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Small-Angle Neutron Scattering from 3D Monodisperse
Vicsek Fractals

The small-angle neutron scattering intensity for a system of monodisperse, ran-
domly oriented 3D Vicsek fractals has been computed. The fractal system is obtained
by generating a sequence of approximations starting with a cube of edge l as an ini-
tiator. When the interactions among particles are taken into account, we apply the
mixed RogersÄYoung integral equation to obtain the pair distribution function g(r)
and structure factor S(q) for the system. The pair potential used in RogersÄYoung
(RY) closure is chosen so as to take into account the arm number of the scatterers.

The investigation has been performed at the Frank Laboratory of Neutron Physics,
JINR.
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1. INTRODUCTION

The theoretical study of the structural properties of matter such as numerous
polymeric structures, aqueous solutions, magnetic liquids or magnetic elastomers
is often achieved by employing scattering methods [1Ä4]. For those materials
which show a self-similarity (fractal systems) on a ˇnite range at microscopic
scale, the scattering techniques are an essential tool of investigation and different
models to reveal their structure have been proposed [5Ä7]. In this paper the small-
angle neutron scattering (SANS) [4,8,9] is considered as a scattering method for
evaluating the intensity from a system of monodisperse nonrandom 3D Vicsek
fractals [10, 11]. The approach for the scattered intensity presented here was
successfully employed for other similar systems of nonrandom fractals (see [12]).
Methods for obtaining the scattered intensity from nonrandom and random fractals
can be found also in [13Ä16]. Vicsek fractals, constructed by a deterministic
set of iterative steps, can serve as a model for hyperbranched macromolecular
structures [17,18], and small-angle neutron scattering techniques provide us with
more information on the microstructure of such objects, not obtainable by other
methods.

Spatial correlations in the system are described in terms of the pair-distribution
function g(r), related to the probability of ˇnding the center of any particle at a
distance r from the center of a given particle, by solving the OrnsteinÄZernike
(OZ) [19] nonlinear integral equation. The derivation of the pair-distribution
function as described above and based on the formalism developed in the theory
of simple classical �uids [21] is followed by the determination of the structure
factor S(q), related to the pair-distribution function by

S(q) = 1 + 4π
N

V

∞∫
0

[g(r) − 1]r2 sin(qr)
qr

dr, (1)

where N is the number of particles in a volume V and q is the module of the
scattering vector q.

Construction of the Vicsek fractals in three dimensions is shown in Fig. 1
and is closely related to the construction of the Menger sponge [5].
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Fig. 1. Construction of the 3D Vicsek fractals

The initiator in the construction is a cube. The ˇrst iteration towards the
ˇnal object, the generator is formed by dividing the initial cube of length l into
27 smaller cubes of length l/3. From each face, the cubes of side length l/3 from
the corners are kept and the others are removed (Fig. 1). This leaves a prefractal
composed of 9 smaller cubes (eight in the corners of the initial cube and one
in the center) each scaled down by one-third. Every edge of the new cubes is
divided again into three parts leaving 81 cubes scaled down by one-ninth from
the original cube. Repetead iteration of this construction leads to the 3D Vicsek
fractals.

The purpose of this paper is to obtain a mathematical model which describes
the small-angle neutron scattering from 3D Vicsek fractals. The next section
starts with a theoretical background, followed by the determination of the form
factor and structure factor respectively.

2. THEORETICAL BACKGROUND

The link between fractal systems and scattered intensity is the fractal dimen-
sion [22], a fundamental characteristic for fractal systems, and it is obtained as the
slope of scattered intensity against the module of the scattering vector on a double
logarithmic scale. In a system of Vicsek fractals, which belongs to the category
of mass fractals [23Ä25] objects (aggregates of primary particles or subunits), the
distribution of mass has the property that the mass inside a spherical surface of
radius r is given by [4]

M(r) ≈ rdf , (2)
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where df is the mass-fractal dimension, a number between 1 and 3 that can be
fractional. The value of df is determined from

df =
log(N)
log(1/ε)

, (3)

where N is the number of self-similar objects and ε the scaling ratio, in our case
ε = 1/3. For Vicsek fractals, the mass-fractal dimension is

df =
log(9)

log(1/(1/3))
= 2. (4)

The smaller the value of df , the more open the structure is, and as df is reduced
to 1, the object becomes a line if it remains singly connected.

The scattered intensity on an absolute scale for any interacting particulate
system of scatterers can be expressed as

I(q) = (Δρ)2V 2
p Np 〈Pn(q)〉S(q) (5)

with Δρ = ρp − ρ the scattering contrast; and ρp and ρ are the scattering length
densities of the particles and the surrounding medium, respectively; 〈. . .〉 denotes
an ensemble average, Vp is the mean particle volume, Np is the number of particles
per unit volume, Pn is the scattering form factor of particles for nth approximant
and has the expression:

Pn(q) =

∣∣∣∣∣∣∣
1

Vpn

∫
Vpn

eiqr

∣∣∣∣∣∣∣
2

. (6)

S(q) is the structure factor which can be obtained by Fourier transform of the
pair-distribution function g(r). Recall that the vector q is deˇned by

q = k0 − k1, (7)

where k0 and k1 are, respectively, the incident and scattered wave vectors of
the neutrons. During a small-angle neutron experiment, one measures the elastic
scattering, for which |k0| = |k1| = 2π/λ, where λ is the wavelength of the
neutrons. As a consequence, the vector q has the magnitude

|q| =
4π

λ
sin

(
θ

2

)
, (8)

where θ is the scattering angle.
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2.1. Form Factor of 3D Vicsek Fractals. When the volume fraction of
the particles inside the sample is less than approximately 2Ä3%, it is reasonable
to analyze the scattering in terms of randomly oriented, noninteracting particles
(i.e., we neglect the structure factor and set S(q) = 1). In this so-called dilute
limit, the particles scatter independently, the total scattering is the sum of the
scattering from each particle and has the expression

Pn(q) = (Δρ)2V 2
pn

Np

〈∣∣∣∣∣∣∣
1

Vpn

∫
Vpn

eiqrdr

∣∣∣∣∣∣∣
2〉

. (9)

We will denote

Fn(q) =
1

Vpn

∫
Vpn

eiqrdr (10)

the square root of the scattering form factor of the nth approximation. The origin
of the volume integration is taken at the center of the cube and r is a vector
from its origin to the volume element dr. From equation (9) the form factor for
the ˇrst approximant (Fig. 1) is obtained by dividing the cube with edge l into
27 cubes with edge l/3 and keeping 9 cubes following the procedure described
above and it has the expression

F1(q) = G1(q)F0

(q
3

)
, (11)

where

Gn(q) =
1
9

1∑
j=−1

1∑
k=−1

1∑
l=−1

ωjkle
iqRn

jkl , (12)

with
ωjkl = δj0δk0δl0 + (1 − δj0)(1 − δk0)(1 − δl0), (13)

a quantity which ensures that the expression (11) includes only the cubes of
edge l/3 formed from the initiator, δij is the Kronecker delta symbol, R1

jkl =
(jx + ky + lz)l/3 is the vector from the center of the zero-order approximant
(cube of edge l) to the center of the cubes with edge l/3, and x, y, z are the unit
vectors in the directions of x, y, and z axes. The origin of the x, y, z axes is
chosen to be in the center of the initiator, and the axes are oriented so that each
cube face is perpendicular to one of the axes. F0(q) is the form factor of the
initiator.

The form factor for the 2nd approximant is obtained by repeating the pro-
cedure on the F0(q/3), and by induction, the nth approximation will have the
expression

Fn(q) =
n∏

i=1

Gi(q)F0

( q
3n

)
. (14)
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Substituting Eq. (13) into Eq. (12) and further into (10), averaging over orientation
and taking into account that for q small enough we have F0(q/3n) ≈ 1, the form
factor for the nth approximation will have the following expression:

Pn(q) = Pn(0)
Tn∑

α=−Tn

Tn∑
β=−Tn

Tn∑
γ=−Tn

An
αβγ

sin(qρn
αβγ)

qρn
αβγ

, (15)

where the indices α, β, γ are connected to the indices j, k, l through the relations

α = j + j′ with − 1 � j � 1 and − 1 � j′ � 1,

β = k + k′ with − 1 � k � 1 and − 1 � k′ � 1,

γ = l + l′ with − 1 � l � 1 and − 1 � l′ � 1.

(16)

The form factor at zero is Pn(0) = (Δρ)2V 2
pn

Np; ρn
αβγ is given by ρn

αβγ =
l/3n(α2 + β2 + γ2)1/2 and

An+t
αβγ =

pmax∑
p=pmin

rmax∑
r=rmin

smax∑
s=smin

An
prsA

t
α−3tp,β−3tr,γ−3ts (17)

with

pmax = Minint
(

Tn,
α + Tt

3t

)
(18)

and

pmin = Maxint
(
−Tn,

α − Tt

3t

)
. (19)

For rmax and rmin, in Eqs. (17) and (18) α is replaced by β, and for smax

and smin, α is replaced by γ. One deˇnes Maxint(x, y) = xmax
int when x > y

and Maxint(x, y) = ymax
int when x < y, respectively, as the largest integers

not greater than x or y. Analogously, Minint(x, y) = xmin
int when x < y, and

Minint(x, y) = xmin
int when x > y are, respectively, the smallest integers not

less than x or y. In Eq. (15) Tn = 3n − 1 and Ajkl for n = 1 is evaluated
from Eq. (12). For n > 1 the coefˇcients An

αβγ are evaluated from A1
jkl using

the relation

n+t∏
i=1

(Gi(q))2 =

(
n∏

i=1

(Gi(q))2
) ⎛

⎝ t∏
j=1

(
Gj

( q
3n

))2

⎞
⎠ . (20)

Using Eq. (15), the scattering form factors Pn(q)/Pn(0) for the ˇrst four iterations
were plotted against ql in Fig. 2. The relative error resulting from relation (14) is
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Fig. 2. Form factors for Vicsek fractals for the ˇrst four iterations, from Eq. (15)

given by
1
12

(
ql

3n

)2

and will be less than c if [12]

1
12

(
ql

3n

)2

< c, (21)

where c is a given accuracy. For c = 1%, 2%, 3% the maximum values for ql
for which Eq. (16) is available, are summarized in the table.

Maximum values for ql for which Eq. (15) has the accuracy given by c

n = 1 n = 2 n = 3 n = 4

c = 1% 1.03 3.11 9.35 28.05
c = 2% 1.46 4.40 13.22 39.68
c = 3% 1.8 5.4 16.2 48.6

2.2. Interacting 3D Vicsek Fractals. The description of interactions between
scatterers is given by the structure factor S(q), deˇned as

S(q) = 1 + ρh̃(q) (22)

with h̃(q) denoting the Fourier transform of the total correlation function h(r).
h(r) = g(r) − 1 is connected to the direct correlation function through the OZ
equation which has the form

h(r) = c(r) + ρ

∫
dr ′c(|r − r ′|)h(r ′), (23)
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where ρ is the density of the system, deˇned as the number N of particles en-
closed in the macroscopic volume V . The RY closure [20] adopted here for
solving Eq. (23) interpolates continuously between HNC [27] and PY approxima-
tions [28], namely:

g(r) = e−βu(r)

(
1 +

eγ(r)f(r)−1

f(r)

)
, (24)

where γ(r) ≡ h(r) − c(r), and f(r) is the mixing function:

f(r) = 1 − e−αr, (25)

where α is an adjustable parameter used to achieve thermodynamic consistency
between the virial and compressibility pressures [21]. We choose the interparticle
potential [29] between scatterers as

βu(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5
18

f
3
2

⎛
⎜⎜⎝− ln

( r

σ

)
+

1

1 +
√

f

2

⎞
⎟⎟⎠ if r � σ

5
18

f
3
2

1

1 +
√

f

2

σ

r
e
−

√
f(r − σ)

2σ if r > σ

, (26)

where β = 1/kBT is the inverse temperature, kB is Boltzmann's constant, T is
the absolute temperature, f is the functionality of the scatterers, in our case f = 8,

Fig. 3. Theoretical structure factor for 3D Vicsek fractals at different values of densities
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and σ is the spatial extent of scatterers, connected to the length of the cube through
σ = l

√
3. The potential u(r) is a combination between a logarithmic behavior

for r � σ and a Yukawa form for r > σ.
In the development of the theories presented before, σ is chosen to be the

unit of length and ρ̄ = ρσ3 the dimensionless density (which appear in Eq. (22)).
In order to obtain the radial distribution function of the system, we use the
potential given by Eq. (26) together with the RY closure Eq. (21) and solve the
OZ equation (20) for three dimensionless densities: ρ̄1 = 0.04, ρ̄2 = 0.08 and
ρ̄3 = 0.12. The results presented in Fig. 3 show a structure factor similar to
a smoothed step function and very small values of the peaks. With increasing
density, the values of q for which the peaks appear are shifted to the right.

3. CONCLUSIONS

In this paper we have studied the small-angle neutron scattering intensity
from a system of interacting 3D Vicsek fractals. Employing an algorithm which
has been shown to be able to furnish the form factor from a system of mass
fractals [12], we obtained the form factor from a system of 3D Vicsek fractals,
which can be considered as a model for various polymeric structures.

According to the Eq. (4), the mass-fractal dimension of 3D Vicsek frac-
tals is 2. On other hand, it is well known that nonfractal objects with Euclidean
dimension 3 give an intensity proportional to q−2 [4] (e.g., scattering from a thin
disk). A similar situation occurs when for certain surface-fractals systems with
surface fractal dimension Df = 2 [26] (e.g., Mandelbrot set) scattering gives an
intensity proportional to q−(6−Df ) = q−4 a decay obtainable also from scattering
from spheres [4]. In either case, an a priori knowledge about the structure of the
scatterers is necessary in order to reveal the fractal or nonfractal nature of the
system. Small-angle neutron scattering alone does not differentiate them.

To take into account the interactions between scatterers, we have applied
the RogersÄYoung mixed integral equation. The closure interpolates between the
PY and HNC equations. The structure factor for three small valued densities is
similar to a smoothed step function. The increase of density is followed by an
increase of height of the peaks and displacement towards the right. Applications
of this model to real structures similar to those studied in this paper are in our
future plan.
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