
E10-2010-35

A.Yu. Isupov

CAMAC SUBSYSTEM AND USER CONTEXT UTILITIES
IN ngdp FRAMEWORK

ˆ¸Ê¶μ¢ �.�. E10-2010-35
� ¡μÉ ¸ CAMAC ¨ ¶μ²Ó§μ¢ É¥²Ó¸±¨¥ ÊÉ¨²¨ÉÒ ·¥¦¨³ § ¤ Î¨
¢ ¨´Ë· ¸É·Ê±ÉÊ·´μ° ¸¨¸É¥³¥ ngdp

�¶¨¸ ´Ò ¶·μ¤¢¨´ÊÉÒ¥ Ô²¥³¥´ÉÒ ¨´Ë· ¸É·Ê±ÉÊ·´μ° ¸¨¸É¥³Ò (framework)
ngdp: · ¡μÉ ¸ ¶¶ · ÉÊ·μ° CAMAC, ®¸ ³μÉ¥Î´Ò¥¯ ¢ ·¨ ´ÉÒ ´μ¤ ¤²Ö ¸¨¸É¥³
¸¡μ· ¤ ´´ÒÌ (DAQ) ¸ ¸μμÉ¢¥É¸É¢ÊÕÐ¥° ¶μ²¨É¨±μ°, ´μ¤ ng mm(4) ± ± ²ÓÉ¥·-
´ É¨¢ ¸μ±¥ÉÊ ng socket(4), Ê¶· ¢²ÖÕÐ Ö ¶μ¤¸¨¸É¥³ , ÊÉ¨²¨ÉÒ ·¥¦¨³ § ¤ Î¨,
¶·¥¤¸É ¢²¥´¨¥ ¸μ¡ÒÉ¨° ¤²Ö ¶ ±¥É ROOT, É¥¸Éμ¢Ò¥ ¨ μÉ² ¤μÎ´Ò¥ ´μ¤Ò, ¢μ§-
³μ¦´Ò¥ ¤μ¶μ²´¥´¨Ö ¸μ¡¸É¢¥´´μ ¶ ±¥É netgraph(4) ¨ ¤·. ’ ±¨³ μ¡· §μ³, ngdp
¶·¨£μ¤´ ¤²Ö ¶μ¸É·μ¥´¨Ö μÉ´μ¸¨É¥²Ó´μ ¶·μ¸ÉÒÌ ¸¨¸É¥³ DAQ, μ¡¸²Ê¦¨¢ ÕÐ¨Ì
CAMAC.

� ¡μÉ ¢Ò¶μ²´¥´ ¢ ‹ ¡μ· Éμ·¨¨ Ë¨§¨±¨ ¢Ò¸μ±¨Ì Ô´¥·£¨° ¨³. ‚.ˆ. ‚¥±¸²¥·
¨ �.Œ. � ²¤¨´ �ˆŸˆ.

‘μμ¡Ð¥´¨¥ �¡Ñ¥¤¨´¥´´μ£μ ¨´¸É¨ÉÊÉ Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°. „Ê¡´ , 2010

Isupov A.Yu. E10-2010-35
CAMAC Subsystem and User Context Utilities in ngdp Framework

The ngdp framework advanced topics are described. Namely we consider work
with CAMAC hardware, ®self�ow¯ nodes for the data acquisition systems with the
As-Soon-As-Possible policy, ng mm(4) as an alternative to ng socket(4), the control
subsystem, user context utilities, events representation for the ROOT package, test
and debug nodes, possible advancements for netgraph(4), etc. It is shown that the
ngdp is suitable for building lightweight DAQ systems to handle CAMAC.

The investigation has been performed at the Veksler and Baldin Laboratory of
High Energy Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2010

1. INTRODUCTION

The [1] paper describes only basic design solutions and key elements of
the ngdp framework intended for the data acquisition (DAQ) systems building.
However many topics have not been touched upon due to publishing limitations.
So here we'll try to ˇll this gap and consider the items, which allow us to build
some lightweight DAQ systems to work with CAMAC using ngdp elements. Also
we'll describe some advanced topics like the control subsystem, ng mm(4) node
as an alternative method to communicate with netgraph(4) graph in the kernel
from the user context, possible advancements for the netgraph(4) itself, test and
debug nodes, etc.

Through the presented text the ˇle and software package names are high-
lighted as italic text, C and other languages constructions Å as typewriter

text. Reference to the manual page named ®qwerty¯ in the 9th section is printed
as qwerty(9), reference to the sections in this paper Å as ®Subsec. 2.3.1¯. Note
also verbal constructions like ®close(2)d¯ and ®mkpeering¯, which means ®closed
by close(2)¯ and ®peer making by mkpeer¯. Subjects of substitution by actual
values are enclosed in the angle brackets: <setup>, while optional parameters
are given in the square brackets: [mod [group]]. All mentioned trademarks are
properties of their respective owners.

2. ADVANCED TOPICS IMPLEMENTATION

2.1. netgraph(4) Additionals, Patches and Improvements. The default
maximal size of the netgraph(4) datagram can be too small to hold a packet with
the event of some MB. Fortunately, all what we need is changing of OS tunables
(kernel and sysctl(8) variables), so recompile of the kernel is not required.

At the moment of writing this paper we saw the following possible principial
advancements for the existing netgraph(4) system:

• Generalization of the currently local scheme of the control messages ad-
dressing to be used remotely through the network. A special agent Å ng sv(4)
(supervisor) node (see also Subsec. 2.4.1) Å is proposed to perform the remote
control messages delivering. The ng sv(4) is assumed to be launched on each
involved computer. Also we should modify the control messages delivery mecha-
nism in the netgraph(4) code to change its behaviour to be some analogue of the

1

®default gateway¯. This means that all control messages with locally unknown
(effectively remote or wrong) addresses should be sent to the local ng sv(4) node
for the decision on further delivering. The remote delivery should use the con-
nectionless (UDP) protocol, which allows communication with an arbitrary num-
ber of hosts through the only one ng ksocket(4). We have also introduced the
NG_MKREMOTEMSG() macro and patched the existing functions ng_path_parse(),
ng_path2noderef() and macro NG_MKRESPONSE() . Affected ˇles: ng base.c ,
ng message.h .

• Possibility to insert some node between the two already connected nodes.
It is absent in the current netgraph(4) system, however it will be very useful for
the ng ˇlter(4) node implementation. So we introduce the function:
int ng_insert(node_p, char *hook1, char *hook2, char *path1,

char *path2). Affected ˇle: ng base.c .
The following technical improvements in the form of the corresponding

patches are available:
1. ng socket(4) is patched against the crash on the netgraph datagram frag-

mented by TCP/IP. Affected ˇle: ng socket.c .
2. ng ksocket(4) is patched for NGM_KSOCKET_GETOPT control message proper

working. Affected ˇle: ng ksocket.c .
3. The ngctl(8) is improved in some aspects:
Å Buffer for write command is increased to be large enough to hold the

increased netgraph(4) datagram.
Å Script variable $? is introduced. It is substituted by a path of the last

node responding to ngctl(8) control message. $? is very useful for nameing of
new ng ksocket(4) instance which appears after the listen()ing ng ksocket(4)
accept()s.

Å sleep command is added to be used in scripts.
Å A MsgCmd() reaction on the EINPROGRESS error from NgSendAsciiMsg()

is changed. Now MsgCmd() waits for a response during the timeout instead of
the immediately error return. This behaviour is needed to continue the script
execution after ng ksocket(4) connect()ing.

Å New nonblocking function NgSendAsciiMsg_nb() used in the MsgCmd()

is introduced. It is able to wait for ascii-to-binary conversion response up to
timeout expiration instead of the inˇnite waiting in NgSendAsciiMsg() from
libnetgraph library. The remote delivering scheme of the control messages needs
this behaviour.

Å The MsgRead() function is patched to support remote control messages
delivering.

Å msg command now understands the remote path speciˇcation (see Sub-
sec. 2.4.1) in the form: node_name@IP_address:hook1.hook2. Note, that the
so-called generic control messages are still only local as well as the mkpeer,

2

shutdown, connect, rmhook, name, list, config, show, status, and types

ngctl(8) commands based on them.
Å The dot command implementation is reˇned in some aspects: output

of disconnected nodes is eliminated; fontsize is enlarged by 2 pt for both the
node and edge labels; explicit default fontname declaration (HelveticaÄBold)
is added. Affected ˇles: main.c , msg.c , name.c , write.c , ngctl.h .

4. Ascii-to-binary and binary-to-ascii conversion schemes are revised to han-
dle the remote control messages delivering properly. Affected ˇle: ng base.c .

5. The NgSendAsciiMsg() and NgDeliverMsg() functions from the
libnetgraph are patched to handle the remote control messages delivering properly.
Affected ˇle: msg.c .

Let us note that during modiˇcations of the basic netgraph(4) system we try
to limit ourselves by only absolutely necessary changes, as minimal as possible,
in order to simplify maintenance at the future netgraph(4) version changes.

2.2. ng mm(4) Node as an Alternative for ng socket(4). To allow a cheaper
data injection into netgraph(4) system and their extraction from it than it is
possible to do by means of the standard method using the socket mechanism pro-
vided by ng socket(4) node, we implement the ng mm(4) (for memory mapping)
node type. It supplies two UNIX devices /dev/mmr<N> and /dev/mmc<N>, whose
instances with different unit numbers <N> and minors belong to different node
type instances. Both devices support open(2), close(2), ioctl(2), mmap(2),
select(2)/poll(2) system calls like usual UNIX devices do∗. When the user context
process performs mmap(2) of this device it obtains a direct access to the packet
circle buffer allocated in the kernel memory by ng mm(4). After that the process
can read from the buffer of the so-called ®raw¯ device /dev/mmr and/or write
to the buffer of the so-called ®converted¯ device /dev/mmc. To synchronize the
process with the packets arrival in and departure from the buffers, the following
ioctl(2) interface for these devices is provided (ˇrst three commands are for a raw
device while the last three ones Å for the converted device):

MMGBUFRAW, size_t argument Å gets raw buffer size;
MMGROFFT, size_t argument Å gets offset of the next packet ready to ob-

taining (process can be blocked up to the packet arrival);
MMRDDONE, without argument Å says the packet reading done;
MMGBUFCONV, size_t argument Å gets the converted buffer size;
MMSSZGWOFFT, size_t argument Å sets the size of the packet to be written

and gets the offset where it should be written;
MMWRDONE, without argument Å says the packet writing done.

∗Note, we do not support read(2) and write(2) because that contradicts to the main idea Å to
eliminate the memory copying overhead as a result of using copyin(9)/copyout(9).

3

So the data �ow through the ng mm(4) as follows: the packets arrived on the
in hook are either placed into the raw buffer or dropped, if the raw device was
not opened; the process will be waken up, if it was blocked on MMGROFFT request;
the oldest packet(s) will be discarded, if the buffer lacks of space; however if the
process reads one of them, the newly arrived packet will be dropped. Immediately
after the process reports the end of the packet placement into the converted buffer,
this packet will be checked and, in case of approval, transmitted through the out

hook. The packets arrived on the out hook are always dropped.
To simplify mkpeering in some situations, the ng mm(4) node supports the

creat hook, which can be removed after in or out hook appearing, however
in or out hook can be used for mkpeering, too. If the process open(2)s the
raw device only and is sure that it does not need the converted device (and vise
versa, of course), then for security reasons the process can ®catch¯ the converted
device, so nobody (including this process itself) can open it before the raw device
is close(2)d. The raw device should be open(2)ed with O_EXCL �ag for catching
the converted device (and vise versa).

Naturally, ngget(1) and ngput(1) utilities (see Sec. 2.5) with -A and -a options
use the ng mm(4)'s interface.

The ng mm(4) node supports a generic set of netgraph(4) control messages
as well as the following speciˇc ones:

clristats (clrostats) Å clears the current statistics (numbers of data_
packs, data_bytes, fails and drops) for the in (out) hook;

getistats (getostats) Å returns the current statistics for the in (out)
hook;

getclristats (getclrostats) Å returns the current statistics and clears it
for the in (out) hook;

getdev <struct ng_mm_getdev> Å returns the raw and converted device
names with unit numbers as C-strings <rawname> and <convname>.

2.3. Nodes with ASAP Policy. The As-Soon-As-Possible variants of the
ng ˇfo(4), ng em(4) and ng pool(4) nodes [1] named ng ˇfos(4), ng ems(4)
(s for simple) and ng bp(4) (for branch point after qdpb's terminology), are im-
plemented to allow the building of lightweight DAQ systems, for example [2,3].
Generally speaking, ASAP (®self�ow¯) policy means that the data are processed
immediately after obtaining and transmitted immediately when ready. Therefore
all the transfers are done synchronously, if possible. Otherwise, for example,
if the rcvdata() of the destination node is locked, the netgraph(4) bufferizes
the data intermediately and retransmits them later invisibly for the nodes. So, a
®primary push¯ from the data originator Å an interrupt (IRQ) handler or some
socket Å is enough for a data packet to travel through the whole DAQ system.
The ®self�ow¯ behaviour allows us to avoid an execution stream (kernel thread)
in design of the ASAP client nodes ng ems(4), ng bp(4). In contrast, a complex
DAQ systems with LAZY policy [1] should have on each level at least one exe-

4

cution stream able to send requests to the bufferization server node ng ˇfo(4) of
the data upstream level.

ASAP client nodes allow only one hook named output simultaneously, so
to multiplicate the output stream, we can use some of ng tee(4), ng one2many(4),
or ng ˇfos(4). All ASAP nodes understand the generic netgraph(4) control
messages.

2.3.1. ng ˇfos(4): simple ®self�ow¯ queue. The ng ˇfos(4) node is able to
• spawn listen()ing ng_ksocket at startup;
• spawn accept()ing ng_ksocket(s) at each connection request from the

known host(s) / port(s) up to the conˇgured maximum, and/or
• accept hook connection from the local ng_socket(s);
• emit each data packet obtained on the input hook as soon as possi-

ble through all accept()ing ng_ksocket(s) and local ng_socket(s) currently
connected;

• close accept()ing ng_ksocket at EOF notiˇcation obtaining or connec-
tion loss.

The ng ˇfos(4) node supports the same hooks and speciˇc set of control mes-
sages as ng ˇfo(4) [1] with exclusion of setconf, getconf, outtype, outpatt
coupled with omitted debugging ability to self-generate packets.

2.3.2. ng ems(4): event merger's ®self�ow¯ implementation. The ng ˇfos(4)
node requires the corresponding clients, so ng ems(4) instead of requests issu-
ing is simply waiting for the data packets on the input channels. When the
arrived packets follow one of the conˇgured merging rule(s), they are merged.
Such functionality does not require kthread(9) usage, however, it involves some
complicated merging algorithm, too. Of course, id marks [1] are supported by
ng ems(4), because they are even more useful here than in the ng em(4) case,
where, at least, the packet numbers usually are guaranteed to be as required.
Note, however, that none of id marks is added by default in the node constructor,
so at least addid { name="num" } control message should be sent to ng ems(4)
for it works as expected.

Using the approach described for ng em(4) [1] we can compile the same
ng ems(4) source for both the kernel and user contexts. After strong debug
sessions in the both contexts we are sure, that the ng ems(4) algorithm imple-
mentation is working now.

The ng ems(4) node supports the same hooks and speciˇc set of control
messages as ng em(4) excluding settimo and gettimo. The following control
messages have slightly different meanings:

connect Å checks the already supplied input channels and input type en-
tries conˇguration, removes the unused input channels (if any) and connects the
unconnected yet ng_defrag subnodes to the upstream servers according to the
current conˇguration;

5

start <int64_t outpacks> Å starts packets accepting up to supplied
<outpacks> output packets will be merged (-1 means to accept inˇnitely);

stop Å explicitly stops the packets accepting before the <outpacks> are
merged.

2.3.3. ng bp(4) node as ®self�ow¯ version of ng pool(4). An ASAP version
of ng pool(4) node [1] named ng bp(4) is able to

• launch the ng_defrag subnode at each conˇgured input channel, this
node in its turn launches the client ng_ksocket node, which connect()s to the
upstream ASAP server corresponding to this channel;

• transmit all the packets, accepted in the input channel(s) according to the
conˇgured rules, through the output hook.

Each of the accepting rules is a struct tbl and contains the input packet
type <in_type>, which is allowed to arrive through any conˇgured input channel
with the corresponding set bit (equals to 1) in mask <mask>. The struct tbl

also contains the number last_num of the last obtained packet of type <in_type>.
A speciˇc input type value -1 matches the arbitrary input type. After ng bp(4)'s
mkpeering the only one rule with such wildcard input type and mask with all
the bits set is deˇned. It is equivalent to obtaining addcfg { in_type=-1 mask

=-1 } control message at the early startup. Note, that the input type comparison
is done in the same order, in which the rules were added. So, the default
wildcard rule will always match ˇrst. Thus, to establish the rule(s) with the
nonwildcard input type, we should ˇrstly remove the default rule Å e.g., by
delcfg { in_type=-1 }. However, the last wildcard rule with some restrictive
mask, where only some bits are set, allows one to receipt packets of any type
through only some input channels. The default ng bp(4)'s state after the fresh
startup allows the packets obtaining through any conˇgured input channel.

The ng bp(4) node supports the same hooks and speciˇc set of control mes-
sages as ng pool(4) excluding settimo, gettimo. The following control mes-
sages has slightly different meanings:

addcfg <struct tbl>/delcfg <struct tbl> Å adds/deletes the input pa-
cket type conˇguration entry;

getconf Å returns the full current conˇguration of the input packet types;
connect Å connects ng_defrag subnodes to upstream servers according to

the current conˇguration of the input channels;
start/stop Å allows/denies packets obtaining through all the conˇgured

input channels.
2.4. Control Subsystem. According to a big DAQ system scheme from [1],

the computers belonging to the SubEvB, EvB and pool levels are controled from
computers of the DAQ Operator group. The FEM level is supervised from both
the Slow Control group and FEM Control group. The machines belonging to
all the groups (instead of levels) are autonomous. DAQ Operator group should
be able to propagate changes in the ngdp system state very quickly. So the

6

corresponding software control subsystem, at least the slave side elements on the
very busy SubEvB, EvB and pool level machines, should be implemented outside
of preemptive scheduling. We have the following options to do so:

• in the kernel context as some netgraph(4) node type: ng sv(4) (for
supervisor);

• in the user context by programs with realtime priority for slave elements
and with any priorities for master elements on the usually idle machines of the
DAQ Operator group.

Note, that the user context realtime with the guaranteed response time is
practically impossible under usual UNIX-like systems, so the last option can
be unreachable. The ng sv(4) option is more attractive also for the reasons of
uniˇcation, startup schemes building and remote control messages implementa-
tion (see Sec. 2.1).

2.4.1. ng sv(4) prototype. As a ˇrst step to ng sv(4) node with the function-
ality, described in Sec. 2.1, we implement some prototype, which is able to

• spawn bind()ed ng_ksocket of UDP protocol at node startup and respawn
it after shutting down accidentally;

• send/receive arbitrary remote control messages through this ng_ksocket;
• send a test remote control message to remote ng_sv node instance and

respond to this message.
According to the control subsystem's requirements the ng sv(4) is ®perma-

nent¯ (survive without hooks) node, around which a required ngdp graph could
be built during the DAQ startup or automatically recreated after troubles.

The prototype supports the following speciˇc control messages:
bindaddr <struct sockaddr> Å sets own IP address to perform bind()

in the same format as understood by the ng ksocket(4) node;
testsend <char *ng_remote_path> Å sends test remote control mes-

sage according to the supplied remote path speciˇcation <ng_remote_path>.
The remote path speciˇcation extends the usual netgraph(4) absolute path

speciˇcation in the following way: the nodename ˇeld before ®:¯ now can contain
an IP address after usual nodename itself and ®@¯ sign. So, src2@192.168.10.15
:out1 speciˇcation means the peer node of the hook named out1 of the node
named src2 on the computer with IP address 192.168.10.15.

2.4.2. Control utilities. Some control utility could be implemented for each
introduced ngdp node type. The utility can have a graphical user interface (GUI)
to allow the end-user to be more comfortable than it is possible by using the
ngctl(8) command string directly. The control utility should be aware of the
control messages speciˇc to the corresponding node type, as well as of the node
type defaults, parameter ranges, etc. Of course, the preferred way to send control
messages is to call ngctl(8) internally, however, the control utility could also
use the netgraph(3) directly. The former approach similar to the one used by
the supervisor sv(1) utility of the qdpb system, which simply provides GUI over

7

already existing command string tools. There is a wide assortment of toolkits for
the X Window System [4, 5], which allow one to implement any required GUI.
Note, that the control utilities implementation is reasonable at some mature stage
of the ngdp system, and it is beyond the scope of the present paper.

2.5. User Context Utilities. As was noted in [1], any user context utilities
previously implemented for qdpb Å writer(1) [6], analyser(1) [7], statman(1) [8],
polarization calculators from polarimeter DAQ systems [9Ä11] Å are still usable
under ngdp, too, until they are recompiled to be aware of the redesigns mentioned
in Sec. A.1. Here we consider only utilities introduced by ngdp. We describe
neither the command string options nor the reaction on signals because the ngdp
provides the manual pages for all the mentioned utilities. Note, that each utility
exits 0 on success and > 0 if an error occurs, and has -h �ag means to write the
usage to the standard error output and exit successfully.

2.5.1. ngget(1). The ngget is a utility for the packet stream extraction from
netgraph(4).

ngget [-f{<outfile>|-}] [-p{<pidfile>|-<template>XXXXX}] [-A|-a [-e]]
[-l] [-d] [-r{<outrate>|-} [-v]] <peername> <peerhook> [<name> [<hook>]]

ngget -m [-f{<outfile>|-}] [-p{<pidfile>|-<template>XXXXX}] [-A|-a [-e]]
[-l] [-d] [-r{<outrate>|-} [-v]] <peertype> <peerhook>
[<peername> [<name> [<hook>]]]

The ngget reads messages from the netgraph(4) data socket, optionally de-
fragments them into packets and writes the packets to the standard output. Thereof
ngget is a service module to extract the packet stream from the kernel graph into
the user context.

In the ˇrst synopsis form the ngget connects the hook named <hook> (or
®in¯ if not supplied) of the newly created ng socket(4) named <name> (or
®ngget<PID>¯ if not supplied) to the hook <peerhook> of the already exist-
ing node <peername>.

In the second synopsis form the ngget connects hook <hook> of the newly
created ng socket(4) <name> to the hook <peerhook> of the node with type
<peertype>, newly created by the mkpeer control message, and named as
<peername>, if supplied.

2.5.2. ngput(1). The ngput is a utility for the packet stream injection to
netgraph(4).

ngput [-l] [-d] [-c] [-p{<pidfile>|-<template>XXXXX}] [-A|-a [-e]]
<peername> <peerhook> [<name> [<hook>]]

ngput -m [-l] [-d] [-c] [-p{<pidfile>|-<template>XXXXX}] [-A|-a [-e]]
<peertype> <peerhook> [<peername> [<name> [<hook>]]]

The ngput reads the packets from the standard input and writes them to the
netgraph(4) data socket. Thereof ngput is a service module to inject the packet
stream from the user context into the kernel graph.

8

In the ˇrst synopsis form the ngput connects hook <hook> (or ®out¯ if not
supplied) of the newly created ng socket(4) <name> (or ®ngput<PID>¯ if not
supplied) to the hook <peerhook> of the already existing node <peername>.

In the second synopsis form the ngput connects hook <hook> of the newly
created ng socket(4) <name> to the hook <peerhook> of the node with type
<peertype>, newly created by the mkpeer control message, and named as
<peername>, if supplied.

2.5.3. b2r(1) (Binary-To-ROOT) converter. The b2r(1) reads the data pack-
ets from the standard input and for each of them produces representation for the
ROOT package [12]. The b2r(1) has three synopsis forms which correspond to
the following ROOT events' transfer variants:

• to remote client process(es) by ROOT TMessage class through the usual
socket pair∗;

• to the local child process by TBufferFile through the mmap(2)ed mem-
ory or SysV IPC shared memory mechanisms synchronized by the SysV IPC
semaphores;

• to the local process by the data packets of the special type, which encap-
sulate fBuffer of the TBufferFile with the stored ROOT event, through the
standard output.

The b2r(1) avoids intermediate HDD storage, however, for �exibility reasons
it is able optionally to store ROOT events as ROOT TTree with single TBranch

into ROOT TFile, too. The b2r.cxx source is written in terms of the only one
®high-level¯ ROOT class to reach the event content independence (see Sec. 3 for
details). The object codes of the implementation as well as of ROOT dictionary
generated by rootcint(1) of this class and possibly of other involved classes,
should be linked (dynamically or statically) with the b2r.o.

b2r [-l] [-d] [-f{<outfile>|-}] [-s{<filesize>|-}] [-S{<splitlevel>|-}]
[-p{<pidfile>|-<template>XXXXX}] [-a<addr>[...]] [-r{<outrate>|-} [-v]]

b2r -b<childname> -f{<outfile>|-} [-p{<pidfile>|-<template>XXXXX}]
[-r{<outrate>|-} [-v]]

b2r -O [-m{<mmname>|-}] [-l] [-d] [-f{<outfile>|-}] [-r{<outrate>|-} [-v]]
[-s{<filesize>|-}] [-S{<splitlevel>|-}] [-p{<pidfile>|-<template>XXXXX}]

In the ˇrst synopsis form the b2r sends the produced ROOT events to all the
clients, which have already requested registration on port 12340/tcp. The number
of simultaneously registered clients is limited by the compiled-in value.

In the second synopsis form (the so-called batch or of�ine mode) the b2r
fork(2)s and exec(3)s <childname> child process (usually r2h(1) in the batch
mode, too) with the same -f, -r and -v options. The -d, -s, and -S options are
ignored.

∗Using ROOT TServerSocket / TSocket wrappers.

9

In the third synopsis form (the so-called output mode) the b2r transfers the
produced packets with ROOT events into the standard output.

2.5.4. r2h(1) (ROOT-To-Histogram(s)) converter. One of possible b2r(1)
clients is the r2h(1), which ˇlls some histograms from the event-by-event data.
Like b2r(1) the r2h(1) is written in terms of the only one ROOT class and obtains
the event's data through the interface provided by them (see Sec. 3 for details),
so it is event content independent, too. This means, the r2h.o should be linked in
the same way as b2r.o (see Subsec. 2.5.3). Also we implement the conˇguration
and control protocol r2h.conf(5) for the runtime conversations between r2h(1) as
server and its client(s). The r2h(1) startup conˇguration is performed from the
ˇle written in terms of this protocol (see Subsec. 2.5.5).

r2h [-l] [-d] [-c{<cfgfile>|-}] [-f{<outfile>|-} [-s{<saverate>|-}]]
[-p{<pidfile>|-<template>XXXXX}] [-r{<outrate>|-} [-v]] [-a<addr>[...]]
[-A<addr>[...]] {[-I [-P]]|[<peerhost> [<peerport>]]}

r2h -b<shkey> -f{<outfile>|-} [-l] [-c{<cfgfile>|-}] [-a<addr>[...]]
[-p{<pidfile>|-<template>XXXXX}] [-r{<outrate>|-} [-v]] [-A<addr>[...]]

In the ˇrst synopsis form the r2h reads ROOT TMessages from a server (f.e.,
b2r(1)) through ROOT TSocket connected to the port <peerport> (12340 by de-
fault) on the host <peerhost>; extracts event representation in the form of some
compiled-in ROOT class from each TMessage obtained; ˇlls some histograms
conˇgured by <cfgfile> ˇle in the r2h.conf(5) format; sends the requested
histogram(s) to the corresponding registered client(s) by TMessage(s); and op-
tionally writes all the conˇgured histograms to ROOT TFile <outfile>. The
r2h is listen()ing on port 12341 for the client registration requests. The number
of simultaneously registered clients is limited by the compiled-in value.

If the -I option is speciˇed, r2h instead of TSocket reads the standard
input for the data packets of some compiled-in type, each of them should contain
a serialized ROOT event (f.e., produced by b2r(1) in the output mode). The r2h
extracts this event using the ROOT TBufferFile with fBuffer, which points
to the packet's body. With the -I option the <peerhost> and <peerport>

arguments are ignored.

In the second synopsis form (the so-called batch or of�ine mode) the r2h
extracts each ready ROOT event using the ROOT TBufferFile with fBuffer,
which points to the shared memory region with key <shkey>, where the ROOT
event was stored by b2r(1). Other tasks are the same as in the ˇrst synopsis form.
The memory synchronization is based on the SysV IPC semaphore mechanism.
The -d, -s options and <peerhost>, <peerport> arguments are ignored.

2.5.5. r2h.conf(5): control protocol for r2h(1). The protocol for conver-
sation between the histogram server r2h(1) and its client(s) is #defined in the
r2hproto.h header as follows:

10

#define CMD_GET 10002
#define CMD_RESET 10003
#define CMD_DELETE 10004
#define CMD_BOOK1D 10005
#define CMD_BOOK2D 10006
#define CMD_RESETALL 10009
#define ACK_ERR 10010
#define ACK_OK 10011

#define CMD_QUIT 10012
#define CMD_LEAVE 10016
#define CMD_CONNECT 10017
#define ERR_NoSuchHist 1
#define ERR_UnknownCmd 2
#define ERR_PermDenied 3
#define ERR_ZipFailed 4

The What() ˇeld of the ROOT TMessage sent from the client to r2h(1)
could contain any of CMD_* values, while the TMessage body should contain the
command parameters in the C-string form. The r2h(1) can respond by

ACK_ERR with UInt_t error (can have any of ERR_* values) in the TMessage
body;

kMESS_OBJECT with TObject of type TH1F or TH2F∗; or
ACK_OK without the body.
CMD_DELETE, CMD_BOOK1D and CMD_BOOK2D commands have parameter(s)

as described below for their counterparts Delete, Book1d and Book2d in the
conˇguration language;

CMD_GET and CMD_RESET have a single histogram name parameter hname;
CMD_RESETALL, CMD_QUIT have no parameters;
CMD_LEAVE (if implemented) and CMD_CONNECT should be internal for client;
Var, Add2var and Delvar commands are currently internal for server.
Clients from the hosts speciˇed for r2h(1) by -A option, have a permission to

execute any CMD_* commands mentioned above (the so-called readÄwrite access),
while they from hosts speciˇed by -a Å only CMD_GET and CMD_QUIT (the
so-called read-only access).

The conˇguration ˇle in the r2h.conf(5) format consists of zero or more
lines, delimited by the newline symbol. Lines could be the comment lines, empty
lines, and conˇguration lines, where the newline symbol could be escaped by the
backslash symbol to allow the line continuation. The lines, which in the ˇrst
position contain the ®#¯ (comment line) and newline (empty line) symbols, are
ignored.

Other lines should be conˇguration lines. Conˇguration lines concatenated
with all their continuations contain one or more ˇelds, separated by space(s) or
tab(s). The ˇelds themselves should not contain space(s) or tab(s). The ˇrst ˇeld
(command) of the conˇguration line is a C-string and represents the command
name. The second (if any) and following ˇeld(s) are command parameters.

∗Note, that it is a client's responsibility to determine an actual TObject's type.
For example, that can be done by comparison of type info* of the obtained class
(TMessage::GetClass()->GetTypeInfo()) with the type of each TObject recognized by the
client (TObject::Class()->GetTypeInfo()).

11

Currently known commands are as follows:
Var Å declares the name varname of the variable which could be his-

togrammed in terms of the integer number triplet: channel chan, module mod and
group of modules group. The event representation ROOT class used by r2h(1)
should allow obtaining the variable's value by such triplet (see Sec. 3). The Var

has the following format:
Var varname chan [mod [group]], for example: Var adc0 2 0 .

Add2var Å adds (yet another) triplet of channel chan, module mod and the
group of modules group to the list of them belonging to the varname variable.
So more than one detector channel could be united into the same histogram. The
Add2var has the following format:
Add2var varname chan [mod [group]], for example: Add2var adc0 3 1 .

Delvar Å removes the variable named varname and frees all the corre-
sponding memory. Its format is as follows:
Delvar varname, for example: Delvar adc0 .

Book1d Å declares ROOT TH1F histogram with name hname, id string
fullhname, variable to be histogrammed varnameX, number of bins chansX,
minimal minX and maximal maxX bins. The histogram should be ˇlled at each
event arrival. The Book1d has the following format:
Book1d hname fullhname varnameX chansX minX maxX, for example:
Book1d adc0 ADC0 adc0 100 0 100 .

Book2d Å declares ROOT TH2F histogram with the name hname, id string
fullhname, variables to be histogrammed varnameX and varnameY, number of
bins chansX and chansY, minimal minX, minY and maximal maxX, maxY bins. The
histogram should be ˇlled at each event arrival. The Book2d has the following
format:
Book2d hname fullhname varnameX chansX minX maxX varnameY chansY minY maxY

for example: Book2d adc1_0 ADC1_0 adc1 200 0 200 adc0 300 0 300 .
Delete Å removes the histogram named hname and frees all the correspond-

ing memory. Its format is as follows:
Delete hname , for example: Delete adc1_0 .

The conˇguration lines failed to parse or be processed are ignored while ˇle
processing continues to the next line.

2.5.6. histGUI(1): standalone client for r2h(1) One of possible r2h(1)
clients is histGUI(1) (for histograms viewer with GUI), which requests histograms
from the server and draws them. The protocol for the client-server conversations
described in Subsec. 2.5.5 allows histGUI(1) to be independent on both r2h(1)
internals and event representation ROOT class(es). So histGUI(1) depends on the
standard ROOT classes only and could be compiled under any OS equipped with
the ROOT package libraries.
histGUI [-l] [-t<gui_sleep>] [<peerhost> [<peerport>]]

12

The histGUI connects to histogram server (e.g., r2h(1)) on the port
<peerport> (12341 by default) on the host <peerhost> through the ROOT
TSocket, launches ROOT TTimer to do the required redraws, displays the own
GUI window and enters the ROOT eventloop. After the user command obtaining
(see Subsec. 2.5.5 for protocol description) the histGUI executes it or sends the
corresponding request to the server side, obtains the response, and draws the
histogram or reports the response error status in the output viewer area.

histGUI's GUI is designed to be self-explained. The main window contains
at least ®Exit¯ button, the command input ˇeld (TGTextEntry) and output viewer
area (TGTextView). Single ROOT TCanvas is used to display all histograms after
Get command, while after Getcont each histogram is drawn in the own TCanvas

which disappears after Stopall or the corresponding Stop.

3. SCHEME OF EVENT REPRESENTATION BY ROOT CLASS(ES)

Let us formulate the b2r(1) and r2h(1) requirements to the interface to be
provided by the ROOT class (or number of classes) intended to represent experi-
mental events. Namely, the b2r(1) needs the following member functions:

• int pack2r(packet *) ˇlls the class data members from the correspond-
ing ˇelds of the packet header and body, and should be aware of all (possibly
more than one) the involved packet types;

• void Clear()∗ resets the class instance into the unˇlled state same as
appeared after constructor execution;

• uint16_t Get_type() returns the value of type data member equal to
the type of the packet, from which the last proper ˇlling of the class instance has
been done;

• TObject *GetTObject(uint16_t t) returns the pointer (casted to
TObject pointer∗∗ to be used in TBufferFile::WriteObject()) to the class
instance, which represents the event of supplied type t;

• char *GetName() returns the C-string representation of the name of the
class to be stored in ROOT TTree for using by TTree::Branch();

• void *GetAddr(void *addr) returns the address of the pointer to the
class instance to be stored in ROOT TTree for using by TTree::Branch(),
where addr is the pointer to instance of the class known by b2r(1);

∗It is assumed that its calling is cheaper than the full class instance recreation by delete and
new.

∗∗The corresponding class should be derived from ROOT TObject base class to allow such
cast.

13

• bool need_write() returns the true value, if the class instance is ready
to be written into ROOT TFile, and the false value otherwise;

• (optionally) TObject *Get_sp() returns the pointer (casted to TObject*

to be used in TFile::WriteTObject()) to the class instance to be stored in
ROOT TTree.

The r2h(1) needs the following:
• float Get_data(int chan, int mod, int group) member function

returns the value to be histogrammed, which identiˇed by the integer number
triplet: channel chan, module mod and the group of modules group;

• the ability to extract a class with this Get_data() member function from
the obtained TMessage or TBufferFile class instances in the unambiguous way.

The sources of both b2r(1) and r2h(1) utilities are written to be event content
independent, so each of them should know about only one class, however, these
classes could be not necessarily the same.

In the simple cases, where we have the trigger data but not the data coupled
with the accelerator cycle, a single class could satisfy all the above requirements,
e.g. class Ekeyaf [2]. Even if we have many trigger types, the single class
scheme is still suitable, if the trigger data contents do not differ essentially.
However, for the experimental setups on the cyclic accelerators like Nuclotron
(JINR, LHEP) we usually want to work with both: per event and per burst
information. For this complicated case we propose the following approach.

The base class B<setup> inherits from ROOT TObject and provides at
least type data member∗ and Get_type(), Get_data() member functions.
Each event type representation class Å e.g., E<setup> (trigger event types),
CB<setup> (cycle begin event type), CE<setup> (cycle end event type) Å is de-
rived from B<setup> and provides at least the speciˇc data members of the type
and Get_data() member function. So B<setup>::Get_data() simply calls its
counterparts from the event representer classes depending on the data member
B<setup>::type value, while the r2h(1) simply does the so-called upcast (trans-
forms the pointer to the obtained derived class into the pointer to B<setup> base
class), and calls B<setup>::Get_data().

To produce ROOT TTree with single TBranch, we provide S<setup> ®con-
tainer¯ class derived from ROOT TObject to be a single ®leaf¯ object per branch.
This class represents the whole accelerator cycle, thus, contains the following
data members: cycle number int cyc_num; TClonesArray *events of trig-
ger events and int Nevs quantity of them; and CB<setup>, CE<setup> point-
ers Å as well as the member functions to store (int Fill(int cyc, int Nev),
void AddEv(E<setup> *), void AddCB(CB<setup> *), void AddCE(CE<set

∗And, possibly, other data members are common for all event types, for example, represent the
packet header ˇelds num, len, sec, usec, etc.

14

up> *)) and retrieve (int Get_cyc(), int Get_Nevs(), CB<setup> *GetCB(),
CE<setup> *GetCE(), TClonesArray *Get_events()) the corresponding data
members. The S<setup> also provides void Clear() member function.

After all we introduce the ®metaclass¯ M<setup> derived from ROOT
TObject, which contains uint16_t type of the event represented currently;
the pointer to container S<setup> *sp; the instance of each known event repre-
senter E<setup> ev, CB<setup> cb, CE<setup> ce; and provides the full inter-
face required by b2r(1). Namely, Get_type() returns M<setup>::type value;
GetTObject(t) Å one of &ev, &cb, &ce depending on t supplied; GetName()
returns name of S<setup>; Get_sp() and GetAddr() return sp and &sp with
the required casts.

The most sophisticated job is done by pack2r() called once per each data
packet arrival. The pack2r() assumes the data for each accelerator cycle are start-
ing from the cycle begin packet (if any), contain zero or more trigger packet(s),
and terminated by the cycle end packet. After each pack2r() return the event rep-
resenter, corresponding to the type of the arrived packet, is ready to be sent to the
b2r(1) registered client(s). After the cycle end packet processing by pack2r(),
the S<setup> is ready to be stored into ROOT TFile and need_write() returns
the true value, so b2r(1) writes ROOT TFile only if this condition is satisˇed.

4. WORK WITH CAMAC HARDWARE

As was noted in [6], the qdpb framework uses the camac package [13] as
the CAMAC subsystem implementation. The ngdp inherits this approach, so
let us brie�y explain the current design features of the camac package accord-
ing to its manual pages. The code, which handles a speciˇc CAMAC crate
controller/computer interface card pair, is separated from the so-called CAMAC
facility camac(4) in the OS kernel. This design allows us to add support for
an arbitrary new CAMAC controller/adapter pair very easily. The camac(4)
supports the interface to software objects of two kinds, mentioned below as
®CAMAC drivers¯ and ®CAMAC modules¯. The CAMAC drivers (see camac-
drv(4)) are kernel device drivers in the KLD module form, and work with some
speciˇc CAMAC hardware like CAMAC crate controllers. CAMAC modules
(see camacmod(9)) are intended to handle interrupts from CAMAC hardware,
and usually have a KLD module form, too (see below for details). The camac(4)
realizes some abstraction level for CAMAC operations and therefore hides the
CAMAC hardware speciˇcs from the user and kernel contexts. Each CAMAC
operation is performed at the CAMAC address, which uniquely represents the
hardware corresponder of the operation. Drivers should be registered in the
camac(4) before using. Driver registration consists of the branch number assign-
ment to the named driver. The CAMAC driver can implement up to 4 methods:
subr(), setup(), conf(), and test() (former is mandatory while others are

15

optional). The subr() function implements the CAMAC operations themselves,
e.g. CCCZ Å generates the dataway initialize (Z), CCCC Å generates the crate
clear (C), CFSA Å performs a single CAMAC action, etc., and can be achieved
from both contexts by the corresponding interfaces. The setup() function at-
taches the CAMAC module of the user provided interrupt handler to the CAMAC
driver. The CAMAC module should be registered in the camac(4) before us-
ing and deregistered before unloading from the kernel. The CAMAC module
can implement up to 4 methods: hand(), oper(), conf(), and test() (former
is mandatory while others are optional). The hand() function is an interrupt
handler itself and should address only one CAMAC driver, speciˇed during the
module conˇguration. The oper() function is a user interface to the module and
can access CAMAC. The CAMAC module should also meet the requirements of
ng camacsrc(4) (see Sec. 4.1) to be able to inject the data into ngdp graph. Typ-
ically the CAMAC module sources are split to the number of ˇles to isolate the
hardware-dependent code parts. Namely, we deˇne some macros Å to initialize
CAMAC, to recognize the trigger type, to perform read/reset CAMAC for each
trigger type, etc., so hand() function can be written in the hardware independent
manner. This macro set can be written ®manually¯ for compact stable setups, or
generated by means of conˇgurable representation of the CAMAC hardware [14]
for more extensive and/or changed from the run-to-run spectrometers.

4.1. ng camacsrc(4): ngdp CAMAC Interface. The ng camacsrc(4) node
type allows the data packets injection from a CAMAC interrupt handler into
netgraph(4) as data messages. This means that we are able to use ngdp for
building DAQ systems, which work with CAMAC, as well as to do some so-
phisticated testing of ngdp itself. This node supports the single hook output,
which can be connected to, for example, the input hook of the ng ˇfos(4) node
(see Subsec. 2.3.1). The ng camacsrc(4) sends the data packets in the interrupt
handler context, where furter data processing is undesirable. So the data should
always be queued by netgraph(4) for later delivering to decouple from this con-
text. Since by default the netgraph(4) delivers the data synchronously, we should
set HK_QUEUE �ag on the peer hook of the ng camacsrc(4) output hook during
the hooks connection.

The ng camacsrc(4) provides the kernel-wide interface function∗ to send the
data packet through the output hook, which returns 0 on success and error code
otherwise. The function argument (msp) is the pointer to the instance of the node's
private structure which belongs to the node instance, through whose output hook
the interrupt handler wants to send the data. The ng camacsrc(4) node declares
its own version number in the ng camacsrc ver.h to allow the dependent KLD
modules to declare such dependence and resolve ng_camacsrc_send symbol

∗Prototyped as int ng camacsrc send(camacsrc p msp) .

16

during the linkage into the kernel. In contrast, the ng camacsrc(4) calls functions,
provided by an interrupt handler, indirectly (by function pointers) to avoid cross-
dependencies.

During processing of the connect control message (see below) the
ng camacsrc(4) obtains the corresponding function pointers∗ and calls the in-
terrupt handler's oper() function with the following subfunction codes:

NG_CAMACSRC_SETMSP Å provides msp address for the interrupt handler, and
NG_CAMACSRC_GETBUF Å obtains the address of the ready packet buffer

from it.
At receiving the disconn control message (see below) and during the shut-

down sequence the ng camacsrc(4) calls oper() with NG_CAMACSRC_CLOSE sub-
function code to notify the interrupt handler about its own retirement.

So, the interrupt handler named <camac_module> should provide these three
subfunction entries in its own oper() function realization. After the existing
CAMAC interrupt handler implementations used in qdpb based DAQ systems it
is also assumed, that the data produced in the packet form∗∗ Å only to be able
to get the data length from the known place in the data packet.

The described scheme allows us to use more than one instance of
ng camacsrc(4) nodes on the same computer, if we have more than one
CAMAC driver and the corresponding CAMAC interrupt handler∗∗∗.

In the qdpb system the control over <camac_module> CAMAC interrupt han-
dler was done only by locally executed utility <camac_module>oper(8), which
calls <camac_module>_oper() with some required subfunction codes. This code
set can be divided to ®generic¯ (supported by approximately each CAMAC mod-
ule) and ®speciˇc¯ (all others) parts. At least the following subfunction codes
can be considered as ®generic¯: INIT, FINISH, START, STOP, CNTCL, QUECL. To
allow cheaper and more �exible (in particular, remote) control over the CAMAC
interrupt handler, the ng camacsrc(4) understands a number of control messages
(see below), whose arrival leads to performing each ®generic¯ subfunction and
even more. Note the same subfunctions can be easily implemented by the control
packet mechanism, too.

The ng camacsrc(4) node supports the following speciˇc control messages:
getclrstats Å returns the current statistics (numbers of packets_out,

bytes_out, and fails) and clears it;

∗These pointers are stored in the speciˇc data structures of the CAMAC driver and the corre-
sponding CAMAC module and can be found by known CAMAC driver name using the camac(4)
interface.

∗∗It will be very easy to move the packet encapsulation by make pack() function (see
packet(9)) into the generic ng camacsrc(4) code.

∗∗∗Possibly we can generalize this model to use more than one ng camacsrc(4) instance with
the same interrupt handler to separate the packet streams on the early stage or to enlarge the overall
throughput.

17

getstats/clrstats Å returns/clears the current statistics (the same values);
connect <char *camac_driver_name> Å establishes a link with the

CAMAC interrupt handler hosted on the CAMAC driver with name
<camac_driver_name>;

disconn Å breaks the link established by the connect control message;
init, finish, start, stop, cntcl, quecl Å performs

<camac_module>_oper() call with the corresponding subfunction codes, which
lead to: CAMAC hardware initialization (INIT), CAMAC hardware preparation
to power off (FINISH), data acquisition start (START) and stop (STOP), clean of
the interrupt handler internal counters (CNTCL) and event buffers (QUECL);

getmodstat/getmodconf Å returns some generic part of the internal statis-
tic/conˇguration structure of the interrupt handler (GETPSTAT/GETPCONF).

5. CONCLUSIONS

The ngdp framework allows us to build full-sized modular distributed DAQ
systems in a very efˇcient way with the minimal design and maintenance efforts
due to the already implemented interface to CAMAC as well as binary-to-ROOT
and ROOT-to-histogram conversion utilities. The proposed representation scheme
of the experimental events for the ROOT package allows handling of many trigger
types and data coupled with the accelerator cycle, and hides this complexity from
the mentioned converters.

Acknowledgements. The author has a pleasure to thank K. I. Gritsaj for useful
discussions and many years of camac package maintenance to ˇt into current OS
FreeBSD releases, L. S. Zolin and V. E. Kovtun, who had need for DAQ systems
and permit to implement them using ngdp, S. G. Reznikov Å for cooperation
during DAQ SPILL design and testing.

APPENDIX A

A.1. qdpb Inspired Entities and Imported Elements. As we have already
written in [1], some ngdp ideas are inspired by qdpb design and some qdpb
entities are imported and redesigned for ngdp, as described below.

• The packet implementation changes after qdpb:
Å the maximal packet size is enlarged up to 2048000 bytes;
Å the control and answer packets are introduced by separate typedefs

because they should ˇt into single Ethernet frame to guarantee the nonfragmented
delivery;

Å some functions (defrag_pack(), merge_pack() for kernel context,
recv_pack() for user context) and macros (CHECK_ID(), CHECK_CRC(),

18

CHECK_PACK() in two versions for both contexts, CHECK_NUM() for kernel con-
text) are added to packet(3), while some existing entities are reˇned;

Å packet(3) functions, originally implemented for the 32-bit i386 (also
known as IA-32)∗ and HPPA architectures, are ported to AMD64/EM64T

architecture.
• The packet types support changes after qdpb:
Å the packet type map as array of type_attr structures is introduced, that

allows:
Å the NEVTYPES constant (number of packet types known in the system) to

be eliminated, because we always can count a number of entries in the packet
type map;

Å the all values of the packet type attributes (currently Å the packet type
itself (u_short value), the packet type name (C-string), the offset in arrays
(for backward compatibility), the packet number counter (u_long value), and the
permissions to split the dataˇle before, after or instead of this packet type writing)
to be stored in the single place at the map initialization instead of being spread
over the conversion functions of the packet type attributes; and

Å this conversion functions for both contexts to be redesigned on the base of
the linear search in the map as implemented currently (see libsrc/pack types.c), or
using fetch from the preˇlled hash table of type_attr structures (see test/thash.c
and Sec. A.3).

A.2. Packet Generator Nodes ng mysource(4) and ng kthsource(4). The
ng mysource(4) node type is designed very close to ng source(4) from the stan-
dard netgraph(4) distribution, however it produces qdpb/ngdp packets and is not
coupled with the network interface. The node generates packets by the han-
dler executed by callout(9) mechanism (timer kernel thread activated at each
system clock interrupt), and accounts a size of the generated data in the both
packet (packets_out) and byte (bytes_out) units, an elapsed astronomic time
(elapsed) between the moments of the generation start and stop, a pure time
(pure) of the data generation and emission, and a number of the occurred trans-
fer failures (fails).

The ng mysource(4) node supports only one hook named output simulta-
neously, however by default persists after such hook disconnection, so it can
be reused by connecting output again, and should be unloaded explicitly by
shutdown generic control message. The ng mysource(4) can generate packets of
only one type simultaneously, because it supports only one value for type and for
patt. To overcome this limitation, the single hook named input is supported,
and the data which arrived through it, are sent untouched through the output

∗Note, that to the i386 architecture the CPU types belong from i386 itself through i486 and
i586 up to i686, which includes Intel Pentium 4 and AMD K7.

19

hook (if any). This design allows us to link a number of ng mysource(4) nodes
with different conˇgurations into a generation chain, which is able to imitate
the multityped data produced by some real source (e.g., the CAMAC interrupt
handler).

The ng mysource(4) understands the generic set of control messages and the
following speciˇc control messages as well:

start <int64_t num_of_packets> Å starts the data generation;
stop Å stops the data generation explicitly before the <num_of_packets>

generated;
getclrstats Å returns the current statistics (values of packets_out,

bytes_out, elapsed, pure, and fails) and clears it;
getstats/clrstats Å returns/clears the current statistics (the same

values);
setconf { packlen=<size> npack=<n> ticks=<m> pflag=<f> } Å

sets in according to the values of submitted struct ng_mysource_conf

members:
length packlen of packets will be generated Å to <size>,
number npack of packets will be produced per one generator function call Å

to <n>,
time interval ticks between two subsequent generator calls Å to <m> ticks∗,
packet header �ags∗∗ pflag will be used for packets production Å to <f>;
getconf Å returns the current setconf settings;
settype <uint16_t type> Å sets the generated packets type to <type>;
setpatt <uint64_t patt> Å sets the ˇlling pattern <patt> for the packet

bodies;
fragile <uint8_t flag> Å (re)sets the boolean <flag>, which requires

to disconnect the input hook during the output one disconnection and to shut-
down node without hooks, if true. This allows the easy shutdown of the whole
generation chain of ng mysource(4)s. However for freshly mkpeered node this
<flag> by default is 0.

{get,clr,getclr}stats control messages can be submitted and will be
processed during the data generation.

The ng kthsource(4) node type preserves the described above functionality
of the ng mysource(4) node type in general, however, it uses the generic kernel
thread kthread(9) mechanism instead of callout(9). This thread is very much sim-
ilar to a process in many aspects, however, it is not preempted by the scheduling

∗Tick is the time interval between two subsequent system clock interrupts, usually 1/1000 s.
∗∗After qdpb packet design the header �ag ˇeld controls the valid timestamp and CRC presence

in the header. Possible �ag values are #defined in ng packet.h . Note, that if pflag equal to zero
is supplied, the header �ags are set to default (F TIME |F CRC), while for -1 Å to zero, that means
to produce neither timestamp nor CRC. All other values are bitwise ANDed with F MASK.

20

mechanism, so it generates packets as fast as possible. If the packets transfer
failure occurs, our thread voluntarily participates in the scheduling: it msleep(9)s
during <delay> timeout∗ (by default 0.1 s), and after that it continues the packets
generation and transfer.

The ng kthsource(4) supports the same hooks as the ng mysource(4) and
understands the same control messages set. The only exception is setconf,
which submits struct ng_kthsource_conf, where instead of ticks a delay

member is present. It means the time interval (in ticks) for msleep(9)ing after the
packet transfer failure.

A.3. User Context Samples. To test and debug some aspects of ngdp nodes
in the user context, we implement a number of program samples collected in the
test directory:

tbuf nNGO.c (queue disciplines for ng ˇfo(4) buffer implementation),
thash.c (implementation of hash table of struct type_attr and

entrybyevtype() function),
tthr em.c (ng em(4) model with control packets emission based on threads),
tems.c (®self�ow¯ ng ems(4) model without thread),
tthr p.c (ng pool(4) model with control packets emission based on threads),
tbp.c (®self�ow¯ ng bp(4) model without thread),
twrap.c (parser of some syntax suitable for conˇguration ˇle),

as well as some user context program skeleton(s):
tthr.c (program with pthread(3)),
tmm.c (example of ng mm(4) using),
tmmap.c (parent/child data exchange through the mapped/shared memory with

semaphore synchronization), etc.

REFERENCES

1. Isupov A. Yu. The ngdp Framework for Data Acquisition Systems. JINR Commun.
E10-2010-34. Dubna, 2010. 20 p.

2. Isupov A. Yu., Kovtun V. E., Foshchan A. G. Implementation Trial of the DAQ System
for the Compact Physics Setup on Base of the ngdp Framework (in Russian) //
Book of Abstr. of 59 International Meeting on Nuclear Spectroscopy and Nuclear
Structure (NUCLEUS-2009) ®Fundamental Problems and Applications of Nuclear
Physics: From Space to Nanotechnologies¯ Cheboksary, Russia, June 15Ä19, 2009.
Saint-Petersburg, 2009. P. 346.

3. Isupov A. Yu., Kovtun V. E., Foshchan A.G. The Data Acquisition System for Multi-
channel Spectrometer on Base of the ngdp Framework // Abstr. of Intern. Symposium
on Exotic Nuclei (EXON-2009), Sochi, Russia, Sept. 28 Ä Oct. 2, 2009.

∗Unfortunately, we have no means to wakeup(9) it in time, however a timeout value variation
dependent on failures rate or etc., can be implemented in principle.

21

4. Quercia V., O'Reilly T. Volume Three: X Window System User's Guide. O'Reilly &
Associates, 1990.

5. Cutler E., Gilly D., O'Reilly T. The X Window System in a Nutshell. 2nd ed. O'Reilly
& Associates, 1992.

6. Gritsaj K. I., Isupov A. Yu. A Trial of Distributed Portable Data Acquisition and
Processing System Implementation: the qdpb Å Data Processing with Branchpoints.
JINR Commun. E10-2001-116. Dubna, 2001. 19 p.

7. Isupov A. Yu. Software Utilities for Using on an Experimental Stand // Proc. of the
Intern. Workshop ®Relativistic Nuclear Physics: From Hundreds of MeV to TeV
(RNP'2005)¯, Dubna, Russia, 2005. Dubna, 2006. P. 252Ä259.

8. Isupov A. Yu. SPHERE DAQ and Off-Line Systems: Implementation Based on the
qdpb System // Proc. of the Intern. Workshop ®Relativistic Nuclear Physics: From
Hundreds of MeV to TeV (RNP'2003)¯, Stara Lesna, Slovakia, 2003. Dubna, 2003.
P. 214Ä228.

9. Isupov A. Yu. DAQ System for High Energy Polarimeter at the LHE, JINR: Imple-
mentation Based on the qdpb (Data Processing with Branchpoints) System. JINR
Commun. E10-2001-198. Dubna, 2001. 15 p.

10. Anisimov Yu. S. et al. Polarimeter for Nuclotron Internal Beam // Particles and Nuclei,
Letters. 2004. V. 1. No. 1[118]. P. 68Ä79 (in Russian).

11. Isupov A. Yu. Data Acquisition Systems for the High Energy and Nuclotron Internal
Target Polarimeters with Network Access to Polarization Calculation Results and Raw
Data // Czech. J. Phys. Suppl. A. 2005. V. 55. P.A407ÄA414.

12. Brun R., Rademakers F. ROOT Å An Object Oriented Data Analysis Framework //
Proc. of the AIHENP'96 Workshop, Lausanne, Switzerland, 1996 // Nucl. Instrum.
Meth. A. 1997. V. 389. P. 81Ä86.

13. Gritsaj K. I., Olshevsky V. G. Software Package for Work with CAMAC in Operating
System FreeBSD. JINR Commun. P10-98-163. Dubna, 1998. 16 p. (in Russian).

14. Isupov A. Yu. Conˇgurable Data and CAMAC Hardware Representations for Imple-
mentation of the SPHERE DAQ and Of�ine Systems. JINR Commun. E10-2001-199.
Dubna, 2001. 16 p.

Received on March 16, 2010.

Šμ··¥±Éμ· ’. …. �μ¶¥±μ

	μ¤¶¨¸ ´μ ¢ ¶¥Î ÉÓ 18.05.2010.
”μ·³ É 60× 90/16. �Ê³ £ μË¸¥É´ Ö. 	¥Î ÉÓ μË¸¥É´ Ö.

“¸². ¶¥Î. ². 1,68. “Î.-¨§¤. ². 2,29. ’¨· ¦ 290 Ô±§. ‡ ± § º 56993.

ˆ§¤ É¥²Ó¸±¨° μÉ¤¥² �¡Ñ¥¤¨´¥´´μ£μ ¨´¸É¨ÉÊÉ Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°
141980, £. „Ê¡´ , Œμ¸±μ¢¸± Ö μ¡²., Ê².†μ²¨μ-ŠÕ·¨, 6.

E-mail: publish@jinr.ru
www.jinr.ru/publish/

