E17-2010-62

A. A. Vladimirov, D.Ihle*, N. M. Plakida

DYNAMIC SPIN SUSCEPTIBILITY

OF SUPERCONDUCTING CUPRATES:

A MICROSCOPIC THEORY

OF THE MAGNETIC RESONANCE MODE

Submitted to «Physical Review B»

*Institut fiir Theoretische Physik, Universitit Leipzig, D-04109, Leipzig,
Germany



Ba nmumupos A. A., Une [, IIn xuxg H.M. E17-2010-62
JuH MHUYecK s CIIMHOB 4 BOCIPUMMYUBOCTb KYIIP THBIX CBEPXIIPOBOJHUKOB:
MHUKPOCKOIIMYECK $ TEOPUSI M THUTHOM PE30H HCHOW MOJIBI

CcopMyTHpOB H MHUKPOCKOIIMYECK 51 TEOPUS JUH MHYECKOW CHHHOBOH BOCIIPHHMYHBO-
cTH B cBepXxnposopsmeid ¢ 3¢ B p MK X t—.J-Mogenu. C IOMOIIBIO MTPOEKIIMOHHON TEXHUKH
tun  Mopu w1 (yHKIMU pesl KC LUMM B TEPMHUH X omnep TopoB X 00 pao MOJy4eHO TOYHOE
NpeicT BIIeHWe I BOCHpUMMUYMBOCTH. CT THYECK $I CIIMHOB S BOCIPHUMYHBOCTbH BBIUHCIISI-
ercs B 0000LIEHHOM NPUOIIMIKEHUH CPEIHEro 110 C y4eTOM Ip BHI CyMM. M CCOBBIii omep -
TOP BBIUHCIISETCS B MPUOIIKEHUN B3 UMOAeicTByomuX Mof. CrieKTp CIIMHOBBIX BO30YyXIEHUI
P CCM TpHUB ercs B 007 CTH HU3KOTO M ONTHM JIBHOTO JernpoB Hus. OOH pyXeHO MOsBIeHUE
PEe30H HCHOW MOABI H  HTH()EPPOM THHTHOM BOJTHOBOM BekTope Q = m(1,1) mpu HU3KHX
TEMIIEp Typ X, BbI3B HHOE CHJIBHBIM IIOJl BIIEHHEM 3 TyX HUS CIIMHOBBIX BO30yXIeHHil. DTo
OOBSICHSETCS Y4 CTHEM CITMHOBBIX BO30YXXIEHHI B IIpoliecce p CII 1 , B OTJMYHE OT IPHOIIIKe-
HHS CITyd HHBIX () 3, B KOTOPOM YYHUTBIB €TCSI TOJIBKO p CI A H M py 4 cTui —asipk . llens B
CIIEKTPE CITMHOBBIX BO30OYXIEHUI MIP €T [J1 BHYIO POJIb B OIP HUYEHHH P CIH JI O CP BHEHHIO
CO CBEPXIPOBOJSIIEH IIENTbI0, YTO MPUBOJHUT K BOSHUKHOBEHHIO PE30H HCHOU MOjbI Bhle T, B
0051 cTH HU3KOTO JIeTnpoB Hus. ITomydeHO HOCT TOYHO XOpOLIee COIT CHE C DKCIEPUMEHT MH
10 HEYNPYroMy p CCEeSHHI0O HEUTpOoHOB H KpHcT 1 X YBCO.
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Dynamic Spin Susceptibility of Superconducting Cuprates:
A Microscopic Theory of the Magnetic Resonance Mode

A microscopic theory of the dynamic spin susceptibility (DSS) in the superconducting
state within the t—J model is presented. It is based on an exact representation for the DSS
obtained by applying the Mori-type projection technique for the relaxation function in terms
of Hubbard operators. The static spin susceptibility is evaluated by a sum-rule-conserving
generalized mean-field approximation, while the self-energy is calculated in the mode-coupling
approximation. The spectrum of spin excitations is studied in the underdoped and optimally
doped regions. The DSS reveals a resonance mode (RM) at the antiferromagnetic wave
vector Q = 7(1,1) at low temperatures due to a strong suppression of the damping of spin
excitations. This is explained by an involvement of spin excitations in the decay process
besides the particle-hole continuum usually considered in random-phase-type approximations.
The spin gap in the spin-excitation spectrum at Q plays a dominant role in limiting the
decay in comparison with the superconducting gap which results in the observation of the RM
even above T, in the underdoped region. A good agreement with inelastic neutron-scattering
experiments on the RM in YBCO compounds is found.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.
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1. INTRODUCTION

In the superconducting state the spin-excitation spectrum of high-7. cuprates
is dominated by a sharp magnetic peak at the planar antiferromagnetic (AF) wave
vector Q = 7(1,1) which is called the resonance mode (RM). It was observed that
the spectral weight of low-energy spin excitations, suppressed below T, transfers
to higher energy resulting in the RM. This was discovered at first in the optimally
doped YBayCu3O, (YBCO,) crystal at the energy I, ~ 41 meV but later on, the
RM was found in other cuprates as well (for reviews see [1-3]). In particular,
the RM was observed in the single-layer TlyBasCuQOg, cuprate superconduc-
tor [4] and in the electron-doped Prg ggLaCeg.12CuQO4_;s superconductor [5]. This
demonstrates that the RM is a generic feature of the cuprate superconductors and
can be related to spin excitations in a single CuO, layer. Since the energy of
the RM scales with the superconducting temperature, E, ~ 5.3kgT. [2], it has
been argued that it might constitute the bosonic excitation mediating supercon-
ducting pairing in cuprates which has motivated an extensive study of the RM
phenomenon (see, e.g., [3]).

The spin-excitation dispersion close to the RM exhibits a peculiar «hour-
glass»-like shape with upward and downward dispersions. Whereas the RM
energy changes with doping, no essential temperature dependence of it was found.
In the optimal doping region the RM and both dispersion branches vanish above
T.. In the strongly underdoped YBCO crystal only the downward dispersion
vanishes above 1., whereas the upward dispersion and the RM are observed
in the normal pseudogap state. In particular, a well-defined resonance peak at
FE, =~ 33 meV was found in the YBCOg 5 crystal in the oxygen ordered ortho-II
phase with 7. = 59 K at hole doping p = 0.09 [6,7]. At low temperature,
T ~ 8 K, the RM revealed a much higher intensity than in optimally doped
crystals, and it was also seen with less intensity even at T' ~ 1.47,. The RM
was not found in the highly underdoped YBCOg 35 crystal with 7, = 18 K at
p = 0.06 [8]. Instead, a two-scale dynamics at low temperatures was observed:
a broad spectrum of relaxation-type excitations at Q and a slowly fluctuating
narrow central mode characteristic for a short-range spin-glass structure. It may
be suggested that a disordered quasi-static short-range spin-glass structure destroys
the sharp dynamic RM.



To explain the RM in superconducting cuprates, a number of theoretical
models was proposed. Two basic approaches in the theory of the RM can be
singled out. In the first one, the RM is considered as a particle-hole bound state,
usually referred to as a spin-1 exciton (for a review see [3]). The state is formed
below the continuum of particle-hole excitations which is gapped at a threshold
energy w, < 2A(q*) determined by the superconducting d-wave gap 2A(q*)
at a particular wave vector q* on the Fermi surface (FS). In this approach
a model of itinerant electrons is assumed, and the dynamic spin susceptibility
(DSS) is calculated within the random phase approximation (RPA) in the weak
correlation limit of the Hubbard model, U < ¢ (see, e.g., [9,10] and references
therein). Both the downward and upward dispersions were found. To describe
the underdoped regime close to the insulating (and AF) state, where a model of
itinerant electrons cannot be justified, a phenomenological spin-fermion model
was used (see, e.g., [3]).

In favor of the spin-exciton scenario, the neutron scattering studies of the
RM in the slightly overdoped BisSroCaCusOgys (Bi-2212) crystal [11] and in
Y;_,Ca;B2Cu30¢4, (Y-CaBCO) compounds [12] are discussed. In particular,
the global momentum shape of the measured magnetic excitations is quantitatively
described within the spin-exciton model with parameters inferred from angle-
resolved photoemission experiments on Bi-2212 or electronic Raman scattering
experiments on Y-CaBCO. However, the temperature dependence of the RM
energy was not studied which should be observed in the spin-exciton model due
to the temperature dependence of the superconducting gap.

In the second approach, the importance of strong electron correlations is
stressed which are usually treated within the {—J model suitable for consideration
of low-energy spin dynamics. To take into account the projected character of
the electron operators, the Hubbard operator technique [13] should be used. To
deal with the Hubbard operator kinematics, a complicated diagram technique was
developed [14]. In particular, a generalized RPA was elaborated to calculate the
DSS by summing up bubble-type diagrams as in the original RPA. Calculations
of the DSS within the Hubbard operator technique in the RPA [15] revealed a
strong suppression of the spin-excitation damping below 7;, due to the opening of
the superconducting gap in the particle-hole continuum. This results in a sharp
RM at Q similar to the weak-correlation limit.

To calculate the DSS within the ¢{—.J model, the Mori projection technique in
the equation of motion method for the relaxation function [16] has been used by
several groups (see, e.g., [17-22]). This technique affords to consider the mag-
netic excitations of localized spins in the undoped case within the AF Heisenberg
model and a crossover to the itinerant electron spin excitations in the overdoped
region. In [23] and [24] we have formulated a rigorous theory of the DSS in the
normal state within the Mori-type projection technique for the relaxation function
in terms of Hubbard operators. The obtained results, both for the static properties



(like the staggered magnetization at 7' = 0, the uniform static susceptibility, and
the AF correlation length) and for the DSS (e.g., the (w/T')-scaling behavior of
the local DSS) have shown a good agreement with available cluster calculations
and neutron-scattering data.

To clarify some of the open problems in describing the RM phenomenon
(e.g., the appearance of the RM above 7T.), in the present paper we extend
our microscopic theory [23] and [24] to the superconducting state. Although
our general formulation for the DSS is similar to the original Mori memory
function approach used in [17], in the previous studies of the ¢{—J model only
the bubble-type diagrams similar to the RPA were considered which ignores the
important role of spin excitations in the decay process. The energy gap at the
AF wave vector Q of the order of the RM energy E, in the spin-excitation
spectrum strongly reduces the damping at low temperatures, T’ < F, ~ 5 kg7,
which results in the emergence of a sharp peak in the spectral function, the RM
excitation. In the low doping region, where the damping is extremely small,
the RM is found even above T;. In the overdoped region, at hole concentration
0 ~ 0.2 and high T, the spin-excitation damping becomes large and the opening
of the superconducting gap enhances the intensity of the RM, so that it becomes
observable only below T¢.. So, as compared the spin-exciton scenario, we propose
an alternative explanation of the RM that is driven by the spin gap instead of the
superconducting gap 2Ag. A good agreement of our results for the temperature
and doping dependence of the spin-excitation spectrum and the RM with inelastic
neutron-scattering experiments provides a strong support for the proposed theory.

In the next section we present the basic formulas for the DSS and the self-
energy which are a generalization of our theory in [24] to the superconducting
state. Numerical results for the spin-excitation spectra are given in Sec. 3, where
the temperature and doping dependence of the damping and the RM are discussed.
The conclusion is given in Sec. 4. Details of the calculations within the mode
coupling approximation (MCA) are presented in Appendix.

2. RELAXATION-FUNCTION THEORY

2.1. Dynamic Spin Susceptibility. It is convenient to consider the t—.J
model in the Hubbard operator representation

1 _ __
o0 v 0o oo oG Yoo oo yvOo
H=-Y t;X7°X% — > X; +3 D i (XPTXTT - X77XT7) L (1)
i#j,0 i i#7,0
where t;; is the hopping integral and J;; is the exchange interaction. The Hubbard

operators Xiaﬁ = |, ) (i, B| describe transitions between three possible states at
a site ¢ on a square lattice: an empty state |i,«) = |¢,0) and a singly occupied



state |i, ) = |é,0) with spin ¢ = £(1/2), (6 = —o). The number and spin
operators in terms of the Hubbard operators read:

Ni=> X7, S7=X77, Si=> oXJ°. 2)

The Hubbard operators obey the completeness relation X0 + Y X77 = 1
which preserves rigorously, contrary to the slave-boson approach, the constraint
of no double-occupancy of any lattice site. The Hubbard operators have the

commutation relations {X?ﬁ, XJ'.Y‘S} = 0; (557Xf‘5 + 5(;an5) which results
+

in the kinematic interaction. Here, the upper sign pertains to Fermi-type operators
like X?° changing the number of electrons, and the lower sign pertains to Bose-
type operators, such as the number operator or the spin operators, Eq. (2). The
chemical potential p is determined from the equation for the average electron
density n = (N;) = 1 — 6, where § = (X?9) is the hole concentration.

In [23], applying the Mori-type projection technique [16], elaborated for the
relaxation function, we have derived an exact representation for the DSS x(q, w)
related to the retarded commutator Green function (GF) (see [25]),

- m(q)
w)=—=((SFIS " Nw = , 3
X(q W) << q ‘ —q>> wg +w2(q7w) — 2 (3
where m(q) = ([iS%,574]) = ([[Sd, H], S74]). and wyq is the spin-excitation
spectrum in a generalized mean-field approximation (GMFA). The self-energy is
given by the many-particle Kubo—Mori relaxation function

S(q,w) = [1/m(@)]((=54 | = 5Z¢))&P, )

where —SE = [[ST, H], H] (for details see [23]). The Kubo-Mori relaxation
function and the scalar product are defined as (see, e.g., [26])

(AIB)), = —i / " dtet (A(t), B) )

and
B8
(40).B) = [ dNAG=iNB). 5= 1/kaT. (©)

respectively. The «proper» part of the relaxation function (4) does not contain
parts connected by a zero-order single relaxation function which corresponds to
the projected time evolution in the original Mori projection technique [16]. The
spin-excitation spectrum is given by the spectral function defined by the imaginary
part of the DSS (3),

—wX’(q,w) m(q)

w? — w2 —w¥(q,w)]* + [w ¥ (q,w))?’

X" (q,w) = [ (7



where X(q,w +i0") = ¥'(q,w) + i¥"(q,w) and ¥'(q,w) = —¥'(q, —w) and
Y (q,w) = ¥"(q, —w) < 0 are the real and imaginary parts of the self-energy,
respectively.

2.2. Static Susceptibility. The general representation of the DSS (3) deter-
mines the static susceptibility xq = x(q,0) by the equation

Xq = (54,524) = m(a) /wy- @)
To calculate the spin-excitation spectrum wgq the equality

m(q) = (=84, 874) =w§ (54.57) )
is used, where the correlation function (—Sﬁ{ ,S”4) is evaluated in the GMFA
by a decoupling procedure in the site representation as described in [24]. This
procedure is equivalent to the MCA for the equal-time correlation functions. This
results in the spin-excitation spectrum

w(21 = 8t2)\1(1 — ’Yq)(l —n — F270 — 2F171)—|—
n
+4J%(1 = vq) [)\25 — a1C0(4vq + 1) + a2(2C1 1 + Ca)],  (10)

where ¢ and J are the hopping integral and the exchange interaction for the
nearest neighbors, respectively, and vq = (1/2) (cosg, + cosgy) (we take the
lattice spacing a to be unity). The static electron and spin correlation functions
are defined as

Fn,m = FR = <Xgo X%O'> — %Z quiqR’ (11)
q
Cn,m = CR = <S(]_ S;{> — %Z quiqR, (12)
a

where R = na; +ma,. The GMFA spectrum (10) is calculated self-consistently
by using the MFA approximation for the static correlation function (12),

_ m(q) ﬂwq
Cq = Puq coth—2 . (13)

The decoupling parameters o, a2 and A1, A2 in Eq. (10) take into account the ver-
tex renormalization for the spin—spin and electron—spin interaction, respectively,
as explained in [24]. In particular, the parameters o, e are evaluated from the
results for the Heisenberg model at § = 0 and are kept fixed for § # 0. The pa-
rameters A1, A2 are calculated from the sum rule Co o = (SgS;) = (1/2)(1 - 6)
with a fixed ratio A\;/A2 = 0.378. In the superconducting state, the electron



correlation function Fg is calculated by the spectral function for electrons in
the superconducting state (see Eq. (22)). The variation of the parameters Aj, Ao
below the superconducting transition is negligibly small and practically has no
influence on the spectrum wq.

The direct calculation of m(q) yields

m(q) = —=8(1 —yq) [t F10+J C1p]. (14)

Thus, the static susceptibility (8) is explicitly determined by Eqgs. (10) and (14).

2.3. Self-Energy. In what follows, we consider the t—J model at a finite
hole doping & > 0.05 when, as discussed in [24], the largest contribution to
the self-energy (4) is X;(q,w) coming from the spin—electron scattering. It is
determined by the hopping term H: in the {—.J model according to the equation
for the spin-density operators: —SZ = [[SZ, Hy], Hy]. As described in Appendix,
in the MCA this contribution reads

% S N(wa)[1 = nfwn)]n(ws)d(w +wr — ws — ws)

d1,92

BQ2 (w2) [(Aglhflmfm + A3137Q27OI1) Aflv1 (wl) Aga (w3)
_QACILClz,QS AQ37C12,Q1 Agla(wl) Agaa(wi%)] ) (15)
where g3 = q — q1 — q2. The Fermi and Bose functions are denoted by n(w) =

(e# + 1)~ and N(w) = (e/“ — 1)~L. The vertex function Ag, q,.qs is defined
by Eq. (31). Here we introduced the spectral functions:

A () = =(1/m)Im{(X37| X)), (16)
A5, (@) = =(1/m)Im{(X37| X %) o (17)
Bq(w) = (1/71-) X//(qaw)a (18)

where Ag “9(w) are determined by the retarded anticommutator GFs for electrons
(see [25]). In comparison with the expression for the self-energy in the normal
state considered in [24], in Eq. (15) there is the contribution proportional to the
anomalous GF ((X37|X°%,))., which is nonzero in the superconducting state only.

It should be emphasized that the self-energy (15) is determined by the decay
of a spin excitation with the energy w and wave vector q into three excitations: a
particle-hole pair and a spin excitation. This process is controlled by the energy
and momentum conservation laws, w = (w3 —w1) + w2 and q = q1 + g2 + qs,
respectively. In the previous studies of the {—J model the contribution of the
additional spin excitation has been neglected (see, e.g., [15]) or approximated



by static or mean-field-type expressions (see, e.g., [17] and [21]). That is, in
these approximations the spin-excitation contribution was «decoupled» from the
particle-hole pair. We can derive the particle-hole bubble approximation from
Eq. (15), if we ignore the spin-energy contribution wo in comparison with the
electron—hole pair energy, or, equivalently, if in the MCA, Egs. (32) and (33),
the time-dependent spin correlation function is approximated by its static value:
(82 Sq(t)) ~ (SZ4S4) = Cq. Moreover, excluding the spin-excitation wave
vector qo from the wave-vector conservation law, we have q = q; + q3. As a
result of these approximations in Eq. (15), we obtain the self-energy in the form
of the particle-hole bubble approximation:

~ T 4 [ee]
2 (q,w) = _m((2qt))w [ dwi[n(wr) — n(wy + w)] x
x % Z [Ailleq qi1 Ailvl (wl) Agfql (wl + W)_

= A5, qman Ao (1) AS_g (1 +w)], (19)

d1,9—d1

where the averaged over the spin-excitation wave vector qp vertexes are intro-
duced,

2
QLQS - Z CQZ Ch;Qz&ls + AQS’Q2,Q1] (20)
AgLQS Z Oqz Afh Q27Q3AQ37012 q1- (21)
qz2

In the approximation (19) only the opening of a superconducting gap in the
particle-hole excitation can suppress the damping of spin excitations due to the
decay into particle-hole pairs which may result in the RM. Below we discuss in
more detail why a particle-hole bubble approximation for the self-energy (19)
leads to a different behavior of the spin-excitation damping in comparison with
the results obtained for the full self-energy (15).

3. RESULTS AND DISCUSSION

3.1. Self-Energy Approximation. In the calculation of the self-energy (15)
we adopt the mean-field approximation (MFA) for the electron spectral func-
tions (16) and (17) which in the superconducting state can be written as

—Q Y 50wy, (22)

2w
wil= :tEq 1




=Q Z —wi). (23)

wi1= :I:E

Here @ =1 — n/2 is the Hubbard weighting factor and the superconducting gap
function Aqe = (sgn 0)Aq. In the electron spectrum €4 we take into account
only the nearest-neighbor hopping ¢ and consider the energy dispersion in the
Hubbard-I approximation: eq = —4t () 7q — pt. The spectrum of quasiparticles in

the superconducting state is given by the conventional formula E, = , /E?Jl + A?l.
For the spin-excitation spectral function (18) we take the form:

Bg(w)=m(a) > s—dw—uw), (24)

where the spectrum of spin excitations wq is determined by the pole of the DSS,
@q = [wZ + Wq ¥'(q,@q)]"/?. Here, the real part of the self-energy ¥'(q,w) is
calculated perturbationally by taking the spectral function (24) with the GMFA
spectrum w; = Fwq. Using these spectral functions, after integration over the
energies in Eq. (15) we write the imaginary part of the self-energy in the following
form convenient for the calculation in the limit 7" — 0:

1 2
Saw-T2LT Y > Y %

1,92 w1=*Eq, wa=%q, ws=*Eqg

N(w2)n(=wi)n(ws) + N(-wz)n(w1)n(-ws)
8W1WQC¢)3

[(A?M,chks + Azs’ch Q1)(w1 + 5611)("‘)3 + 5613)

- 2AOI17012VQ3AQ37012VQ1AC11 AQ3]6(W + w1 —wp —w3).

m(qz) (25)

Similar calculations for the self-energy (19) in the particle-hole bubble approxi-
mation yield

i;/(qa Cd) -

R S VD

q1 wi1= iqu wo= :tEq a

nwi) — nwz) AN (26)

A wo ava—a: (W1 €q) (w2 +€q-q,)

—AS A Ag_q, | 6(w +wi —ws).

q1,9—d1

We consider both the d-wave and s-wave symmetry of the superconducting

gap which we write as A( ) = = (A/2)(cosq, — cosqy,) and A®®) = A with the
temperature-dependent amplitude A(7'). In numerical calculations we assume



that A(T') follows the conventional Bardeen—Cooper—Schrieffer (BCS) theory.
In particular, A(T)/kgT. = 1.76, 1.72, 1.6, 1.24 for T'/T, = 0, 0.4, 0.6, 0.8,
respectively. By taking, instead of the BCS ratio 2Ag/kpT. = 3.52, Ay =
A(T = 0), the ratio 2A¢/kpT. = 4.3 for a pure d-wave superconductor (see,
e.g., [27]) we have found that the results do not change noticeably, i.e., less
than 5% at T = 0 and even less at finite temperatures. We mainly consider two
doping values, § = 0.2 which is larger than optimal doping and § = 0.09 for the
underdoped case. For § = 0.2 we fix the superconducting transition temperature
as kpT. = 0.025¢, while for § = 0.09 we take kg7, = 0.016¢. For the hopping
parameter t = 0.313 eV these values are close to 7. = 91 K in the nearly
optimally doped YBCOg g2 single crystal in [1] and 7. = 59 K in the underdoped
(0 = 0.09) YBCOg 5 crystal studied in [6]. We take the exchange interaction
J = 0.3t and measure all energies in unit of ¢.

3.2. Spin-Excitation Damping. To elucidate the role of spin excitations in
the damping and their relevance to the shape of the spectral function, Eq. (7),
we consider the temperature dependence of the spin-excitation damping at the
AF wave vector, ['(Q,w) = —(1/2) ¥/(Q,w). Figure 1 shows the damping for
0 = 0.2 at various temperatures in the case of the d-wave (a) and s-wave (b)
pairing. The difference of the damping appears only at low w and 7. In particular,
the damping for the s-wave gap at T" = 0 disappears at w < 2Ag ~ 4kgT, = 0.1¢,
while for the d-wave gap it vanishes at w ~ Ay ~ 0.05¢. A weak damping
was obtained also for the normal state shown in Fig. 1,c when the contribution
from the superconducting gap functions in the self-energy 3/ (Q, w), Eq. (25), is
omitted. The similar smooth variation of the damping with energy in all three
cases below T, contrary to a step-like dependence obtained in the particle—hole
bubble approximation (see below), demonstrates that the superconducting gap
plays a minor role in suppressing the damping, and the gap wq in the spin-
excitation spectrum is responsible for such a peculiar behavior. For a lower
doping, the damping becomes an order of magnitude weaker as shown in Fig. 2
at 6 = 0.09, even above T, (T' = 1.4T,).

Sometimes, the RM observed above T, in the underdoped cuprates is related
to a pseudogap in the electronic spectrum (see, e.g., [3]). We propose another
explanation: The RM above T is the result of the gapped spin excitations in the
self-energy (25) leading to a very weak damping in the underdoped region which
is outlined in more detail below. This explanation is supported by studies of the
spin-excitation damping I'q = —(1/2) £/(q,w = &q) at ' = 0 shown in Fig. 3.
The small difference between the damping in the d-wave superconducting state
and the normal state observed for the full self-energy, Eq. (25), confirms that the
superconducting gap does not play an essential role in suppressing the damping
I'q, in particular, in the underdoped region. At the same time, the sharp increase
of I'q away from the AF wave vector Q explains the resonance character of spin
excitations at Q.
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Fig. 1. Spin-excitation damping I'(Q, w) for 6 = 0.2 at T' < 7. for a) the d-wave and b)
s-wave pairing, and c) in the normal state

Though the damping in Fig. 1 looks similar, the spectral functions shown in
Fig. 4 for § = 0.2 at T' = 0.47,, reveal a strong enhancement of the intensity of
the RM in the superconducting state. In comparison to the normal state, where
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Fig. 2. Spin-excitation damping I'(Q, w) for § = 0.09 at T' < T, for the d-wave pairing
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Fig. 3. Spin-excitation damping I'q for a) § = 0.2 and for ) § = 0.09 at T' = 0 for the
d-wave pairing (solid line) and in the normal state (dashed line)

the contribution from the superconducting gap is omitted, the peak intensity is
about two (five) times larger for the d (s)-wave symmetry of the gap.

Quite a different behavior of the damping and the spectral function is obtained
for the reduced self-energy, Eq. (26), with a contribution only from a particle—hole
bubble. Figure 5 shows our results for the spectral function x”(q,w) and for the
damping T'(Q,w). To compare these functions with those calculated in [17], we
adopt the electron dispersion used in [17], sfff = —4tlegvq — 4szeﬂr COS @z COS @y
with teg = 0.3t and t.z = —0.1t and take the gap parameter Ay = 0.1¢.
The obtained results are quite close to those shown in Fig. 1 of [17] (where
X7 (q,w) = (1/2)x"(q,w) is plotted). At T' = 0, we observe a much narrower
RM, but with a lower intensity in comparison with the RM calculated with the
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Fig. 4. Spectral function x”'(Q, w) for the d-wave and s-wave pairing in comparison with
the normal state at 7' = 0.47, for § = 0.2

full self-energy, Eq. (25), as shown in Fig. 6. The energy E, of the RM shown
Fig. 5, a noticeably decreases with increasing temperature, contrary to a negligible
shift of the RM shown in Fig. 6 for T' = 0.47¢.. This comparison demonstrates
that in the particle-hole bubble approximation the superconducting gap plays a
crucial role in the occurrence of the RM with Ey(T") < 2A(T), while in the full
self-energy (25) the superconducting gap and details of the electron dispersion
are less important. In particular, for the underdoped case § = 0.09 we have not
found visible changes of the damping function shown in Fig. 2 for the electron
dispersion with ¢’ = 0 and ¢’ = —0.1¢. For the reduced self-energy, Eq. (26), the
damping vanishes for both types of the dispersion in the underdoped region, and
in order to obtain a finite damping at § = 0.1 in [17] (see Fig. 2), the authors have
to use the electron density of states in the damping function (see their Eq. (20))
instead of the q-dependent electron spectral functions.

This difference can be explained as follows. Whereas in the particle-hole
bubble approximation given by Eq. (26) the spin excitation with the energy w
at the wave vector Q can decay only into a particle-hole pair with the energy
w(Q) = Eqiq+Eq, in amore general process described by Eq. (25) an additional
spin excitation participates in the scattering. In the limit 7" — 0, the decay process
in this case is governed by another energy-conservation law, w(Q) = Eq, +Eq, +
Wq, Where the largest contribution from the spin excitation comes from wq, ~ Wq
due to the factor mgq, (14) in Eq. (25). This energy-momentum conservation law
strongly reduces the phase space for the decay and suppresses the damping of
the initial spin excitation with the energy w(Q). In fact, the occurrence of an
additional spin excitation in the scattering process with the finite energy wq plays
a role similar to the superconducting gap in the excitation of the particle-hole
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pair in Eq. (26). Therefore, the damping at low temperatures (kg 7' < wq ~ Er)
appears to be small even in the normal state as demonstrated in Fig. 1,c. In the
case of the particle-hole relaxation, the condition for the occurrence of the RM,
w(Q) = Eq+q + Eq < 2A(q*), imposes a strong restriction on the shape of
the FS which should cross the AF Brillouin zone to accommodate the scattering
vector Q and the vector g* on the FS. In the case of the full self-energy, Eq. (25),
the energy-momentum conservation law for three quasipartricles does not impose
such strong limitations.

3.3. Resonance Mode. Experimentally, the RM energy E. decreases with
underdoping following the superconducting transition temperature, F, ~ 5.3kgT,
but only weakly depends on temperature (see, e.g., [2,3]). Now we discuss the
temperature and doping dependence of the RM and its dispersion within our
theory for the d-wave pairing.

The temperature dependence of the spectral function in the overdoped case
0 = 0.2 is shown in Fig. 6. It has high intensity at low temperatures, but
strongly decreases with temperature and becomes very broad at T' ~ T¢ as found
in experiments (see [1]). In Fig. 7 the temperature dependence of the spectral
function for the underdoped case § = 0.09 is plotted. Whereas the resonance
energy decreases with underdoping, the intensity of the RM greatly increases in
accordance with experiments. The RM energy weakly depends on temperature
and is still quite visible at 7' =T and even at T' = 1.47T.

The dispersion of the spectral function for § = 0.2 is shown in Figs. 8 and 9.
A strong suppression of the spectral-function intensity away from Q = (1, 1)
even at 7" = 0 explains the resonance-type behavior of the function at low
temperatures. This suppression of the intensity is in accord with the sharp increase
of the damping away from Q shown in Fig. 3.

We have not found the downward dispersion at energies below the RM de-
tected in neutron-scattering experiments on YBCOg 5 ( [7]). However, as argued
in [7], two distinct regions of spin excitations may be suggested: a low-energy
part below E, =~ 33 meV, which can be described as incommensurate stripe-
like collective spin excitations for the acoustic mode, and a high-energy part,
which has a spin-wave character. The high-energy part of the spin excitations
has an isotropic in-plane dispersion while the low-energy excitations show a one-
dimensional character. The different nature of the two parts of the spectrum is
also revealed in their temperature dependence: the low-energy acoustic part of
the spectrum is strongly influenced by the superconducting transition, while the
high-energy part of the spectrum does not change appreciably with temperature up
to 85 K. Nevertheless, in several theoretical models the downward dispersion of
the lower-energy part of the spectrum was reproduced in the RPA approach (see,
e.g., [9]) or, for the t—J model, within the particle-hole bubble approximation
(see [15,19,21]). The dispersion was explained by a special wave-vector depen-
dence of the particle-hole bubble diagram related to the wave-vector dependence
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Fig. 5. a) Spectral function x”(Q,w) and b) spin-excitation damping I'(Q, w) calculated
in the particle-hole bubble approximation, Eq. (19), at § = 0.2 for the d-wave pairing
(Ap = 0.1t taken from [17] ) at T = 0O (solid line) and T" = 0.47T, (dotted line), and for
the normal state at 7" = 0 (dashed line) and T" = T, (dash-dotted line)

of the dg2_,> superconducting gap and to a specific for cuprates two-dimensional
FS. Since in our theory beyond the RPA the RM energy does not critically de-
pend on specific properties of the FS and the superconducting gap, the downward
dispersion cannot be found. To discuss this problem in detail, the role of stripe
excitations in the spin-excitation spectrum should be elucidated.

Now we discuss the doping dependence of the RM energy E.(d). At low
temperatures, the real part of the self-energy X'(Q,w) < 0 is quite large as
shown in Fig. 10. This considerably softens the energy of spin excitations wq
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Fig. 6. Temperature dependence of the spectral function x"'(Q,w) at § = 0.2
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Fig. 7. Temperature dependence of the spectral function x”(Q, w) at § = 0.09

in the GMFA, Eq. (10), shifting the pole of the spectral function x”(Q,w) to
a lower energy: Wq = [wg — 0q [X(Q,0q)[]'/?. Experimentally, the RM
energy is measured by the position E, of the maximum in the spectral function
X" (Q,w) which deviates from @q due to a finite width of excitations. In Fig. 11
the doping dependence E,(d) in the superconducting state at 7 = 0 determined
by the maximum of the spectral function is plotted. Thereby, for the doping
dependence of Ag(d) = 1.76 Tc(d) we used the universal empirical formula
Te(8) = Temax [1 — B (6 — Sopt)?] [28], where Sopt = 0.16, Tt max = 93 K, and
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Fig. 8. Spectral function X' (q, w) for the wave vectors: a) q = 7(1,£) and b) q = 7 (£, €)
at T'=0 for § = 0.2

the value of 8 = 75 was fitted to obtain 7, = 59 K for § = 0.09 in YBCOg 5, [6].
With decreasing d, F, decreases which qualitatively agrees with the experimental
data. The energy of the RM tends to zero at the critical doping J. = 0.038 below
which the long-range AF order emerges at 7' = 0, as we have shown in [24]. So,
in our scenario the RM is just the soft mode which brings about the long-range
AF order below the critical doping. Experimentally, in the overdoped region the
RM energy decreases with increasing doping (see Fig. 11 and, e.g., [12]), while
in our theory FE tends to increase due to the increasing energy wq. However,
as shown in [24], the damping in the overdoped region rapidly increases and the
RM becomes overdamped. Note for § < 0.2, the magnitude of E, agrees well
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Fig. 10. Real part of the self-energy X' (Q,w) for the d-wave pairing in comparison with
the normal state at 7' =0 for § = 0.2

with experiments, where in the approach of [17] a too large superconducting gap
Ao ~ 0.1t (compare with Fig. 5) has to be taken to fit the RM energy to the
experimentally observed one.

In Fig. 12 we compare our results with the neutron-scattering data for the
nearly optimally doped YBCOg 92 single crystal [1] at T'=5 K and 7' = 100 K.
In this sample, 7. = 91 K and the RM energy F, ~ 40 meV= 5.1kg T, >
2 Ay (taking 2A¢(0) = 3.52 kpT.(d) we have E, ~ 2.9A). For § = 0.2, our
calculations yield F, = 0.12¢t = 38 meV= 4.8k T, = 2.7Aq (t = 0.313 eV,
T. = 0.025¢; see Subsec. 3.1).

In Fig. 13 our results are compared with the experimental data for the under-
doped ortho-II YBCOg 5 single crystal with £, = 33 meV= 6.5 kgT. = 3.7 Ag
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Fig. 11. Energy of the resonance mode FE, at T' = 0 as a function of hole doping J in
comparison with experimental data for YBCO from [2] (open circles), [3] (full squares),
and [1], [6] (full circles)
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Fig. 12. Spectral function x"(Q,w) for doping § = 0.2 compared to experimental data
for YBCOeg.92 [1], at T' =5 K (squares) and 7" = 100 K (circles)

at 7= 8 K and T" = 85 K (see Fig. 14 in [6]). For § = 0.09, our theory
gives F, = 0.09t = 28 meV= 5.6k T, = 3.2Ay. We note a weak temperature
dependence of the RM energy observed experimentally and obtained in our cal-
culation. In both compounds the RM energy is larger than the superconducting
excitation energy, F, > 2/, while in the spin-1 exciton scenario the RM energy
E: has to be less than 2A,. So we obtain a good agreement of our theory with
neutron-scattering experiments on YBCO crystals both near the optimal doping
and in the underdoped region.
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Fig. 13. Spectral function x”'(Q,w) for doping § = 0.09 compared to experimental data
for YBCOe.5 [6], at T' = 8 K (squares) and 1" = 85 K (circles)

CONCLUSION

A detailed study of the DSS in the superconducting state has revealed the
important role of the spin-excitation damping in the RM phenomenon. We have
found that the low-temperature damping essentially depends on the gap wq ~ E;
in the spin-excitation spectrum at the AF wave vector Q, while an opening of
a superconducting gap 2A(T') below T, is less important. Since the energy of
the RM E, ~ 5kpT. does not show temperature dependence, at T < T, the
spin gap at E, plays the dominant role in the suppression of damping, since the
superconducting energy 2A(T < T.) < E,. This follows from Eq. (25) for
the self-energy, where in the decay of a spin excitation, besides a particle-hole
pair, the contribution from an additional spin excitation is taken into account.
This is in contrast to the particle-hole bubble approximation in Eq. (26) which
is used in the RPA (see, e.g., [9,15]) and in similar approximations in memory-
function theories [17,19,21]. In those approximations, the spin-excitation damping
is much larger in the normal state and reveals a spin gap only at T' < Tq,
where the RM appears (see Fig. 5). The gapped spin-excitation spectrum in the
full self-energy (25) greatly suppresses the damping at 7' = 0 which results in
a comparable damping both in the superconducting state (either of d-wave or
s-wave symmetry) and in the normal state, as demonstrated in Figs. 1 and 3.
The damping is strongly decreasing in the underdoped region (see Figs. 2 and 3)
bringing about a much stronger RM seen also above 7. (Fig. 7).

With decreasing hole concentration the energy of the RM decreases and
shows the dependence close to that observed in neutron-scattering experiments,
FE, ~ 5kpT, (see Fig. 11). Due to the important role of gapped spin excitations
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in the damping of the RM, its energy F, does not critically depend on the
superconducting gap energy 2A(T') and hence, on temperature and peculiarities
of the electronic spectrum in cuprates, contrary to the theories based on the RPA
(see, e.g., [9,15]). In particular, F, is found to be larger than 2A, as observed
in experiments (see Figs. 12 and 13).

It should be stressed, that the damping of the RM in our microscopic theory
within the ¢{—J model is determined by the kinematic interaction induced by the
kinetic energy t of electrons moving in a singly occupied Hubbard subband. This
interaction is absent in conventional fermion models in which strong electron
correlations are neglected and the spin—electron scattering is determined by a
phenomenological interaction with a coupling constant as a fit parameter.

Finally, let us note that our approach, using the MFA for the electronic
spectral functions, Eqgs. (22) and (23), in the computation of the self-energy (25)
has to be considered as a first step towards a fully self-consistent theory of the DSS
in the t—J model. However, we believe that the consideration of more accurate
fermionic GFs in Eqs. (16) and (17) beyond the Hubbard-I approximation (see,
e.g., [29]) should not change our main conclusions, since the shape of the FS and
the form of the superconducting gap 2A(q) do not play an essential role in our
theory, contrary to the spin-exciton scenario.
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knowledged. One of the authors (N.P.) is grateful to the MPIPKS, Dresden, for
the hospitality during his stay at the Institute, where a part of the present work
has been done.

APPENDIX A
MODE-COUPLING APPROXIMATION

To calculate the self-energy (4) we use the MCA for the time-dependent
multiparticle correlation function which appears in the spectral representation of
the relaxation function

" Y e —
E (q7 w) - 20) m(q) [I(qv w) I(qvw)]v
0o (27)
Haw) = [ e (5518w,
where )
~8F = ([SF. (He+ H))\, (Hy + Hp) = Y F? (28)

determines the force correlation functions of the force operators F* denoted by
the index « = tt, tJ, Jt, JJ. As discussed in [24], at a sizeable doping § ~ 0.1
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considered in this paper, only the term F!' can be taken into account, since all
other terms give negligible contributions. For this term we have

tt + +
F th{ jn [Hign + Hu) = tin [Hy, + Hm]]}
(29)
o o0 v+— yv0o +0 00 oo 0—
Hy, = X7 X7 X507 + X, (X;7+ X77) X,
Following the reasoning of [24], in Eq. (29) only products of operators on different
sites are taken into account. After the Fourier transformation to the g-space we
obtain the force—force correlation function

<[Ftt] |Ftt Z Z

d1,92 qf,q5
+
<[Aq/1xq'2’q:/3 qu,qz,qé + Agg.ap.q; Hq;,q;,qg]T | (30)
[AQ1,Q2’QS Hc;l,qz,qs( ) + Aq:s,qz,(h H(—l‘r]_,qz,q:g (t)]>

where q3 =q—q; —q2 and 9’5 = q — q'; — ¢, Here we introduce the vertex
function

Aqlqzqs = 4('Yq3+qz - 'qu)'qu + Ya: — Yai+as» 3D

where the terms linear in 4 reflect the exclusion of terms in F!* with coinciding
sites.

In the MCA we assume that the propagation of electronic- and bosonic-type
excitations at different lattice sites in Eq. (29) occurs independently which results
in the decoupling of the correlation function (30) into the corresponding single-
particle time-dependent correlation functions. As it turned out by numerical
evaluations (see also [24]), the contribution from the charge excitations given
by (X9 + X?9) in Eq. (29) can be neglected in comparison with the spin-
excitation contribution given by X7~ = SF. In this approximation we obtain
the spin-diagonal correlation functions for the normal state

_ o0 g— 0o o0 0o o
<[ ql,q2,q3] ‘ ql,q2 q3( )> - <X ésfq/z‘)(q/1 |Xq1 (t)SJr (t)Xq;; (t)> -
¢ 5012701;5(13,(13' (32)

= (Xqy Xq) (1)) (S7q, Sq, (1)) (X g3 Xz (1)) X 0qy.q

—d2 7 q2

In the superconducting state we additionally take into account pair correlation
functions which appear in the spin off-diagonal terms

<[ ql,q2,q3] ‘ q1 qz2, q3( )> = <X&’OS_ /Xog‘Xg?(t)S;;(t)Xog(t» =
(X0 X (1) (S gy S (D) (X7% X)) X by —qyOtnadaa - (33)

—qs —q2"7q2 —dq1i
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By substituting the MCA correlation functions (32) and (33) in Eq. (27) we obtain
the multiparticle correlation function

/ dte wl 2 Z S*Q2S!—1~_2 >

qd1,92
[(A?h q2,93 + A337q2;Q1 ) <XOUXUO (t)> <‘XUO‘XO(7 (t)> -

- AQ17012VQ3AQ37012VC11 Z<X321XUO( )><X923X00( )>] (34)

g

Using the spectral representation for the time-dependent correlation functions (see,
e.g., [25])

(BAG) = [ doe f)-0/mm(AIB).. (35)

— 00

where f(w) is the Fermi (Bose) function n(w) (N (w)), after integration over time
t we derive Eq. (15).
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