the feedback gains. However, for small gains g � 1 the characteristics of the
TFS with the notch and all-pass ˇlters coincide with the corresponding parameters
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of the ideal transverse feedback system if the phase shift of the notch ˇlter was
compensated by the all-pass ˇlter with the parameter a = −0.501.

Dependences of overall damping rates Trev/τ on gain g for the ideal TFS
and for feedback systems with digital notch, all-pass and Hilbert ˇlters are shown
in Fig. 6 in cases of optimal values for a and Δϕ. Therefore, the damping
parameters of the ideal TFS can be obtained in the TFS with notch and all-pass
or Hilbert ˇlters for small gains. However, the stability range is wider for TFS
with the notch and all-pass ˇlters. The gain g of TFS with the notch ˇlter only
must be ≈ 1.3 times higher in the case of τd = 40Trev than for TFS with the
all-pass or Hilbert ˇlter.

CONCLUSION

Following the analysis presented in this paper we can conclude that for small
gains of the feedback loop the optimum damping characteristics of the ideal TFS
can be restored in presence of a notch ˇlter using a ˇrst order all-pass ˇlter or
a six order Hilbert ˇlter with optimized parameters. Tuning the phase transfer
characteristic of the all-pass or Hilbert ˇlters in order to compensate the phase
shift in the feedback loop caused by the notch ˇlter we can obtain the optimal
beam damping time. This possibility of tuning is an interesting feature and
constitutes an advantage over a transverse damping system with notch ˇlter only.
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