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VYCTOWYMBOCTD Iy9K B CHHXPOTPOH X C HUGPOBBIMU CHCTEM MH IOJ BJIEHHS
KOTepPEeHTHBIX IOIepeYHbIX Koyed Huii

IpuBomsATCS PE3y/IbT Thl TEOPETUYECKOTO MCCIIENOB HHSl YCTOHYMBOCTH MOHHOTO IMyYkK B
CHHXPOTPOH X B 3 BUCHMOCTH OT I P METPOB LU(POBBIX (PUIBTPOB B IEMH 00Op THOW CBS3M
cucrem nox Biaenus (CIT) KorepeHTHbIX morepedHbix koned Huil mydk . CII npumeHsioTcs
B CHHXPOTPOH X C ILIENbI0 CO3[ HHS YCJIOBHU IUIS NPEIOTBP IIEHUS P 3BUTHS KOTEPEHTHBIX
MONepPEeYHBIX HEYCTOHYMBOCTEH IMyyk , T KXe WId AeMI(HPOB HHUS OCT TOYHBIX Koie® Huii
Y cTuI nociie HXeKuur. CucteM MOJ BIIEHHSI KOTEPEHTHBIX IONEpeYHbIX KoaeOd HHi IMydk
obecrieyrB T KOPPEKIMI0 MOMEePEeYHOr0 UMITYJIbC CIYCTKOB H K KIOM 000pOTE C HOMOLIBIO
IebIeKTop C y4eToM J HHBIX O CMEHIEHMH LEHTP TSIXECTH ITydK , U3MEPEHHBIX JI TYUKOM
nonoxenus. IInsg obecriedeHnsl ONTHUM JIBHBIX YCIIOBHH AeMIIPUPOB HUS HONEPEYHBIX Kojeld -
HUI CTYCTKOB HCIIOJIB3YIOTCS IU(POBbIE METO/BI 0Op OOTKY CHUTH JIOB B LIeNU OOp THOU CBSI3H
MeXIy I TYMKOM HOJIOXeHHs H jecdiekTopoM. IIpuBOmsATCS I HHBIE O 3 BUCHMOCTSX TEMII
HOJ] BJICHHS! KOTEPEHTHbIX Kone6 HHil 0T KO3((HULMEHT Iepex YK Lend o0p THOi CBI3M L1
P 3IMYHBIX I P METPOB LU(POBBIX (UIBTPOB (Y3KOMOJOCHOIO PEXEKTOPHOro, ¢ 30BOr0 U
T'uisbepr ).
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Beam Stability in Synchrotrons with Digital Filters in the Feedback Loop
of a Transverse Damper

The stability of an ion beam in synchrotrons with digital filters in the feedback loop of
a transverse damper is treated. Solving the characteristic equation allows one to calculate the
achievable damping rates as a function of instability growth rate, feedback gain and parameters
of the signal processing. A transverse feedback system (TFS) is required in synchrotrons to
stabilize the high intensity ion beams against transverse instabilities and to damp the beam
injection errors. The TFS damper kicker (DK) corrects the transverse momentum of a bunch
in proportion to its displacement from the closed orbit at the location of the beam position
monitor (BPM). The digital signal processing unit in the feedback loop between BPM and DK
ensures a condition to achieve optimal damping. Damping rates of the feedback systems with
digital notch, Hilbert and all-pass filters are analyzed in comparison with those in an ideal
feedback system.

The investigation has been performed at the Veksler and Baldin Laboratory of High
Energy Physics, JINR.
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INTRODUCTION

Heavy ion beams of a high quality are required by many physicists for ex-
perimental studies. Gold ion beams are accelerated now in RHIC (BNL) [1], it
is planned to accelerate lead ions in LHC [2]. Future accelerator facilities at GSI
(FAIR project [3]) and JINR (NICA project [4]) are designed for acceleration
of uranium beams. These facilities include a linear accelerator and several syn-
chrotrons. For example, the CERN accelerator chain for ion beams consists of
Linac — LEIR — PS — SPS — LHC. In the framework of the FAIR project the exist-
ing GSI accelerators serve as injectors for new synchrotrons SIS100 and SIS300.
It is planned to build a booster as the injector for the Nuclotron operated now with
a linac at JINR and to use the Nuclotron as the injector for a collider designed
in the framework of the NICA project. It is clear that injection errors during the
beam path from the linac to synchrotrons can lead to the undesirable growth of
a beam emittance. It should be emphasized also that high intensity beams will
be provided by these accelerators. The ultimate intensities after injection into
the LHC will be about 4.8 - 10'° ions for the 208Pb®2* beam with an energy
of 177 GeV/u. The peak intensities of particles after injection into the SIS100
will be about 5 - 101! for the 23¥U?%* beam with an energy of 0.2 GeV/u. These
intensities can lead to coherent transverse instabilities. Theoretical predictions
for the instability rise time Tns¢ correspond to hundreds revolution periods Tie
of particles in the synchrotron. Therefore, it is necessary to cure the transverse
instabilities as well as to damp the transverse oscillations of the beam due to
injection errors.

Transverse feedback systems (TFS) are used widely in synchrotrons for damp-
ing of coherent oscillations. The damping time 74 of TFS must be shorter than
the instability rise time Ti,g; to suppress instability: 74 < Tins¢. In addition to that
the damping time must be chosen to limit the emittance growth due to the beam
injection errors. If ej,; is the maximum assumed amplitude of a beam deviation
from the closed orbit due to displacement and angular errors at injection, then the
relative emittance growth Ae/e is [5,6]
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Fig. 1. Dependences of F, on Tinst/Trev

where o is the initial RMS beam size and 74.. is the beam decoherence time.
Dependences of the form factor F, on the instability rise time 7i,q for several
values of the damping time 74 and the beam decoherence time 7qo. are shown
in Fig.1. As rule F, < 0.1 is assumed that corresponds to 7q ~ 407}e, for
Tinst > 1007 ey and Tgec > 5007 ey. The damping time 74 = 407}, is used
commonly as the design specification of TFS for synchrotrons [7, 8].

1. BASIC DESCRIPTION

A classical transverse feedback system (see Fig. 2) consists of a beam position
monitor (BPM), a damper kicker (DK) and an electronic feedback path with
appropriate signal transmission from BPM to DK [9]. The damper kicker corrects
the transverse momentum of a bunch in proportion to its displacement z[n, sp|
from the closed orbit at the BPM location sp of the synchrotron’s circumference
Cy at the nth turn. The digital signal processing ensures the adjustment of the
phase advance and the correction of the time of flight for optimum damping. The
total delay T4elay in the signal processing of the feedback loop from BPM to DK

is adjusted to be equal to 7pk, the particle flight of time from BPM to DK, plus
an additional delay of ¢ turns

Tdelay = TPK + qTrev~ (2)
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Fig. 2. Layout of a classical transverse feedback system

For the practical realization in a particle accelerator, we note that ¢ =0 or ¢ = 1
are used [8].

Following the matrix description of the free oscillation of a particle in syn-
chrotrons, the matrix equation for the bunch states at the BPM location sp at the
(n + 1) and nth turns after a small kick by the DK is given by [10]

)?[n +1,sp] = )A([n, sp+ Cy] = ]/\4\0)?[71, sp] + EfA)A([n, sk], 3)

where elements of the column matrix X [n s] are the bunch displacement x[n s]
and the angle 2'[n,s] of its trajectory, My is the revolution matrix, B is an
ordinary transfer matrix from the point [n,sk] on the closed orbit at the DK
location to the point [n, sp + Co] at the BPM position at the nth turn, 7T is the
2 x 2 matrix in which Tg/l\ = 1 and the other elements are zero. The first element
of the column matrix AX in Eq. (3) is equal to the kick value Az’

Az'[n, sk] = Sk Vout[n], €]

where Sk is the transfer characteristic of the damper kicker. The second element
of the column matrix AX can be an arbitrary value due to the form of the
matrix 7. The output voltage Voy [n] of the feedback loop depends on the input
voltage Viy[n, sp] at the BPM. In the general case of linear systems the output
voltage can be written as follows:

V:)ut[ —Un—q Z h’I’L— 1n[m SP] (5)

m=—0o0

where elements h[m] are determined by the electronics in the feedback loop,
u[n] is the Heaviside step function and ¢ corresponds to the number of turns for
delay (see Eq.(2)). For a bunch injected at n = 0, the input voltage Viy[n, sp|
depends on the bunch displacement at the BPM location:

Vin[n, sp] = Spun] (z[n, sp] + dz) , (6)



where Sp is the BPM sensitivity and Jz is a deviation of the BPM electric
centre from a closed orbit. It should be emphasized that Eqgs. (3), (4), (5) and (6)
correspond to the bunch-by-bunch feedback where the correction kick for a given
bunch is computed based only on the motion of that bunch. Applying the bilateral

Z-transform (see [11])

y()= ) ylnla"

n=—oo

in Egs. (3), (4), (5) and (6) we obtain from (3):

R(z) = 2T —M~'detM . (x[0,5p]> LK) g (53;/(1 _ Z—l)) |

det(zf— ﬁ) '[0, sp]  Bo B 0
~ __ (7)
where [ is the identity matrix, the matrix M(z) is given by
_ e —0K(2) ~~
N(z) = M+~ EC) pp (8)

\/ B
the betatron amplitude function at the point sp of the synchrotron’s circumference
is Op = B(sp), and Pk = ((sk). The transfer function K(z) is determined by

the system transfer function H(z) of the electronics in the feedback loop in
accordance with parameters h[n] in (5):

o0

K(z) = \/BpBxSpSxH(z), H(z)= »_ =z "hln]. )

n=—oo

Consequently the bunch dynamics is determined by the poles z; of )A((z) which
are roots of the characteristic equation:

det (zkf— ﬁ(zk)) =2} 22 Tr ﬁ(zk) + det ﬁ(zk) =22 - [2 cos(2mQ)+
+ 2 K (zr) sin(27Q — vpx) |2 + 1 — 2 ‘K (zp,) sinthpk = 0, (10)

where C~2 is the beam tune, ¥pk is the betatron oscillation phase advance from
BPM to DK. _

In the general case, @ is a complex function depending on z [12,13]. The
real part of () is the number of betatron oscillations per turn: Re@ = Q. The
imaginary part of () is determined by the increment of the transverse instability:
27 Im @ = Tyev/Tinst, Where Tingt is the transverse instability rise time.

The beam is stable if eigenvalues zj, from Eq. (10) lie inside the unit circle:

|zk] < 1. (11)



Damping rates of the coherent betatron oscillations are defined by the absolute
value of zy:
TI'EV

= —lIn |z, (12)
Tk

where 7y, is the time constant of the betatron oscillation amplitude decay. Frac-

tional parts {Re @y} of the betatron frequency of a particle in presence of the

transverse feedback system
~ 1
{ReQr} = Dy arg(zx) (13)

are the fractional tunes (—0.5 < {Re Qx} < 0.5).
If |[K(z)| = 0, then the solution of Eq. (10)

20 = exp(527Q) (14)

corresponds to the solution for frequencies of the betatron motion equation of a
particle in synchrotrons. Let us assume that for small values of |K(z)| we can
write: _

27K (z) = gexp(Fjep) exp(Fj2mqQ), (15)

where the gain |g| < 1 and the phase shift

o = arg (H(z@))) (16)

of the feedback loop depend weakly on z, so that we can neglect dependences of
g and ¢ on z in Eq.(10), and zero approximation from (14) can be used for g
and ¢ at betatron frequencies. Let us assume also that the fractional part of the
tune is not close to 0 or 0.5. In this case the solutions of Eq.(10) in the linear
approximation with |g| < 1 are expressed by the formula:

4 A (1 — gexp(:l:j(g - ‘TJPK))) eXP(ijQWQV), A7)
where _ ~ ~
Tric = Ve + 2000 +arg (Hz = exp(—20Q)) . (1)

Using definitions (12) and (13) the damping rates follow as

Trev _ gexp(+Im Upk)

sin(Re Upx) + 27 Im Q, (19)
T4 2
and the fractional parts of tunes are
~ exp(£Im ¥ ~
{ReQ+} =~ +{Q} F gexp( pp Pk) cos(Re Upk). (20)



Therefore, the best damping of coherent transverse oscillations is achieved by
optimally choosing the positions of BPM and DK yielding a phase advance of
Re Upk equal to an odd multiple of 7/2:

Re Upk = g(2k+1), 1)
where k£ is an integer. Hence, the overall damping rate is

TI'EV TI'EV

Trev -1 CI} ~
LAY gexp(=Im Ppx) cos(mk) — 27 Im Q@ = ,
T 2 Td  Tinst

where 74 is the damping time constant of the TFS without instability.

In the following transverse feedback systems satisfying the optimal condi-
tions (2) and (21) are considered. We call the special case with ¢ =0 and ¢ =0
hereafter the ideal transverse feedback system.

If @ depends weakly on z, then the characteristic equation (10) with the
feedback transfer function

279K (z) = gapz " 1H(z)

can be converted to a polynomial. It can be solved with the use of a root-finding
algorithm or analytically for a polynomial of degree less than five. However, it is
clear from (20) that {Re Qi } ~ {Q} for |g| < 1 in the case of (21). Therefore,
dependences of damping rates |zx| on gain g for the TFS with digital filters can
be compared with those for the ideal TFS if ag is defined for zq = exp(—j27Q)
such that

laozq H(2q)| =1, agsin (arg (ZéqH(ZQ)) + RewpK) >0. (22)

Hence, the damping regime corresponds to g > 0. The calibration condition (22)
will be used hereafter for all dependences of TFS damping parameters on gain g.

2. DIGITAL FEEDBACK SYSTEMS

_ Taking into account the final value theorem [11] and the solution (7) for
X(z) we can conclude that

X[oo, sp] = lim (1 — 2 HX(2) =0, if K(z=1) = 0. (23)
Therefore, as minimum a notch filter to suppress all the revolution harmonics (DC
included) is required in the feedback loop. The magnitude of the difference signal
from the BPM electrodes, after passing through the notch filter, is proportional



to the bunch deviation from the closed orbit. The system transfer function of the
notch filter is [11]
H(z) = Hxp(z) =1-2"1 (24)

It is clear from (24) that the notch filter changes the gain g and phase ¢ of the
open loop transfer characteristics. For example, if @ = 6.73, then {Q} = —0.27
and in accordance with (16) the phase ¢ is arg(Hnr(2q)) = ¢nr = 41.4°. The
gain |Hyp| = 2|sin({Q}x)| = 1.5 can be adjusted by an amplifier ag in the
feedback loop in accordance with (22). However, according to the approximation
formula (19), the damping rates for the TFS with the notch filter still change
due to the phase shift N resulting in slower damping than for the case of the
ideal TFS.

The unwanted phase shift png due to the notch filter can be compensated by
a Hilbert filter [14] with the system transfer function

Hyup(2) = hoz 2 + hiz72(1 — 273 + ha(1 — 279), (25)

where 9 9
ho = cos(Ayp), hy = = sin(Ap), hg = —3- sin(Ay)

are the Hilbert transform impulse response coefficients.

The electric circuit of a feedback loop with the notch and Hilbert filters is
shown in Fig. 3. The difference signal Vj,, from the electrodes of the beam position
monitor (BPM) is amplified by front electronics with the gain g;,. Then the signal
proceeds through the notch filter and the Hilbert filter. The synchronization
needed is adjusted by the digital delay 7qq. The output voltage V,u: on the
damper kicker (DK) is supplied by the high power amplifier with the gain goys.
The notch filter has the standard configuration. It includes a one-turn delay Tiey,
an invertor and a summator. The Hilbert filter includes six one-turn delays, four

1>

Jout

Fig. 3. Block diagram of feedback loop with the notch and Hilbert filters



summators, two inverting amplifiers and three amplifiers hg, h1, hs. For example,
the phase shift needed for compensation of pnp = 41.4° is obtained by using the
Hilbert filter with Ap = —72.8°.

The unwanted phase shift ony due to the notch filter can be compensated also
by an all-pass filter [11] with a frequency-response magnitude that is constant but
a phase advance which is variable and adjustable. The notch and Hilbert filters are
FIR (finite impulse response) filters but the all-pass filter is IIR (infinite impulse
response) filter. The transfer function of the first order all-pass filter is

2_1 _ a*

Har(z) = 1_a1 (26)
where a is a free filter parameter for the adjustment of the phase, and a* denotes
its complex conjugate. For example, the phase shift needed for compensation of
oNF = 41.4° is obtained by using the all-phase filter with « = —0.501.

The electric circuit of a feedback loop with the notch and all-pass filters is
shown in Fig.4. The all-pass filter includes a one-turn delay T}, an inverting
amplifier (—1/a*) in the non-recursive electric circuit, an amplifier ¢ in the
recursive electric circuit and two summators. An additional inverting ampli-
fier (—a*) in the output electric circuit is ensuring |[Har| = 1 for all frequencies
independently of the filter parameter a. It allows one to adjust phase shifts in
the feedback loop by varying the parameter a but keeping the gain of the TFS
constant.

Dependences of damping rates |z;| on gain g for the ideal TFS, the TFS
with notch and the TFS with notch and all-pass filters are shown in Fig.5 (the
tune of (Q = 6.73 was used [15]). In case of the feedback loop with notch filter
only Eq. (10) is a characteristic polynomial of the third degree. The characteristic
equation (10) is a characteristic polynomial of the fourth degree in case of the TFS
with notch and all-pass filters. Therefore, all dependences in Fig.5 correspond to
analytical solutions of Eq. (10). It is clear from Fig. 5 that the damping rates of the
TES with the notch filter are worse than those of the ideal TFS for all magnitudes

)

BPM

Fig. 4. Block diagram of feedback loop with the notch and all-pass filters
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Fig. 5. Dependences of damping rates |zj| on gain g for the ideal TFS (solid curves), for
the TFS with the notch filter (dashed curves) and for the TFS with the notch and all-pass
filters (dotted curves), parameter a = —0.501; shown is the case of the tune of ) = 6.73
and an assumed instability rise time of Tinst = 1007 ey
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Fig. 6. Dependences of overall damping rates Trev/7 on gain g for feedbacks: the ideal
TFS (solid curve), with the notch filter (dashed curve), with the notch and all-pass filters
for a = —0.501 (dotted curve), with the notch and Hilbert filters for Ap = —72.8°
(dash-dotted curve); shown is the case of the tune of () = 6.73 and an assumed instability
rise time of Tinst = 1007 Yev

of the feedback gains. However, for small gains g < 1 the characteristics of the
TFS with the notch and all-pass filters coincide with the corresponding parameters



of the ideal transverse feedback system if the phase shift of the notch filter was
compensated by the all-pass filter with the parameter a = —0.501.

Dependences of overall damping rates Tye,/7 on gain g for the ideal TFS
and for feedback systems with digital notch, all-pass and Hilbert filters are shown
in Fig.6 in cases of optimal values for ¢ and Ap. Therefore, the damping
parameters of the ideal TFS can be obtained in the TFS with notch and all-pass
or Hilbert filters for small gains. However, the stability range is wider for TFS
with the notch and all-pass filters. The gain g of TFS with the notch filter only
must be ~ 1.3 times higher in the case of 7q¢ = 407;¢, than for TFS with the
all-pass or Hilbert filter.

CONCLUSION

Following the analysis presented in this paper we can conclude that for small
gains of the feedback loop the optimum damping characteristics of the ideal TFS
can be restored in presence of a notch filter using a first order all-pass filter or
a six order Hilbert filter with optimized parameters. Tuning the phase transfer
characteristic of the all-pass or Hilbert filters in order to compensate the phase
shift in the feedback loop caused by the notch filter we can obtain the optimal
beam damping time. This possibility of tuning is an interesting feature and
constitutes an advantage over a transverse damping system with notch filter only.
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