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Preface

The present paper is the review of the works which was done after my first paper [1]. I returned
from time to time to the idea [1] that it seems interesting to embed the total probability conservation
condition !) into the quantum field theory formalism and discuss it with Alexei Sissakian during our
team-work. It seems that this suggestion is unnecessary noting that the S-matrix is the unitary
operator and it is not evident why this attempt can give something new. But it turns out that there
exists the correspondence among quantum theory and classics which is independent from the value
of quantum corrections. Besides, this new quantum field theory is free from divergences and the
value of quantum corrections ingenuously depends on the topology of classical field. All that is new
from the point of view of ordinary theory and at last Alexei Sissakian proposed to write on paper
all results in detail. The present introductory paper devoted to the simplest examples and more
interesting field theory models will be published later.

!) This means that the theory must be formulated directly in terms of probability. But notice that it is the frequently
used method of particle physics. For example, one must integrate over unobserved final state in the inclusive approach to
the multiple production phenomena. Another example: describing the very high multiplicity (VHM) processes, the number
of produced particles n must be considered as the dynamical parameter. In the frame of S-matrix thermodynamics, where
the «rough» description of final state is used, one must also integrate over final particles momenta. In all cases one must
consider quantities ~ |A|? directly, where A is the corresponding amplitude.



Dedicated to
Alexei Sissakian, critic & friend

1. INTRODUCTION

The basis of the method of calculations is following [1]. The S-matrix unitarity condition,
STS =1, in terms of amplitudes, S = 1+ iA, looks as follows:

2iATA = (A - A"). (1.1)

The nonlinearity of this equality points on existence of the cancelations mechanism (of the real part
of amplitude) which reduces quadratic form down the linear one. Our purpose is to show how this
reduction removes the «unwanted» contributions.

One may consider the simplest vacuum-into-vacuum transition «probability»,
quantity, where Z is the functional integral over fields,

Z = JDgo @) Dy = H dp(x). (1.2)

2 as the main

One may include into the action, S, also the linear over field ¢ term

deJ(x)go(w) (1.3)

to describe production of particles. We will assume on the early stages that J = 0. Then the
vacuum-into-vacuum transition «probability» is

1Z]2 = JDWD@*— £iS(p)=iS* (o). (1.4)

where ¢ and @_ are completely independent fields.
[t will be shown that Eq. (1.1) means that also the reduced form [1] must exist:

1Z|> = lim eKGe )JDMeZU(“"e) (1.5)

j=e=0

where K = K(j,e) is definite differential operator over j(z) and e(z). The expansion of exp{if{}
generates perturbation series. The functional U(¢p, e) introduces interaction among quantum degrees
of freedom and the integral measure is é-functional:

DM = Hd <—§+h (2 )) (1.6)

Sometimes the d-like measure [2] is called in mathematical literature as the «Dirac measure». It
follows from (1.6) that

— the quantum system for external observer looks like classical one which is excited by the
external random force hj, Vh.
The established generalized correspondence principle 1) is the main consequence of Eq. (1.1).
Therefore the complete set of acceptable field states for external observer ?) is known having (1.6).

[t is important that the restricted problem is considered. We will calculate the imaginary part of
amplitude behevmg that it will be sufficient for us. In this case the unmeasurable phase of amplitude
stay undefined 3). The main mathematical problem in searching representation (1.5) is to find the
way how to find the imaginary part from the modulo squire of amplitude. To be more precise, we
will find the imaginary part in result of cancelation of «unwanted» contribution in the modulo squire
of amplitude.

The J-function (1.6) solves the problem of definition of contributions into the path integral but
cannot solve the problem completely since the action of operator K remains unknown. It must be
noted that exp{iK} generates the asymptotic series ordinary in quantum theories [3] and it seems

') Such a formulation of the principle was offered by A. Sissakian.

?) Since the «probability» is considered.

%) Therewith, why the calculations of unnecessary, i.e., unmeasurable, phase must be performed? Just in this sense
the unitarity condition (1.1) is the necessary one. It says that the real part is the «unwanted» part of the amplitude.



that d-like measure gives nothing new !). But this is not entirely so. I would like to draw attention
on appearance of source of quantum excitations Aj in the r.h.s. of classical Lagrange equation,
i.e., the changes of L.h.s. in equation of motion lead to the change of %j. It is crucially important
that (1.6) is rightful independently from the value of A.

The theory defined on the Dirac measure (1.6) for this reason has quite unexpected properties,
e.g., allows one to perform transformation of the path integral variables. So, it will be shown that
in theories with symmetry exists the reduced form of representation (1.5):

1Z?> = lim eiK(j’e)JDM(j)eiU(%’e), (1.7)

]:e:()

where K is again the perturbation generating operator and U introduces interactions. Note that K
and U in (1.7) depend on the sets {j¢, , jn, }» {e€c,, €¢, } of new variables. One must take this auxiliary
variables equal to zero at the very end of calculations. At the same time, the transformed measure

DM is again d-like:
DM = [ [ dé(t)dns(t) x
kot

: oh oh
Y t) — ——= —Je.,(t) | o | m(t) + ——= +J t), 1.8
(660~ o —u0) 8 () + 5 + im0 (19
where ¢ is the time variable and h = h(n) is the transformed Hamiltonian:
h(n) = H(ee), (1.9)

where p. = @.(x;£,n) is given solution of Lagrange equation at j = 0.

The formula (1.8) is the main result. Therefore, as is follows from it the problem of the
quantum field theory with symmetry is reduced down to quantum mechanical one, with potential
defined by ..

(A) The Dirac measure (1.6) prescribes that |Z|? is defined by the sum of strict solutions of
equation of motion:

65()

dp()

in vicinity of j = 0, i.e., by definition Eq. (1.10) must be solved expanding the solution over j 2).
Following to ordinary rule we leave obviously the contribution which ensures the minimal vacuum
energy. On the other hand, having theory on Dirac measure, which calls for the complete set of
contributions, we offer another selection rule in our dynamic theory of S-matrix.

Namely, we simply propose 3) that
— the largest terms in the sum over solutions of (1.10) are significant from physical point of view.

To be more precise, this selection rule means that if G is the symmetry of action and 7T'G*
is the symmetry of the extremum of the action then in the situation of general position just the
trajectories with highest dimension factor group, (G/T'G*), are sufficient.

[t will be seen that just such a definition of the «ground state» extracts the maximally «feeling»
symmetry contributions since other ones will be realized on zero measure, or, more precisely, just
the maximally symmetry breaking field configurations, ., are mostly probable. We will call such a
solution of the problem as the field theory with symmetry. It is the main formal distinction of the
present approach.

It is important here that the zero width of é-function excludes the interference among
contributions from various trajectories. Therefore the formalism naturally takes into account
orthogonality of Hilbert spaces builded on various trajectories. This achieved through the special
boundary conditions in the frame of which the total action of the product

= hj(x), (1.10)

Z - Z* =<in|out > - < out|in >

1) Looking on the approach from stationary phase methods point of view. In other words, one can think that present
approach gives nothing new to the Bohr correspondence principle.

2) It should be noted that it may be that the limit j = 0 is absent. That may be happened if the system is unstable
against, for example, symmetry breaking. This important possibility will not be considered in the present paper.

%) This selection rule is used widely in classical mechanics, see, e.g., formulation of Kolmogorov-Arnold-Mozer
(KAM) theorem [4].
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always describes closed path, i.e., the necessary for d’Alembert variational principle time reversible
motion. This points at the necessity to be careful with boundary conditions in considered
formalism !)

(B) The Dowker theorem [5] insists that the semi-classical approximation is exact for path
integrals on the simple Lie group manifolds. One can expect for this reason that the quantum-
mechanical problems, as well as the field-theoretical ones, may be at least transparent on the
symmetry manifolds.

However we know how to construct correctly the path integral formalism only in the restricted
case of canonical variables [6]. Then, at first glance, the path integrals in terms of generalized
coordinates can be defined through the corresponding transformation. But there is the opinion that
it is impossible to perform the transformation of path-integral variables: the naive transformation
of coordinates gives wrong result because of theirs stochastic nature in quantum theories ). That
is why such a general principle as the conservation of total probability (1.1) should play an
important role. Indeed, it is evident that d-like Dirac measure (1.6) allows one to perform arbitrary
transformation [1] just as in the classical mechanics.

Therefore, the theory on Dirac measure straight away leads to the new for quantum field theory
selection rule and latter one gives the theory with symmetry. All this is attained by transition to the
appropriate variables, (£,n7) € W in our notations. The last circumstance means that we go away
from ordinary spectral analysis of quantum fluctuations to the description of the classical trajectories
topology conserving deformations, since ¢, = p.(x;&,n) is given, of symmetry manifold, W 3). It
must be underlined that our method of transformations is rightful for arbitrary case, i.e., not only
for simple Lie group manifolds, where the semi-classical approximation is exact.

Next, the dimensions of initial phase space of field and of the transformed space of independent
degrees of freedom, i.e., of the symmetry manifold, will not coincide. That means that the mapping
to the independent degrees of freedom, (£, n), will be singular. For this reason the transformation

Pe i — (1)

will be irreversible and the notlon of particle should be considered as the wrong idea of quantum
field theory with symmetry *

(C) It will be shown that the result of action of the operator exp{zK} for transformed theories
may be expressed as the sum of contributions on all boundaries OW:

21 = |Z|% +Zjd§k )C§+Zjdnk 877%(0)0”, (1.11)

where the first term presents semi-classical contribution and C¢, C'n contain quantum corrections.
This result shows that the quantum corrections greatly depend on the topology of classical trajectory.

This important observation solves a number of problems. For instance, it is known that the
Coulomb trajectory is closed because of Bargman-Fock symmetry, independently from the initial
conditions. For this reason the corrections on OW of Coulomb problem are canceled and the H-atom
problem is pure semi-classical. The same we will find for sin-Gordon model [11] as the consequence
of mapping on Arnold’s hypertorus [12].

[t is extremely important to keep in mind that the symmetry constraints cannot be taken into
account perturbatively over the interaction constant, g. Indeed, we will see below that the expansion
in polynomial theories with symmetry is performed in terms of the inverse interaction constant, 1/g.
This points at absence of the weak-coupling limit in such theories.

') The necessity to count all possible boundary conditions of given problem was mentioned to author by L.Lipatov.

%) One can find corresponding examples in [6, 7]. The most popular method of transformation of the path-integral
var1ab1es is the «time-sliced» method [8], but it induced the corrections to interaction Lagrangian proportional at least
to B2 [9], i.e., the problem of transformation have quantum nature. For this reason usage of the «time-sliced»> method in
general case is cumbersome, see also [10].

%) It will be seen from our selection rule that the measure on which particle mechanics realized is equal to zero in
the field theories with symmetry.

1) Considering gluon production in the frame of Yang—Mills field theory with symmetry the conclusion that gluons
cannot be created should be confirmed by direct calculations, taking into account also the quark fields. This was mentioned
to author by P. Culish and will be shown in the later publications. It is noticeable that the mapping in quantum mechanics
is not singular and for this reason both representations before and after transformation have the equal status.



At the end, our present aim is

— to find representation (1.5);

— to investigate the main properties of theory defined on the Dirac measure (1.6);

— to investigate the structure of perturbation theory generated by operator K on the
measure (1.8);

— to find particle production probabilities for theories with symmetry.

[ understand that the perturbations scheme in terms of new variables, especially in theories
with symmetry, is outside of the habitual one !) and for this reason the approach will be described
as detailed as possible, learning step by step the properties of new quantization scheme by the
appropriate examples. 1 think that such a nonformal scheme of the description is much more
transparent, although the text may contain reiterations and, of course, used method of description
may be far from completeness.

2. SIMPLEST EXAMPLES

2.1. Introduction. As was mentioned above, the technical aspect of our idea is the suggestion
to calculate directly the probability, which has a classical interpretation, avoiding the intermediate
step of calculations of the amplitudes. In the present Section we restrict ourselves to the simplest
problem — to the motion of one particle in a potential V' (z).

Let the amplitude A(z9,T;x;,0) describes the motion of the particle from the point z; to the
point x9 during the time 7. Using the spectral representation

A(wy, T;21,0) = > tha(@a)t) (1) ™7, (2.1)
we have for probability:
W (2, T;21,0) = Y o, (@)t (21)85, (02) by (1 )& P~ Fna)T. (2.2)
ny,ng

Taking into account the ortho-normalizability condition

me@wmwz%m 2.3)

the total probability
JdmgdeW(xg,T;xl,O) = Z&m =0 (2.4)

is the time-independent quantity which coincides with the number of existing physical states.
Therefore, the amplitude (2.1) is time-dependent, but the total probability (2.4) is not. This means
that the time is the unwanted parameter from the point of view of experiment described by
probability (2.4). Notice also the role of boundary condition (2.3).

The quantity (2.4) is not very interesting from experimental point of view. Much more interesting
is the probability p(E), where E is the energy measured in experiment. The Fourier transform of
A(z9,T;x1,0) with respect to T’

S X Unlm2)dy (1)
CL(%Q,LU],E) = zn:m (25)

leads to the probability
Uy (w2)5, (1) i, (22) U, (1)

w(zg, 213 B) = |a(zg, 215 E)* = : : (2.6)
MZ;Q E — (E,, +ic) E— (E,, —ic)
and the total probability
1 2 1 ™
(2.7)

1) See, for instance, [13-15].



The total probability p(E) again coincides with a number of existing states but for all that it is seen
that the unphysical, i.e., needless, states from the point of view of measurement with £ # FE,, were
canceled 1)

Let us use now the proper-time representation:

a(zxy,x9; E Z U, ()W (z9)i J dT e E—Entie)T (2.8)
0

to see the integral form of cancelation of unwanted contributions and insert it into definition of total
probability (¢ — +0):

p(E) = deldx2|a(x1 g E)P =) J AT dT_e~ T+ +T-)e U E=En)(T =T-) (2.9)
"0
We will introduce new time variables instead of T%:
Ty =T+, (2.10)

where, as it follows from Jacobian of transformation, |7| <7, 0 < T < co. But we can put |7| < oo
since T'~ 1 /e — oo is essential in integral over 7. As a result,

o] +oo
p(E):47rZJdT6_25T J ‘f: 2(E—En) ZéE Ey,) (2.11)
n 0 — 00

In the last integral all contributions with E # FE,, were canceled and only the acceptable from
physical point of view contributions with E = E,, survive. This peculiarity of considered interference
phenomenon which is the consequence of unitarity condition, i.e., its ability to extract just the
physical states, would have the significant applications.

Note also that the product of amplitudes a - a* was «linearized» after introduction of «virtual»
time 7 = (T —T-)/2, i.e., after transformation (2.10) we start calculation of the imaginary part.
The meaning of such variables will be discussed also in Subsec. 2.2.

2.2. The Generalized Stationary-Phase Method
2.2.1. 0-dimensional model. Let us practise considering the «0-dimensional» integral:

“+o0o
4= J <2di/26“%“2+%“3>, (2.12)
s

with Ima — +0 and b > 0. This example is useful since allows one to illustrate practically all
technical tricks of the approach.
We want to compute the «probability»

“+o0o
_ |A’2 _ J d$+d$— ei(%az+2+%bz+3)—i(%a*:c,Q—l-%bz,S). (213)
27
New variables:

ry=x+te (2.14)

will be introduced to find out the cancelation phenomenon. As a result:

T ded

R = J Iﬂ- 66—2(362+62)Ima62i(Rea a:—&-Qb:):Q)eeQi%eg’ (2 15)

where the prescription that Ima — +0 was used. Note that integrations are performed along the
real axis.

') Such states enter into the real part of a(xs, 21; F).



We will compute the integral over e perturbatively. For this purpose the transformation

F(e)= lim Oe%’e?ijezf(e’), (2.16)

J

which is valid for any differentiable function, will be used. In (2.16) two auxiliary variables j and
¢ were introduced and the <hat» symbol means the differential over corresponding quantity:

52%, E’z%. (2.17)
The auxiliary variables must be taken equal to zero at the very end of calculations.
Choosing
In F(e) = —2e’Tma + 2@'%63, (2.18)
we will find oo
R= jl_igoe%% J dype=2(@"+e)ma 2ige’ 5 (Rea = + bx? + 7). (2.19)

Therefore, the destructive interference among two exponents in the product a - a* unambiguously
determines both integrals, over = and over e. The integral over difference e = (z4 — x_)/2
gives J-function and then this 4§-function defines the contributions in the last integral over
x = (ry +x_)/2. Following to definition of d-function only the strict solution of equation

Rea x4+ bz> +j=0 (2.20)

gives the contribution into R.

But one can note that this is not the complete solution of the problem: the expansion of operator
exponent exp{%jé} generates the asymptotic series. Note also that it is impossible to remove the
source, j, dependence (only harmonic case, b = 0, is free from 7).

Equation (2.20) at j = 0 has the solutions, at z; =0 and at 9 = —a/b. Performing trivial
transformation e — ie, € — —ie of auxiliary variable we find at the limit Ima = 0 that the
contribution from z; extremum (minimum) gives the expression 1):

R= Le472(1 — apjja2)- 12625 (2.21)
a
and the expansion of operator exponent gives the asymptotic series:
1 & (6n — DI/ 264\"
=— —H)r— — —Hir =0l =1. 2.22
R=1 >R () oo 2.2

n=0

This series is convergent in Borel's sense. Therefore the described destructive interference have not
action upon the value of perturbation series convergence radii.

Let us calculate now R using stationary phase method. The contribution from the minimum z;
gives (Ima = 0):

A= e_iﬁe_ijgei%xs(i/a)lﬂ. (2.23)
The corresponding «probability» is

R = —e—(484+—j-8-) p= 95 (+2=5-7) i} (243 —2 7). (2.24)

Introducing new auxiliary variables:

Jr=Jj*j, zr=xz*e (2.25)
and, correspondingly, N L R o
jr =0 *1)/2, TL=(T+e)/2, (2.26)
we find from (2.24):
1 155 obs 2852
R = —¢e727%"3% ea? (2.27)
a

') The contribution of zy leads to divergent series.



This expression does not coincide with (2.21) but it leads to the same asymptotic series (2.22).
We may conclude that both considered methods of calculation of R are equivalent since Borel’s
regularization scheme of asymptotic series gives the unique result.

The difference between these two methods of calculation is in different organization of
perturbations. So, if F(e), instead of (2.18), is chosen in the form

b
In F(e) = —2¢*Ima + 2i§€3 + 2iba’e, (2.28)

we may find (2.27) straightforwardly.

Therefore, our method has the freedom in choice of (quantum) source j 1), Indeed, the transition
from perturbation theory with Eq.(2.18) to the theory with Eq.(2.28) formally looks like the
following transformation of the argument of §-function:

§(ax + ba® +j) = lim Oe—ij’g’ei(bﬁﬂ')e’a(ax + 4. (2.29)
e'=j'=
Here the transformation (2.16) of the Fourier image of d-function was used. Inserting Eq. (2.29)
into (2.19) we easily find (2.27).

It will be useful during analytic calculations to have a corresponding quantum sources of the
new dynamical variables. Formally this will be done using transformation (2.29). Note that this
transformation will not lead to changing of Borel’s regularization procedure.

2.2.2. 1-dimensional model. Let us calculate now the probability using the path-integral
definition of amplitudes [1]. Calculating the quantity

|A]? =< injout >< injout > * =< infout >< out|in >, (2.30)

the converging and diverging waves in the product A - A* interfere in such a way that the continuum
of contributions cancel each other. Indeed, the amplitude

z(T)=x9

T
A, T, 0) = J g—:e—isﬂﬂf), Dir — H%, 2.31)
2(0)=x, t=0
where the action St is given by expression
T
Sp(z) = Jdt (% 2 v(w)) , (2.32)
0
and Cp is the standard normalization coefficient
2(T)=2»
Cr = J Daet o @ (2.33)
2(0)=x,
Let us calculate the quantity
z+(T)=x9
R(zy,T;21,0) = J Dty D¥e it +isr(e-), (2.34)
Cr Cr
z+(0)=x;

We assume for simplicity that the integration in (2.31) is performed over real trajectories. Later on
we will consider more general case of complex trajectories.

The convergence of functional integral at that is not important. One may restrict the range
of integration for better confidence, or introduce into the Lagrangian ic term, and later remove
the restriction in the expression (2.40). It is interesting that the interference phenomena naturally
regularize divergent integrals of (2.31) type, accumulating divergence into d-function.

1) This freedom was mentioned first by A. Ushveridze.



In order to take into account explicitly the interference between contributions of the trajectories
x4 (t) and x_(t) we shall go over from the integration over two independent trajectories x4 and z_

to the pair (z,e):
x4 (t) = x(t) £ e(t). (2.35)
It must be stressed that the transformation (2.35) is linear and for this reason may be done in the
path integral. Substituting (2.35) into (2.34) the argument of the exponent takes the form
T
St(x+e)— Sr(r—e) =2 J dte(i +v'(z)) — Ur(z, e), (2.36)
0

where Ur(z, €) is the remainder of the expansion in powers of e(t) (Ur = O(e3)). Note that in (2.36)
we have discarded the «surface» term
T
Jdt@t(ei‘) — ()i (T) — e(0)5(0) = 0, (2.37)
0

since the boundary points of the trajectories 1 (0) = z_(0) = z; and 2 (T) = 2_(T") = x9 are not
varied, i.e.,

e(0) =e(T) =0. (2.38)
Next,
T de(t)
DzyDx_ = JDxDe = 27TJH dx(t) e (2.39)
t=0 or 7
where J is an unimportant Jacobian of the transformation.
As a result of the replacement (2.35), we have
z(T)=x9 e(T)=0
R(z9,T;x1,0) = 27J GiE J De ¢?ilo dteli+v' @)+Ur (@) (2.40)
T
z(0)=x e(0)=0
One can make use of the formula
eiUT(z,e) —e (6 J) ”LUT(CCE) —21f0 e(t)j t)dt (241)
where we have introduced the operator
1 r o 4]
0
after which from (2.40) we have found that
(T) =5
R(z9, T; 21,0) = 21 J ekl J !CTﬁQ Ur (@€ o
O :
e(T)=0 T
X J De exp {Qint(i +'(z) — j)e} =
(0)=0 0
z(T)=x9
-9 (e 7) Dx iU (z,e) . / .
e c |26 H 0z +v'(z) — j), (2.43)
z(0)=x 4 t7#0,T

10



where the functional §-function

e(T)=0 T
H 5@+ (z) —j) = J De exp Qint(i +'(x) — j)e (2.44)
0.7 ¢(0)=0 0

has arisen as a result of total reduction of unnecessary contributions from the point of view of
equation of motion
(t) + V'(x) = 4(t). (2.45)

The operator (2.42) is Gaussian so that the system is perturbed by the random force j(¢).

If 2:(t) is the «true» trajectory and the virtual deviation is e(¢) then the quantity e(i + v'(x) — j)
coincides with the virtual work. It must be equal to zero in classical mechanics since only the time
reversible motion is considered. As a result, we came to equation of motion since e is arbitrary in
classics.

The difference St (zy) — Sr(x_) in (2.34) with boundary conditions (2.38) coincides with the
action of reversible motion. Upon the substitution (2.35) we have identified the mean trajectory,
x(t), and the deviation from it, e(¢). One must integrate over e(t) in quantum case, in contrast to
classical one. As a result, the measure of the remaining path integral over mean trajectory x(t)
takes the Dirac §-function form which unambiguously chooses the «true» trajectory.

In other words, the proposed definition of the measure of the path integral is generalization of
classical d’Alambert’s principle on the quantum case. The theory in the frame of this principle can
take into account any external perturbations, j(t) in our case, if the time reversibility of motion is
conserved. In quantum case the reversibility is established through the boundary conditions (2.38).
Next, one may generallze the approach adding also the probe force which can lead to dynamical
symmetry breaking [16] 1).

In the semi-classical approximation K(e j) = 1 and taking the limit e = j = 0 we find that

(T)=z»
R(x9,T;x1,0) =27J J ] H §(3 + ' (x)). (2.46)
#(0)=z ’CT| 40,7

Let the solution of the homogeneous equation

Z+0'(x) =0 (2.47)
be z.(t), with 2.(0) = x; and x.(T) = x9. Then
z(T)=x9
Dx B "
R(xz9,T;x1,0) = 2nJ J 5 H IE + v (ze)x). (2.48)
|Cr| t40,T
z(0)=x ’

The remaining integral is calculated by the standard methods ?). As a result, we find

1 8 ST(-TC)
R(x9,T; 21,0 _— . (2.49)
( ) 27T 8xc(0)a$c(T) 2e(0)=21,2c(T)=22
Next, let us recall that the full derivative of the classical action is
dS = podxe — prdxy, (2.50)
where po and p; are, respectively, the final and initial momenta. Noting this definition,
%S
dxy = d 2.51
92100, | F2 = dPr (2.51)

') It is important that if the expectation value of the probe force is not equal to zero then the symmetry is broken.
This important possibility will not be considered in the present work.

%) Here it is more convenient to represent (2.48) as a production of two Gaussian integrals; later on more effective
method of calculation of the functional determinant will be offered.
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and, as a result, we find that
dx1d
deldeR(xQ,T;xl,O) = J $217Tp1

which coincides with (2.4), i.e., agrees with conservation of total probability since (2.52) again
coincides with the total number of physical states.

Deriving (2.52) we somewhat simplify the problem considering a unique solution of Eq. (2.47).
A more complicate, and important, examples will be considered in the next Sections.

=02 (2.52)

2.3. Complex Trajectories. Let us consider the one-dimensional motion with fixed energy F
on the complex trajectory !). The corresponding amplitude has the form:

o) QCZZI(T)
Az, 29, E) =i J dTe'ET J De, wee+ (), (2.53)
0 :E]ZZL‘(O)
where the action 1
Sc, (z) = J dt(gﬁ —v(x)) (2.54)
Cy
and the measure
dx(t)
Do,z =[] 5515 (2.55)
t€C+ (27T) /

are defined on the shifted in the upper hali-time plane Mills’ contour C. = C(T') [17]:

t—t+ie, e——+0, 0<t<T. (2.56)
Therefore, we will consider integration over real functions of complex variables:
z*(t) = z(t¥). (2.57)

[t must be underlined also that the boundary conditions in (2.53) have the classical meaning, i.e.,
they do not vary, and x|, x9 are the real quantities.
The probability looks as follows:

&) z+ (T4 )=29
R(E) = J BT —T-) J D¢, Do x-x
0 x4 (0)=xz
XeiSC+(T+)(er)_iSC,(T,)(xf)’ (2.58)

where C_(T") = C7% (T') is the time contour in the lower half of complex time plane.
New time variables

Ty=T%+r (2.59)
will be used. Considering ImE — +0, we can consider 7" and 7 as the independent variables:
0<T <00, —o00<7<o00. (2.60)
We will apply the boundary conditions, see (2.58):
1 =24(0) =2-(0), zp=ua(T})=a_(T-). (2.61)
Inserting (2.59), one can find in zero order over 7 from (2.61) that
24(0) =2_(0), z(T)=2a_(T). (2.62)
Now we will introduce also the mean trajectory x(t) = (x4 (t) + z_(t))/2 and the deviation e(t)
from x(t):
x4 (t) = x(t) £ e(t). (2.63)

We have consider e(t) and 7 as the virtual quantities. The integrals over e and 7 will be calculated
perturbatively. In zero order over e and 7, i.e., in the semi-classical approximation, = is the

') The necessity to extend the formalism on the case of complex trajectories was mentioned to author by A.Slavnov.
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classical path and T is the total time of classical motion. Note that one can do surely the linear
transformations (2.63) in the path integrals.
The higher terms over 7 put on unphysical constraints on the trajectory z(¢):

d(2n+l)l’(T)
dT(Qn-H)

since e(t) must be arbitrary. Therefore, to avoid these constraints and since the boundaries have
classical, unvaried, meaning we will use the minimal boundary conditions:

e(0) =e(T) =0, (2.64)

which ensure the time reversibility. Note that it is sufficient to have (2.64) if the integrals over e(t)
are calculated perturbatively. At the same time,

z(0) =z, «(T) = x9. (2.65)

Let us extract now the linear over e and 7 terms from the closed-path action:

=0, n=0,1,2,...,

Sc, oy (@+) = Se_ry(v-) = =27Hr(x) — J dte(i + ' (z)) — Hy(z;7) — Up(z,e), (2.66)

(T
where
CHNT) = CL(T) + C_(T) (2.67)
is the total-time path, Hp is the Hamiltonian:
0
2Hr (2) = — 75 (S0, () (@) + So_ 1) (2)), (2.68)
and ~
—Hr(z;7) = Soy (740 (%) — Sc_(r—n) (z) + 27Hr(z), (2.69)
—UT(x, 6) = SC+(T) (x + 6) - SC_(T) (x - 6) + J dte(i + v'(x)) (270)

o)
are the remainder terms, where v'(x) = dv(x)/dz. Deriving the decomposition (2.66), the definition
C_(T)=Ci(T) (2.71)
and the boundary conditions (2.64) were used.
One can find the compact form of expansion of

e—iﬁT (z;7)—iUr (z,€)

over 7 and e using formula (2.16):

exp{—iHrp(z;7) — iUp(z,€)} = exp %wr —i J dtj(t)e (t) p x
i
CH)(T)
X exp  2iwT +1i J dtj(t)e(t) p exp{—iHp(z;7') — iUr(z, €' )}. (2.72)

C(+)(T)

At the end of calculation the auxiliary variables (w,7’, 7, €’) should be taken equal to zero.
Using (2.66) and (2.72) we find from (2.58) that

o0

R(E) =2x J dT exp 211@? —i J dtj(H)e(t) » x
0 (T
X JDw exp{—iHp(z;7) — iUp(z,€)}6(E +w — Hp(x)) H §(z + ' (x) — j). (2.73)

)
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The expansion over the differential operators:

1 1 [0 0 J o 9 (2.74)

—OF —i dtj(t)e(t) = — [ ——=— dt——
2T ! J I =5\ goar TR | U505
CE(T) C+
will generate the perturbation series. We propose that it is summable in Borel sense.
The first d-function in (5.33) fixes the conservation of energy:

E+w=Hy(z), (2.75)

where E is the observed energy, Hp(z) is the energy at the mean trajectory at the time moment T
and w is the energy of quantum fluctuations. The second é-function !)

[T o+t -5 = o2 | TT “2seo)sem)x

teC(H) teCc(+H)

Xe—?iRefc+ dte(Z+v' (z)—j) _ H (5(Re(x + U/($) o ]))5(1111(%‘ + U/($) - ])) (276)
teCy(T)

fixes the function x(t) of complex argument on C*) completely by the equation
i+ (z) = j. (2.77)

The physical meaning of §-function (2.76) was discussed in Subsec.2.3 noting that the unitarity
condition of quantum theories played the same role as d’Alambert’s variational principle in classical
mechanics.

In (2.77) j(t) describes the external quantum force. The solution z;(¢) of this equation we will
find expanding it over j(¢):

25(t) = 2o(t) +Jdt1G(t,t1)j(t1) b (2.78)

This is sufficient since j(t) is the auxiliary variable ?). In this decomposition z.(t) is the strict
solution of unperturbed equation:
i+ (z) =0. (2.79)
Note that the functional o-function in (2.76) does not contain the end-point values of z(t), at t =0
and t = T. This means that if we integrate over x; and x9 then the initial conditions to Eq.(2.79)
are not fixed and the integration over them must be performed.
Inserting (2.78) into (2.77) we find the equation for Green function:

(8 + 0" (20) )1 Gt ' 20) = 6(t —t). (2.80)

[t is too hard to find the exact solution of this equation if z.(¢) is the nontrivial function of ¢. We
will see that the canonical transformation to the (action-angle)-type variables can help to avoid this
problem, see the following Section.

2.4. Conclusions

1. The path integral must be defined on the Mills time contour. This condition will be important
in the field theories with high space-time symmetries (such as the Yang—Mills-type theory) since
it seems that for such theories with symmetry one cannot perform surely the analytic continuation
over time variable 3).

2. The quantization can be performed without transition to the canonical formalism, using only
the Lagrange one which is a more natural for relativistic field theories.

') Following shorthand entry of §-function of the complex argument: [, ) 6(f(t)) = [T, (f@) e o(f(1) =
= HC+ 0(Ref(t) + ilmf(¢))d(Ref(t) — ilmf(t)) = HC+ 0(Ref(t)) - 6(Imf(t)) will be useful during calculations. The
condition (2.57) is important here. The inessential constant can be canceled by normalization. So, in the result of
analytical continuation of Cy on the real axis the product of two d-functions reduces to single one since 6?(Ref(zx)) =
=0(0)d(Ref(z)) = 06(0)d(f(x)) and §(0) must be canceled by normalization. Offered abbreviated notation will allow one
to consider d-function on the complex time contour as the ordinary one.

%) See also footnote on page 9 of the present paper.

3) The fact that a theory must satisfy certain conditions upon analytic continuation over time variable is clear
from [18].
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3. Only the exact solutions of the equation of motion must be taken into account defining the
contributions into the functional integral.

3. PATH INTEGRALS ON DIRAC MEASURE

3.1. Introduction. In the present Section we will offer two methods which may simplify
calculation of path integrals on Dirac measure. They based on the possibility to perform
transformation of the path-integral variables.

We will consider two examples. In the first example the transformation to the (action,
angle)-type variables will be considered. This example shows how much the calculations of path
integrals may be simplified.

In the second part of the present Section the coordinate transformation will be described. For
sake of definiteness the transformation to cylindrical coordinates will be considered.

3.2. Canonical Transformation. Let us introduce the first-order formalism. We will insert

in (2.73)

IZJDpH(S(p—jC). (3.1)

t
As a result,
R(E) = 2r J T3 @R o o) diF(1)2(D) JDpre—ifIT(a:;‘r)—iUT(a:,e)X
0
. 0H; . OH;
x5(E+w—HT(x))1;[5<x—8—p>5<p+ 8—95) (3.2)

where 1

Hj = 5p* +v(x) = jz (3.3)

may be considered as the total Hamiltonian which is time-dependent through j(¢). Notice that
in the present simplest case x and p are independent parameters and therefore (3.3) defines the
Hamiltonian.

Instead of pare (z(t), p(t)), we introduce new pare (6(¢), h(t)) inserting in (3.2)

1= Jl:[dadhé (h — %pQ - v(x)) b (9 — Tdm(Q(h — u(x)))l/Q) . (3.4)

Note that the integral measures in (3.2) and (3.4) are both J-like, i.e., have the equal power. This
allows one to change the order of integration and at first integrate over (x,p). We find that

R(E) =2 J dTem @THRe o ) A5 0R0) JD@Dhe—iffT(Iciﬂ—iUT(%e) x
0
. OH, . OH.
x5(E+w—h(T))[t[5<9— ah>5<h+ ae)’ (3.5)
where
H.=h— jx.(h,0) (3.6)

is the transformed Hamiltonian and z.(6, h) is the given solution of algebraic equation:

0= de(Q(h—v(x)))_l/Q, (3.7)
i.e., x. is the classical trajectory parametrized in terms of h(t) and 6(t).

As it follows from (3.5) just new variables, h(t) and 6(t), are subjected to the action of quantum
force j(t) and the topology of classical trajectory x. remains unchanged.
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So, instead of Eq. (2.77) we must solve the equations:
. oz, . Oz,
h=j—, 0=1—-j—, 3.8
06 T on (3.8)
which have a simpler structure. Expanding the solutions over j we will find the infinite set of
recursive equations. This is the important peculiarity of used quantization scheme.
Note now that joz./06 and jOx./Oh in the r.h.s. can be considered as the new sources. We will
use this property of Egs.(3.8) and introduce in the perturbation theory new «renormalized» sources:

. .8xc . ,a.fc
=17 J0=Ig (3.9)
i.e., j¢ and j, are the forces on the cotangent bundle. We will use transformation (2.29):
. LRe 5 (t)e iRe ey, j 2zc .
Hé(h—]axc) :eQiR fc+dt]h(t) h(t)eQR J‘C’_;,_ hJ 59 Hé(h_]h) (310)
t 09 t
and . ox LR, dtje(t)es(t) 2iR j 9zc ;
06— 1+ ey = exfieley deen® 2iRele, IS TT 56— 1 - jj) (3.11)
t Oh t

to introduce them. The rescaling of source j leads to the rescaling of auxiliary field e. In the new
perturbation theory we will have two sources j5, jo and two auxiliary fields e, ep. Notice that the
momentum p never arose.

Inserting (3.10), (3.11) into (3.5) we find:

R(E) = 27 J JT e 5@ =i f o G (0 (0+Ta (DE0 (1))

0

X JDhD@e‘igT(%‘T)_iUT(‘”C'EC)5(E +w—h(T) [0 —1—jo)d(h —jn). (3.12)
t

where o %_e .
<~ ™0  on
carry the simplectic structure of Hamilton equations of motion and the «hat» symbol means
differential operator over corresponding quantity. At the very end one should take all auxiliary
variables, (en, jn, €9, jo), equal to zero.
Hiding the z.(t) dependence into e. we solve the problem of the functional determinants,
see (3.12), and simplify the Hamilton equations of motion as much as possible:

(3.13)

h(t) = jn(t),  O(t) = 1+ jo(t). (3.14)
We will use the boundary conditions
h(0) = hg, 6(0) =6y (3.15)

as the extension of boundary conditions in (2.58). This leads to the following Green function of
transformed perturbation theory:

gt —t)=0@t-1t), (3.16)
with the properties of projection operator:
Jdt dt'g*(t —t') = Jdt dt'g(t —t'), Jdt dt'g(t —t")g(t' —t) =0, (3.17)

and, at the same time, we will assume that
g9(0) = 1. (3.18)

[t is important to note that Img(t) is regular on the real time axis. This is the very simplification
of the perturbation theory since it eliminates the doubling of degrees of freedom. One may use here
the analytical continuation to the real time axis.
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As a result, shifting C'y and C_ contours on the real time axis we find:
R(E) = 2n J T e @457 dtrdn® (1 —t2) @ (1)) 420 (1)0(12))) o
0
X Jdhodeoe—iHT@c*)—iUT<xc»€c>5(E +w —ho+ h(T)), (3.19)

where the solutions of Egs. (3.14) were used. In this expression x.(t) = z.(hg — h(t),t + 6y — 0(t))
and (h(t),ep(t),0(t),ep(t)) are the auxiliary fields. At the very end one must take them equal
to zero.

3.3. Selection Rule. Let us consider the theory with Lagrangian

_ Lo 159 g4
L(z) = gl — gwiat — . (3.20)
The Dirac measure gives the equation (of motion):
i+ wlz 4 gz = . (3.21)
It has two solutions: ' .
z1(t) = zc(t) + O()), z2(t) = O(). (3.22)
For this reason
R(E) = Ri(E;z1) + Ro(E; x9), (3.23)

and which one defines R(F) is a question. Following to our selection rule just R;. This will be
shown.
Let us return now to the example with Lagrangian (3.20). In the semi-classical approximation

0 0 —+00
Ri(E;z1) = J dT J dhg J dfge~ U@ §(E — hy). (3.24)
0 0 —o0
Therefore, oo
Ri(E;zy) ~ J dby = Q, (3.25)

i.e., it is proportional to the volume of group of time translations.
At the same time,

Ry(E;x9) = O(1) (3.26)
in the semi-classical approximation. Therefore,
R =Ri(14+0(1/Q)). (3.27)

This result explains the source of chosen selection rule.

3.4. Coordinate Transformation. In this Subsection the coordinate transformation of two-
dimensional quantum mechanical model with potential

v =v((z? +23)1/?) (3.28)

will be considered. Repeating calculations of the previous Sections,

[e.9]

R(E) =27 J are™ Hethm e JD<2>M(x)e-iHTWT)—"UT(I’e), (3.29)
0
where the §-like Dirac measure:
DBM () = 6(E +w — Hr(z)) [ [ d®x(t)6® (& + o' (2) — 5). (3.30)
t

In the classical mechanics the problem with potential (3.28) is solved in the cylindrical coordinates:

Ty =rcosp, x9=rsin. (3.31)

17



We insert into (3.29)

1= JDTD¢H 5(r — (22 + 23)/%)8(¢p — arctg ﬂ) (3.32)
t

I

to perform the transformation. Note that the transformation (3.31) is not canonical. As a result, we
will find a new measure:

D®M(r,¢) = §(E +w — Hy(x H drdpJ(r, d), (3.33)
where the Jacobian of transformation
JHde(S (& + v/ (z) — j)8(¢ — arctg “2)5(r — (22 + 23)1/?) (3.34)
T
is the product of two d-functions:
Hr 8(F = §Pr + 2/ (r) = §)3(0(¢r7) — 7jg), (3.35)

where v/(r) = dv(r)/0r and
Jr=7Jj1cos¢+ josing, jy = —jising + jocos¢ (3.36)

are the components of j in the cylindrical coordinates.
It is useful to organize the perturbation theory in terms of j, and j,. For this purpose following
transformation of arguments of J-functions will be used:

[L06: = & +0/(r) = i) = e~ Hew ieretloen e Tl oG — §r +0/(r) — 1) (337)
t

and _ . U , .
[ 60(r?) —rjy) = e~ o diges il o) diores [[r®)6(0:(dr*) - 4,). (3.38)
t t
Here j, and j, were defined in (3.36). As a result, we get to the path integral formalism written
in terms of cylindrical coordinates. This is a very simplification which will help to solve a lot of
mechanical problems. One can note that in result of mapping our problem reduced to the description
of quantum fluctuations of the surface of cylinder:

o0

R(E) = 2r J JTe2 ™~ ot iy WGr 02 (D4 (126 (1)

0

x JD(Q)M(T, g)e~iHlr @T)—iUr (ec), (3.39)

where

DEM(r,¢) = 6(E +w — Hy(r, ) [ [ r*(t)dr(t)de(t) x
t
XO(F — ¢*r + ' (r) — §,)0(Dp(dr?) — jg) (3.40)
and

ec,1 = €,CoS ¢ —regsing, eco = e, sin g+ rey cos ¢. (3.41)

This is the final result. The transformation looks quite classically but (3.39) cannot be deduced from
naive coordinate transformation of initial path integral for amplitude.

Inserting
1 = JDle [[o(p —#)s - ¢r?) (3.42)
t
into (3.39) we can introduce the motion in the phase space with Hamiltonian
1, 2 . :
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The Dirac measure becomes four-dimensional:

DWM(r,¢,p,1) = 6(E +w — Hr(r,¢,p,1)) [ [ dr(t)ds(t)dp(t)di(t)x

. OH; . O0H; . OH; . OH;
><6<r 8p>5<¢> 8l>6<p+ 8r>6<l+ 8¢>' (3.44)
Note absence of the coefficient 7% in this expression. This is the result of special choice of
transformation (3.38).
Since Hamilton’s group manifolds are more rich than Lagrange ones the measure (3.44) can be
considered as the starting point of farther transformations. One must to note that the (action, angle)
variables are mostly useful [12]. Note also that to avoid the technical problems with equations

of motion and with functional determinants it is useful to linearize the argument of §-functions
in (3.44) hiding nonlinear terms in the corresponding auxiliary variables e..

3.5. Conclusions

1. Our perturbation theory describes the quantum fluctuations of the parameters (h,0) of
classical trajectory .. It is more complicated than canonical one, over an interaction constant [19],
since demands investigation of analytic properties of 4/N-dimensional integrals, where 2N is the
phase-space dimension. Indeed, in the considered case with N =1 the perturbations generating
operator, K, see (3.12), contain derivatives over four auxiliary parameters, (jn, ep, jo, €s)-

Our transformed theory describes the «direct» deformations of classical trajectory x. = z.(h, ),
i.e., just h and € are the objects of quantization in the considered example. In another words, the
quantum deformations of the invariant hypersurface, (h, ), are described in the new quantum theory.
This possibility is the consequence of §-likeness of measure, i.e., it is based on the conservation of
total probability.

Dirac measure allows one to perform classical transformations of the measure and to use high
resources of classical mechanics. For example, the interesting possibility may arise in connection
with Kolmogorov—-Arnold—Mozer (KAM) theorem [4]: the system which is not strictly integrable
can show the stable motion peculiar to integrable systems. This is the argument in favor of the idea
that there may be another, non-topological, mechanism of suppression of the quantum excitations.

2. One can note that the transformed perturbation theory describes only the retarded quantum
fluctuations, see definition of Green function (3.16). This feature of the theory can lead to the
imaginary time irreversibility of quantum processes and it must be explained.

The starting expression (2.58) describes the reversible in time motion since total action
Sc(ry(xy) — Sc_(r_y(z—) is time reversible. But the unitarity condition forced us to consider
the interference picture between expanding and converging waves. This is fixed by the boundary
conditions e(0) = e(T') = 0. The quantum theory remains time reversible up to canonical
transformation to the invariant hypersurface of the constant energy. The causal Green function
G(t,t") , see (2.80), is able to describe both advanced and retarded perturbations and the theory
contains the doubling of degrees of freedom. It means that the theory «keeps in mind» the time
reversibility. But after the canonical transformation, using above-mentioned boundary conditions,
and continuing the theory to the real time, the quantum perturbations were transferred on the inner
degrees of freedom of classical trajectory. As a result, the memory of doubling of the degrees of
freedom was disappeared and the theory becomes «time irreversible».

The key step in this calculations was an extraction of the classical trajectory z, which cannot
be defined without definition of boundary conditions. Just x. introduces the direction of motion
and the order of quantum perturbations of trajectories inner degrees of freedom play no role, i.e.,
the mechanical motion is time reversible while the corrections to energy of trajectory, h, and to
the phase, #, cannot be time reversible. Therefore, the considered irreversibility of the quantum
mechanics in terms of (h,#) seems to be imaginary.

4. REDUCTION OF QUANTUM DEGREES OF FREEDOM

4.1. Introduction. It will be shown in this Section that the quantum fluctuations of angular
variables may be removed if the classical motion is periodic. This cancelation mechanism can be used
for path-integral explanation of integrability of the quantum-mechanical problems, for example, of
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H-atom problem where the classical trajectories is closed independently from the initial conditions ).
The main result of the present Section is based on the statement that the topology properties of
classical trajectory takes special significance 2).

Our technical problem consists in necessity to extract the quantum angular degrees of freedom.
For this purpose we will define path integral in the phase space of action-angle variables. For
simplicity the effect of cancelations we will demonstrate on the one-dimensional Az* model. In the
following Subsection the brief description of unitary definition of the path-integral measure will be
given. The perturbation theory in terms of action-angle variables will be contracted in Subsec. 4.3
(the scheme of transformed perturbation theory was given first in [1]). In Subsec. 4.4 the cancelation
mechanism will be demonstrated.

4.2. Unitary Definition of the Path-Integral Measure. We will calculate the probability

R(E) :deldxgyA(xl,xQ;E)yQ (4.1)
to introduce the unitary definition of path-integral measure [1]. Here
00 z(T)=x9
Az, 29 E) =i J dTeET J Dze'¥or @@ (4.2)
0 2(0)=a,

is the amplitude of the particle with energy F moving from z; to x9. The action

1, w? A
S, ry(x) = J (53" — Ra? — Ja) (4.3)

C4(T)
is defined on the Mills contour [17]:
Ci(T):t—t+tie, e—40, 0<t<T. (4.4)

So, we will omit the calculation of the amplitude.
Inserting (4.2) into (4.1) we find, see the previous Section, that

R(E) — 97 J dTeéa?_i ICH')(T) dtj (t)e(t) JDxe—iﬁ(a:;‘r)—iUT(a:,e) %
0
x 0(E 4w — Hp(z)) [ [ 6(2 + wiz + Ax® — j).  (4.5)
t

The «hat» symbol means differentiation over corresponding auxiliary quantity. For instance,

0 -~ 4]
o 1= 5. (4.6)

W
It will be assumed that
jteC)jit e CL) =6t —t), j(teCw)jit e€Cz)=0. (4.7)
The time integral over contour C*)(T') means that
| =1« (4.8)
CENT)  CH(T) C_(T)

At the end of calculations the limit (w, 7, j,e) = 0 must be calculated. The explicit form of H(z;7)
Ur(z,e) will be given later; Hr(z) is the Hamiltonian at the time moment ¢t =T

1) The approach may be extended on the case of rigid rotator problem [20]. Last one is isomorphic to the Pocshle-Teller
problem [21].

?) Since the action of perturbations generating operator of transformed theory, K, maps quantum corrections on the
boundaries of cotangent foliation, W, see (4.41).
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The functional §-function unambiguously determines the contributions in the path integral. For
this purpose we must find the strict solution x;(¢) of the equation of motion:

P4 wir 4+ xd —j =0, (4.9)

expanding it over j. In zero order over 5 we have the classical trajectory x. which is defined by the

equation of motion:
i+ Wiz + A2® = 0. (4.10)

This equation is equivalent to the following one:

T

t+ 6 = de{2(h0 —wix? — A2 (4.11)

The solution of this equation is the periodic elliptic function.

Here (hg,fp) are the constants of integration of Eq. (4.10), i.e., (ho,fo) are the coordinates of
point on the surface defined by elliptic function. The integration over (hg, fp) is assumed since the
integration over all trajectories in (4.2) must be performed, i.e., (hg, o) takes on all values available
by elliptic function. Let W be the corresponding manyfold. One can say therefore that classical
trajectory belongs W completely.

The mapping of our problem on the action-angle phase space will be performed using
representation (4.5) [22]. Using the obvious definition of the action:

I= %%{2@—&;3% — Az} (4.12)
T
and of the angle N
¢ = % J{Q(h — wia? — Axt)}1/?2 (4.13)

variables [12] we easily find from (4.5) that

R(E) = 2r J IT 65571 o) () AT 000 J DID e H e =iUr(zec) o
0 : ox
x 8(E+w—hp(D) [0 - j==
¢
where x. = z.(I, ¢) is the solution of Eq. (4.13) with h = h(I) as the solution of Eq. (4.12) and the
frequency o

or’
Representation (4.14) is not the full solution of our problem: the action and angle variables are still
interdependent since they both are exited by the same source j(¢). This reflects the Lagrange nature
of the path-integral description of phase-space motion. The true Hamilton’s description must contain
independent quantum sources of action and angle variables.

8‘,1:0)
Tar”

(4.14)

Q(I) (4.15)

4.3. Perturbation Theory on the Cotangent Manifold. The structure of source terms,
jOx./0¢ and jox./0I, shows that the source of quantum fluctuations is the classical trajectories
perturbation and j is the auxiliary variable. It allows one to regroup the perturbation series
in the following manner. Let us consider the action of the perturbation-generating operators on
o-functions:

e e 45Ot [T (14022 (5 - ) - 222 -
t

8¢ I a1

N JDC<+>€1DC(+)6¢€i et dierTtes(6-0(N) =iz (ree) - (4.16)
where
0z, oz,
ecler,eqy) = e[% — e T (4.17)
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The integrals over (eI,e¢) will be calculated perturbatively:

[e'¢] ny Mg
—iUr(z.ec) _
eUr(es) - 3 m'% JH dtger(te)) [ [ (dthes ) Poymy (@ertr oo tngo ths o tny), (4.18)
nr,ne= 0 k=1 k=1
where . n
Poyg(@ertt oo tup oo tny) = [[ @) T € (th)e Ve, (4.19)
k=1 k=1

where e = ec(e, e);) and the derivatives in (4.19) are calculated at e} =0, ej; = 0. At the same
time,

ny ¢
H er(ty) H es(th) = H (i1 () H(z’%(tk))e‘”c(*) dt(jr(ter(t)+is(t)eg () (4.20)
k=1 k=1

The limit (]1,]¢) =0is assumed. Inserting (4.19), (4.20) into (4.16) we will find new representation
for R(E):

R(E) = 2 J JT 3O~ o) () G 021 ()46 (18 (1) JDIDQS@ i (2eim) —iUT (2 c)
0

x 8(E +w —hp(I)) [T 61 = in)d(é — Q) — jy), (4.21)

t

in which the action and the angle are the decoupled degrees of freedom.
Solving the canonical equations of motion

I=ji, =)+ s (4.22)
the boundary conditions
1;(0) = Io, ¢;(0)=do (4.23)
will be used. This will lead to the following Green function:
gt —th)=0@-1), (4.24)

with boundary condition: ©(0) = 1. The solutions of Eqgs. (4.22) have the form:

Ij<t>=fo+jdtg<t—t>m N=Io+I'(8),

R N (4.25)
dj(t) = ¢o + QI;)t + delg(t —t)je(t") = o + QLo + I')t + ¢'(t),
where N 1
oI, = ?Jdt’g(t — )l + I'(E)). (4.26)
Inserting (4.25) into (4.21) we find:
R(E) = 2n J JTe3 T~ ot iy WG O+Ts(Des(1)
0
00 2
% J dl, J dpge H @)= (@eed) 5(B 4 o — hp(L})), (4.27)
0 0
where ~
ze = xc(1f, ¢5) = (Lo + 1(t), o + QLo + 1)t + ¢(2)), (4.28)

and e, was defined in (4.17). Note that the measure of the integrals over (I, ¢9) was defined without
of the Faddeev—Popov ansatz and there is not any «hosts» since the Jacobian of transformation is
equal to one.
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We can extract the Green function into the perturbation-generating operator using the equalities:

Gi(t) = | dt gt — )T(0). 5 = | atgte - )3, (4.29)
which evidently follows from (4.25). As a result,

o0

R(E) = 2r J dT e 3T o) (o et (@ =IO (E)+3WE ()}

0 00 27
% JdIO J dooe™ iH (x0;7)—iUp (zc, 66)5(E+w—hT(Io+I)), (4.30)
0 0

where z, was defined in (4.28).

We can define the formalism without doubling of the degrees of freedom. One can use the
fact that the action of perturbation-generating operators and the analytical continuation to the real
times are commuting operations. This can be seen easily using the definition (4.7). As a result, the
expression:

o0

R(E) = 2r J JT el 571 [T dtar O (¢ —0)(T(er () +d(HEs ()} o

0 00 27
X J dIo J dge 1H@e)=iUr(@ee) 5B 4w — hp(Ip + I(T)), (4.31)
0 0
where _ S 2n+1 d?n
Hy(ze;7) =2 Z m 7 (To + 1(T)) (4.32)
and T
—Urp(ze,ec) = S(xe+ec) — S(xe —e.) — 2Jdt60% (4.33)
0 C
defines quantum theory on the cotangent manifold W.
Now we can use the last §-function:
00 00 27
R(E) = 2r J dT e o @7+ [F dtat Ot —t)(T(0)er (t) ()8 (1))} J dlo J _ 4% iHean-iUr (e
QE +w)
0 0 0
(4.34)
Here 7e(t) = 2ol To(B +w) + 1(t) = I(T), do + 2t + 9(1)). (4.35)
Equation (4.34) contains unnecessary contributions: the action of the operator
T
Jdtdt’@(t — e (t)I(t) (4.36)
0
on Hp, defined in (4.32), leads to the time integrals with zero integration range:
T
Jdt@(T )0t —T) =0,
0
Using this fact,
0 00 27
R(E) = 2n J AT e I dedt' Ot —t)(T(0)er (1) +5(t)e, (1) J dl J gg) o~iUr(@eee) (4.37)
0 0 0
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where ~
ze(t) = z(Lo(E) + I(t) — I(T), do + QU + ¢(1)) (4.38)

is the periodic function:
2o(To(E) + I(t) — I(T), (g0 + 27) + Ot + 6(£)) = 2o(Io(E) + I(t) — I(T), do + Ot + 6(1)). (4.39)
Now we can consider the cancelation of angular perturbations.

4.4. Cancelation of Angular Perturbations
4.4.1. Simplest example. Introducing the perturbation-generating operator into the integral

over ¢q:
[eS) [eS) 27 d
R(E) = 2r J dT et I8 dtdr' (' )T (t)er () J dl J 3 (‘ﬁo) o3 I3 dtdt' O =903 (t) ~iUr (wee) (4.40)
0 0

the mechanism of cancelations of the angular perturbations becomes evident. One can formulate the
statement:

(i) if ~
e L [o dtdt Ot —t)g(t )es (') g—iUr (zc.ec) — e_iUT(zC’eC)’€¢:¢:0 + dF (¢0)/deo (4.41)
and
(i) if
F(¢o + 2m) = F(¢y), (4.42)
then:
2 00
R(E) = 2r J (;l(fﬁo) J AT dIyes Jo At O —0(IW71(¢) S (wertedwe 0¢0)~S (we—coe | 0b0) (4.43)
Z , .
0 0

i.e., we find the expression in which the angular corrections were canceled. In this case the problem
becomes semi-classical over the angular degrees of freedom.
For the (Az*);-model

T
S(ze + edx./0pg) — S(x. — edx./OPg) = So(xc) — 2\ J dtz,(t){edxz./do}>, (4.44)
0
where [1] )
So(z.) = %dt (éﬁ - %ﬁ - %x4> (4.45)
T

is the closed time-path action and
2o(t) = ao(Io(E) + I(t) — I(T), o + ). (4.46)

Here I(t) and I(T') are the auxiliary variables.

The condition (4.42) requires that the classical trajectory x. with all derivatives over Iy, ¢q is
the periodic function. In the considered case of (Az*);-model . is periodic function with period 1/9,
see (4.39). Therefore, we can concentrate the attention on the condition (4.41) only.

Expanding F'(¢g) over A:

F(¢o) = AFi(¢o) + N2 Fa(¢o) + ... (4.47)
we find that

T 3 6
—F1 ¢O JH dthb tk (( (2@3)
0

k=1

T 3
Jdt H ot — t?{:)xc(t)(al‘c/alo):i Zso(rc)) _
0

k=1

T
- jdt’&(t’)Bl (6). (4.48)
0
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where

z 2
Bi(¢) = { (;Z) Jdt@ (t—t) JJer Bt ))ae(t )(8xc/8lo)3ei50(”6)} : (4.49)
This example shows that the sum over all powers of A can be written in the form:
p T
= F(60) = | dt3(t)B) (4.50)
0
where, using the definition (4.35),
T
B(6) = | atBlon + 6(0)). (451)
0
Therefore,
p T
3E)B(O) = 7= | dts(t = ) B(Go + o) (452)
0

coincides with the total derivative over initial phase ¢q, and

F(¢o) = B(¢o + 6(t))|p—o- (4.53)

This result ends the prove of (4.41).

4.4.2. General case. Now we will offer following important statement:

— each order of perturbation theory in the invariant subspace can be represented as the sum
of total derivative over the subspace coordinate. R

This statement directly follows from structure of perturbations generating operator K and the
assumption (3.18). It explains the statement, offered in Preface.

Let us remind that integration with last é-function gives the result of action of operator K
written in the form:

o 27
B deo . _ive/2i) .
R(E) =27 J dT J 2E) e : (4.54)
0 0

where the colons mean normal product,

-~ a-rc -~ 8xc

€=Jegp — I 90 (4.55)
and by definition Up is the odd over e, functional:
T
Ur(eeee) = 2| S @(0)/20 un(w0) (4.56)
0 n=1
where u,, is the function of only z. at the time ¢. Inserting (4.55) one can write:
oo 2n+1
:e—iU(zC,é/Qi) H H —ZUkn 7, xec) : (457)
n=1 k=0
where -
s e) = | G0 Gr (1) b9 (458)
0

and the explicit form of by ,,(x.) is not important.
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Using the evident definition:
T
ix = Jdt’@(t ~tX({t), X =1,
0

it is easy to find that
Jx (t1)bgn(ze(t2)) = O(t) — t9)Obg n(xc(t2))/0 X0,
since x. = z.(X + Xp), or shortly:
Jibe = ©120x,bs = Ox,(O12b2) (4.59)

since the indexes (k,n) are not important.

Let us start consideration from the first term with k = 0. In this case we describe only the
angular fluctuations. Noting that dx, and j commute we can consider the lowest order over j. The
typical term looks as follows (omitting the index Xj):

jle v ‘jmble T bm

[t is sufficient to show that this expression is the total derivative over Xj.
Case m = 1. In this approximation we have, see (4.59):

J1b1 = ©1190b1 # 0. (4.60)

Here (3.18) was used.
Case m = 2. This order is less trivial:

Jijebibe = Og1biby + bibh + O12b1b3, (4.61)
where
b = 0"b;. (4.62)
At first glance (4.61) is not the total derivative. But inserting
l =019+ 069

we can symmetrize it:

J1j2biby = Ogy (bby 4 blbY) + O19(b1b3 + blbl) =
= 0p(O21b}by + O12b1bd) = Jo(b] — by + by — by)  (4.63)

since the explicit form of the function is not important. Therefore, the second order term can be
also reduced to the total derivative. Notice that (4.63) shows time reversibility.
Case m = 3. In this order one can find that

3
Jujadsbibobs =90 > (P —j—k+il = = k). (4.64)
i#jF#k=1
The mth order contribution is also total derivative:
N . m
Jujz - gmbibe b =00{ Y (i — iz = =it
i FlgFigFE Fim=1

il i =il - a0} (4.65)

Let us consider now the case with k = 0. The typical term looks as follows:

Tis TR bbb, 0 < T < m, (4.66)
where, for instance, o~ SN
Je = Jr(tk),  Ji = Je(tr) (4.67)
and ~ ,
Jibe = ©120ybs. (4.68)

26



Case m = 2,1 = 1. In this case:
717301b2 = O (bo0 031 + (93D2) (3 A3b1)) + ©12(b195bo + (33bs) (0§ 3b1)) =
= 86 (@legagln + @12()13ng) + 88(@21523651 + @12513&52). (4.69)

Therefore we have the total-derivative structure yet. This property is conserved in arbitrary order
over m and [ since the time-ordered structure does not depend from upper index of j, see (4.68).

One can conclude that the contribution are defined by topology properties of classical trajectory
x.. We will see that this important property of perturbation theory remains unchanged also for field
theories with symmetry.

4.5. Conclusions

1. It was shown that the real-time quantum problem can be semi-classical over the part of the
degrees of freedom and quantum over another ones. Following to the result of this Section one may
introduce the (probably naive) interpretation of the quantum systems integrability (we suppose that
the classical system is integrable and can be mapped on the compact hypersurface in the phase
space [12]): the quantum system is strictly integrable in result of cancelation of all quantum degrees
of freedom. The mechanism of cancelation of the quantum corrections is varied from case to case.

For some problems (as the rigid rotator, or the Pocshle-Teller) the cancelation of angular
degrees of freedom is enough since they carry only the angular ones. In another case (as in the
Coulomb problem, or in the one-dimensional models) the problem may be partly integrable since
the quantum fluctuations of action degrees of freedom just survive. Theirs absence in the Coulomb
problem needs special discussion (one must take into account the dynamical (hidden) symmetry of
Coulomb problem [23]).

The transformation to the action-angle variables maps the /N-dimensional Lagrange problem on
the 2N-dimensional phase-space torus. If the winding number on this hypertorus is a constant (i.e.,
the topological charge is conserved) one can expect the same cancelations. This is important for the
field-theoretical problems (for instance, for sin-Gordon model [24]).

2. In the classical mechanics following approximated method of calculations is used [12]. The
canonical equations of motion:

I=a(l,¢), ¢=0b(0) (4.70)
are changed on the averaged equations:
o
Jzé%waiwyéle@- (4.71)
0

It is possible if the oscillations can be extracted from the systematic evolution of the degrees of
freedoms.

In our case
a(l,¢) = jox./0¢, b(l,¢p) = Q) — jox./O1. (4.72)

Inserting this definitions into (4.71) we find evidently wrong result since in this approximation the
problem looks like pure semi-classical for the case of periodic motion:

J=0, ¢=0(J)). (4.73)

The result of this Section was used here. This shows that the procedure of extraction of the
oscillations from the systematic evolution is not trivial and this method should be used carefully in
the quantum theories. (This approximation of dynamics is «good» on the time intervals ~ 1/|a| [12].)

5. EXAMPLE: H-ATOM

5.1. Introduction. The mapping
J:T—W, (5.1)

where T is the 2N-dimensional phase space and W is a linear space solves the mechanical problem
iff
J =N, (5.2)
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where J; are the first integrals in involution, see, e.g., [12] !). The aim of this Section is to adopt
this procedure for H-atom.

The mapping (5.1) introduces integral manifold J, = J~'(w) in such a way that the classical
phase space flaw belongs to J,, completely. We wish quantize the .J,, manifold instead of flow in T’
noting that the quantum trajectory also should belong to J,, completely. This important conclusion
was demonstrated in the previous Section by transformation of the path-integral measure to the
canonical variables (£,7n). New perturbation theory is extremely simple since W is the linear space.

The «direct» mapping (5.1) used in [26] assumes that J is known. But it seems inconvenient
having in mind the general problem of nonlinear waves quantization, when the number of degrees
of freedom N = oo, or if the transformation is not canonical. We will consider by this reason the
«inverse» approach assuming that just the classical flow is known. Then, since the flow belongs to
J, completely [26], we would be able to find the quantum motion in W. It is the main technical
result illustrated in this Section.

The manifold J, is invariant relatively to some subgroup G, [27] in accordance to topological
class of classical flaw. This introduces the J, classification and summation over all (homotopic)
classes should be performed. Note, the classes are separated by the boundary bifurcation lines
in W [27]. If the quantum perturbations switched on adiabatically then the homotopic group should
stay unbroken. It is the ordinary statement for quantum mechanics, but, generally speaking, this is
not true for field theories.

We will calculate the bound state energies in the Coulomb potential 2. This popular problem
was considered by many authors, using various methods, see, e.g., [23]. The path-integral solution
of this problem was offered first in [28].

The classical flaw of this problem can be parameterized by the angular momentum I,
corresponding angle ¢ and by the normalized on total Hamiltonian Runge—Lentz vector length n.
So, we will consider the mapping (p is the conjugate to r radial momentum in the cylindrical

coordinates):
Jl,n : (pal»r»@) - (lyna SO) (53)

to construct the perturbation theory in the W = (I,n,¢) space (i.e., W is not considered as the
cotangent foliation on T).

The mapping (5.3) assumes additional reduction of the four-dimensional incident phase space
up to three-dimensional linear subspace ®). Just these reduction phenomena lead to corresponding
stability of n concerning quantum perturbations and will allow one to solve our H-atom problem
completely 4).

In Subsec. 5.2 we will show how the mapping (5.3) can be performed for path-integral differential
measure. In Subsec. 5.3 the consequence of reduction will be derived and in Subsec. 5.4 the
perturbation theory in the W space will be analyzed. The calculations are based on the formalism
offered in the previous Sections.

5.2. Mapping. We will calculate the integral [26]:

p(E) = J dTe~KGe) J DM(p, 1,7, p)e iUre), (5.4)
0

where p(E) is the probability to find a particle with energy E, i.e., we should find [22] that
normalized on the zero-modes volume

p(E) =7 0(E — Ey), (5.5)

where F, are the bound states energies. For H-atom problem F, < 0. This condition will define
considered homotopy class.

1) The formalism of reduction (5.1) in classical mechanics is described also in [25].
%) We will restrict ourselves by the plane problem. Corresponding phase space T' = (p, [, r, ) is 4-dimensional.

%) W would not have the simplectic structure. Actually in considered case W = R + TW, where R is the zero-modes
space and T'W is the simplectic subspace.

) In other words, we would demonstrate that the hidden Bargman-Fock [23] O(4) symmetry is stay unbroken
concerning quantum perturbations.
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Expansion over operator

T
K(j,e) = %Jdt@é} +708,), X(t)=6/6X(t) (5.6)
0

generates the perturbation series. It will be seen that in our case we may omit the question of
perturbation theories convergence.
The differential measure

DM (p,1,7,¢) = 6(E — Ho) [ [ dr(t)dp(t)di(t)de(t) x

OGN (s OHiN s OHi (i O
5<r ap>5<p+ ar>5<¢ az>5<l+a¢ , (5.7)

with total Hamiltonian (Hy = H}|;—0)

1 | ,
Hj=5p" = 55— — =5 — oy (5.8)

allows one to perform arbitrary transformation of variables because of its d-likeness. Notice that H;
contains only the «Lagrange forces» j, and j,.
The functional

T
1 1 .
U(r,e) :—50(7“)+Jdt 1 of

- — 5.9
((r+e)?+r2e2)/2  ((r—e)24r22)/2 " r (59)

describes the interaction between various quantum modes and so(r) defines the nonintegrable phase
factor [22]. The quantization of this factor determines the bound state energy. Such a factor will
appear if the phase of amplitude cannot be fixed !). Note that the Hamiltonian (5.8) contains the
energy of radial j,r and angular j, ¢ excitations independently.

Let us introduce the functional

A= JH dEPnS(r(t) — re(§,m)3(p(t) = pe(&m)S(U(E) = 1e(€,m)(p(t) — ¢e(§,m))  (5.10)

which is defined by given functions (rc, pe, @e, lc)(&,n). If given functions (£,n) zeroes argument of
0-functions in (5.10) then it is assumed that the functional determinant

A(;:JHdQEdQﬁ(S (arc £y -ﬁ) 5 <8pc gy e -ﬁ) x
t

o0& an o0& on
0pe =  Ope _ ol, - 0Jdl. _
<o (% g O ) o (Ge a4 0o m) 0 G.11)

Note that this is the condition only for (rc, pe, @e, le)(&,n).
To perform the mapping we will insert

1=A/A, (5.12)
into (5.4) and integrate over r(t), p(t), ¢(t) and I(t). As a result, we find the measure:

1 . OH;
DM (1) = <~0(E — Ho) [ ¢d*no (n — ap]> X
C t (&

o oH,\ (. OH;\ .(, OH,
C c c . 1
X(S(p*arc)d(@ azc>5<”asoc> (6.13)

Note that the functions (rc, pe, @c, lc)(§, 1) must obey only one condition (5.11).

1) As, for instance, in the Aharonov—Bohm case.
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A simple algebra gives:

DM (&) = WH&%JHWW (Z— (é - %» 52 <ﬁ_ < >>

or, ore _ OH; Op. e _
xé(r 5+T T+ {re hj} — p)a(p 5+7:7 7+ {pe. by )

o3 0§
B (9300 _ OH, e - Ol _ ;
B (TS SR Y S TR\ S

The Poisson notation: OX Oh;  OX oh,

was introduced in (5.14).
Next, the «auxiliary» quantity h; have been introduced by the following equalities:

OH, aH OH,

OH;
{re,hj} — 7 =0, {pc hy }—|— o L =0, {pe, hj} — 3 =0, {l,hj}+ Do =0. (5.15)
Then the functional determinant A, is canceled and
. Ohj Oh;
M(g.n) = 8(E — Ho) [[d*¢d™ns* (€ = 508 (1 + 5. (5.16)
t

It is the desired result of transformation of the measure for given generating functions
(T, Pes @er le)(&,m). In this case the «Hamiltonian» h;(&,7) is defined by four equations (5.15).
But there is another possibility. Let us assume that

(5 n) = (rc»pCa@c»lc) (5.17)

and the functions (re,pe, @e,lc)(§,n) are unknown. Then Egs.(5.15) are the equations for these
functions. It is not hard to see that Egs. (5.15) simultaneously with equations fixed by d-functions
in (5.16) are equivalent of incident equations if the equality (5. 17) is hold. Indeed, for example,

or. : Ore 7
agf—i_a : {rCYh}_

where (5.16) and (5.15) were used successively.

So, incident dynamical problem was divided on two parts. First one defines the trajectory in the
W space through Egs. (5.15). Second one defines the dynamics, i.e., the time dependence, through
the equations fixed by d-functions in the measure (5.16).

Therefore, we should consider r., p., ¢, l. as the solutions in the &, n parametrization. The
desired parametrization of classical orbits has the form (one can find it in arbitrary textbook of
classical mechanics):

(5.18)

-
¢ 8pc

20,2 2v1/2 -
i (i +m3) ng sin &}
e = y Pe= —F5 5175 Pe , e =M1, 5.19
T ) P 4 meose T )2 Y - " (519
i.e., r. and p. are & independent. At the same time,
1 . ) . .
hj = — JrTe — ]@gl = h(ﬂ) — JrTe — ]@gl' (5.20)

2(771 + 15 )1/2

Noting that the derivatives of h; over & are equal to zero 1) we find that

e = o~ W) [] et (& —on i) »

. (& . . a C . .
(6wt g ) s (in— g — i) i), G21)

') To have the condition (5.11) we should assume that dr./d&; ~ € # 0. We put € = 0 completing the transformation.
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where
w; = Oh/Om; (5.22)

are the conserved in classical limit j, = j, = 0 «velocities» in the W space.

5.3. Reduction. We see from (5.21) that the length of Runge-Lentz vector is not perturbated
by the quantum forces j, and j,. To investigate the consequence of this fact it is useful to project
these forces on the axis of W space. This means splitting of 7., j, on j¢, j,. The equality

. r 1 T 3,5 = T g, .
5 . vT_C _ Zfo dtje, € QZfo dtjreg, Ore/Om 5 . .
1:[ <51 wi+J 8m> e *re t H (61 —wi +Jg,)
becomes evident if the Fourier representation of J-function is used (see also [26]). The same
transformation of arguments of other §-functions in (5.21) can be applied. Then, noting that the last
d-function in (5.21) is source-free, we find the same representation as (5.4) with

T
R(j,e) = Jdt@lé& e, + G, (5.23)
0

where the operators } are defined by the equality:
T

Jx(t) = Jdt’@(t ~tX(t) (5.24)
0

and ©(t —t) is the Green function of our perturbation theory [26].
We should change also

_p Ore  Ore  Ore
- m 851 &1 8771 &2 8772’
in Eq. (5.9). The differential measure takes the simplest form:

DM(&,n) = 8(E — h(T)) ] d2ed®nd(E, — wi — je,)5(Ea — wo — )30 — ju)3(i).  (5.26)
t

er — €.

e, — eg, (5.25)

Note now that the £, n variables are contained in r. only:

7RC - TC(glv 771 ’ 772)

This means that the action of the operator 5& gives identical to zero contributions into perturbation
theory series. And, since €, and j¢, are conjugate operators, see (5.23), we can put

Jg =€y = 0.
This conclusion ends the reduction:
T
K(j,e) = Jdt@l@& + Gl )y (5.27)
0
or or
= ey — — g —. 5.28
T g ey, >:2%)
The measure has the form:
DM (&,n) = 6(E — h(T))d&s(0)dna(0) | [ d&idni6(&1 — wi — je, )80 — ) (5.29)
t

since V.=V (re, e, &) is & independent and
JHdX(t)é(X) = JdX(O).
t
5.4. Perturbations. One can see from (5.29) that the reduction cannot solve the H-atom

problem completely: there are nontrivial corrections to the orbital degrees of freedom &, 7;. By this
reason we should consider the expansion over K.
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Using last d-functions in (5.29) we find, see also [26] (normalizing p(FE) on the integral over

£2(0)n2(0)):

p(E) = J dTe~KG-©) JdMe—iU (re.e), (5.30)
0
where
d&ydn
dM = ———. 5.31
w(E) (%31
The operator K(j,e) was defined in (5.27) and
T
Ulre, o) ()+Jdt[ 1 1 +2% (5.32)
Tey€c) = —So\Tr - - .
) ((re +ec)? +r2ef )V2 ((re—eo)? + 122 )12 e
with e, eg, was defined in (5.28), (5.25) and
re(t) = re(m +n(t), M (E,T), & +wi(t) + (1), E = h(n +0(T),7), (5.33)
where 755 (E, T') is the solution of equation E = h.
The integration range over & and 7, is as follows:
0<& <2, —oc0o <M < Hoo. (5.34)

First inequality defines the principal domain of the angular variable ¢ and second ones take into
account the clockwise and anticlockwise motions of particle on the Kepler orbits.

We can write: o

p(E) = J dT J dM : e= Vel . (5.35)
0

since the operator InK is linear over €¢,, en,- The colons means «normal product> with differential
operators staying to the left of functions and U(r.,e) is the functional of operators:

-~ a’l“c -~ a’l“c

2ie, = jn, TR TR 2iee, = Je, - (5.36)
Expanding U(r.,€) over €. and e,, we find:
r 1
U(re,@) = —so(re) +2 Y cn,mjdtazn“a;;}r% — (5.37)
n+m>1 0 ¢

where C,, , are the numerical constants. We see that the interaction part presents expansion over
1/r. and, therefore, the expansion over U generates an expansion over 1/7..
As a result, see Subsec. 4.5,

o(E) = J aT J AM{™C) 1 Be, (61,m1) + By (E1,11)}. (5.38)
0

The first term is the pure semi-classical contribution and last ones are the quantum corrections.
The functionals B are the total derivatives:

Be, (§1,m) = %551 &m), By (&,m) = aimb”‘ (&,m)- (5.39)
This means that the mean value of quantum corrections in the &; direction are equal to zero:
27
| de1 -t 1) =0, (5.40)
) & !

since r, is the closed trajectory independently from initial conditions, see (5.19).
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In the n; direction the motion is classical:
+oo
0
) A g (&1,m) =0, (5.41)

since (i) by, is the series over 1/r2 and (ii) r. — oo when |n;| — co. Therefore,

J dT J dMe'o(re). (5.42)
0

This is the desired result.

Noting that
so(re) = kS1(E), k==+1,£2,...,

where S;(F) is the action over one classical period 77:

95(E)
and using the identity [22]:
—+00 ' —+00
ZemS‘(E) = 27725(51 (E) —27mn),
we find:
p(E) =7Q> " 5(E+1/2n7), (5.43)

where () is the zero-modes volume.
5.5. Conclusions. The demonstrated above mechanism of reduction is universal: one can

introduce from the very beginning the arbitrary number of coordinates (&,7n). But later on the
formalism automatically, through dependence of classical trajectory on coordinates of W, will extract
the necessary set of variables (£,7). At the same time, dim(§,n) = dim W and the integrals over
other ones will give the volume
o = [ TL d€)an(0).
see (5.29) where dim V = 2.
Notice that appearance of the «0-dimensional» integral measure

d&2(0)dns(0)

in (5.29) reflects the hidden O(4) symmetry of H-atom problem [23]. Therefore, following our
selection rule, we must consider in the first place the classical trajectory which leads to the maximal
value of dim Vj, i.e., we must consider the contributions with maximal number of zero modes.

6. EXAMPLE: SIN-GORDON MODEL

6.1. Introduction. First of all, we will describe «canonical» transformation in the path-integral
formalism. The method of canonical transformations in spite of its expected effectiveness is
unpopular in quantum theories since on this way exists the problem: it is necessary to find the
transformation from Lagrangian to Hamiltonian descriptions. This transition in general is very
difficult if p(z) and ¢(x) = p(x) are not the independent quantities [13]. But we may use following
trick. We start from the simplest verse of the canonical formalism introducing the «first-order»
description !) and after transformation come to independent canonically conjugate pares, (£,7), i.e
come to Hamiltonian description. It is evident that in general the transformation

@t (p,p) — (§,m)

will not be canonical. The formalism of the present Section is the same as in the H-atom problem
but there is some distinction.

') In other words, we will still stay in the frame of Lagrangian formalism.
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We will continue in this Section description of influence of the phase-space structure on the
result of quantum-mechanical measurements started in the previous Sections. Now we will calculate
the expectation value of the «order parameter» (mass-shell particles production vertex) I'(q; u) [29]:

pa) =< |T(g;w)|®
where ¢ is the mass-shell (¢*> = m?) particles momentum and <> , means averaging over the field
u(zx,t). Just the procedure of averaging would be the object of our interest considering the quantum
Hamiltonian system with symmetry G. By definition, p is the probability to find one mass-shell
particle. Certainly, p(¢) = 0 on the sourceless vacuum but, generally speaking, p(q) # 0 in a field
with nonzero energy density.

Calculations will be illustrated by the integrable (1+1)-dimensional model with nonpolynomial
Lagrangian

> s

2
L= %(Gﬂu)Q + %[COS()\U) —1]. (6.1)

We will consider the following formulation of the problem. Formally nothing prevents to linearize
partly our problem considering the Lagrangian

1 2 2,2 m% N
L= 5[(@“) —myu| + v[cos()\u) — 1+ S ] = Lo(u) —v(u) (6.2)
to describe creation (and absorption) of the mass my, particles. Then the last term in (6.2),
m? A2
v(u) = —)\—Qh[cos()\u) — 1+ 7u2], (6.3)

describes interactions. The corresponding to this theory order parameter is
[(q;u) = dedte"qf(aQ +m2u(z,t), ¢ =m?. (6.4)

[t will be shown by explicit calculations that
p(g) =0 (6.5)

as the consequence of unbroken sl/(2,C') Kac-Moody algebra on which the solitons of theory (6.1)
live 1), see, e.g., [31] and references therein ). The solution (6.5) seems interesting since it can be
interpreted as the explicit demonstration of field u(z,¢) confinement. The main purpose of this paper
is to investigate how the solution (6.5) appears.

We will be able to find exact equality (6.5) since the model (6.1) possesses infinite number of
integrals of motion. It is well known that each integral of motion in involution allows one to shrink a
number of phase space 7 variables on two units, see, e.g., [12]. Resulting phase space ~ is called as
the reduced phase space [25]. The summation over all reduced phase space topological classes [27]
is assumed.

By this way the field-theoretical problem will reduced to the quantum-mechanical one. We
would consider n as the «particles» generalized momentum and would introduce ¢ as the conjugate
to n coordinate of soliton. The 2N-dimensional phase space (cotangent manifold) vy with local
coordinates (£,7) on it has natural simplectic structure, and DM (yy) = DNM(,n) in practical
calculations (see Subsec.6.2). The summation over N is assumed.

The quantum corrections to semi-classical approximation of transformed theory are simply
calculable since n are conserved in the classical limit. This is the particularity of solitons dynamics
(solitons momenta is the conserved quantities). One can consider the developed in this paper
formalism as the path-integral version of nonlinear waves (solitons in our case) quantum theory
(the canonical quantization of sin-Gordon model in the soliton sector was described also in [14].)

1) Trivialness of soliton S-matrix was shown in [30].

) It may be useful at this point to compare our approach with ordinary thermodynamics of ferromagnetic. The
external magnetic field is ~< p >, where the order parameter < y > is the mean value of the spin, and the phase
transition means that < p ># 0, i.e., < p >= 0 means that corresponding symmetry stay unbroken. We will suppose
that the mean value of |T'(g, u)|?, which is the function of external fields parameter ¢, play the same role for field theories
with symmetry, i.e., < |I'(g,u)|> > » = 0 means that corresponding symmetry stay unbroken. Therefore in our approach
only the «external» display of symmetry can be described.
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In Subsec.6.3 we will demonstrate Eq. (6.5). It will be shown that this solution is consequence
of the previously developed proposition (we would justify it in Subsec.6.2) that the semi-classical
approximation is exact for sin-Gordon model [11]. The semi-classical approximation in the vy phase
space will be considered in Subsec.6.2.

We would not use the complicated algebra to show the reduction procedure explicitly noting
that all solutions of model (6.1) are known [24]. Then, using the ¢-likeness of measure DM (7), we
will find in Subsec.6.2 DM (yy) considering the mapping as an ordinary transformation to useful
variables !). Corresponding perturbation theory, see Subsec.6.3, in the momentum space J was
described in [26]. In Subsec.6.2 the path-integral definition of p(q) will be given.

We would conclude (this is the main result) that a theory in the «nonlinear waves» sector may
be nontrivial (p # 0) iff the manifold ~ is not compact.

6.2. Reduction Procedure
6.2.1. Introduction into formalism. Our aim is to calculate the integral:

plg) = e~ G JDM(u,p)!T(q; u)[PerSolw)=iUlne), (6.6)
where I'(¢q; u) was defined in (6.4). In this expression the expansion over operator
~ ) ) ~
K(j,e) = —_— = ' el 7
(j,e) =Re J dxdtdj(x,t) 5o D) Re J dxdtj(x, t)e(z,t) (6.7)
Cy Cy

generates the perturbation theory series. We will assume that this series exists. The functionals
U(u,e) and Sp(u) are defined by the equalities:

Viu+e)—V(u—e)=Ul(u,e) + dedte(x, v’ (u),
So(u +e) — So(u — e) = So(u) + dedte(w, (& + m2)u(x,t). (6.8)

The action Sp(u) corresponds to the free part of Lagrangian (6.1) and V(u) describes interactions.
The quantity So(u) is not equal to zero since the soliton configurations have nontrivial topological
charge (see also [1]). All time integrals in these expressions were defined on the Mills time

contour [17]: J J J
2Re | = | +

c. Cy C-

and
Cy:t—ttie, ¢6— 40, —oco<<t<+0

to avoid the possible light-cone singularities of the perturbation theory. The variational derivatives
in (6.7) are defined by the following way:

du(z,t € Cy)
du(z',t' € Cy)

The auxiliary variables (j,e) must be taken equal to zero at the very end of calculations.
Considering the first-order formalism with new coordinates (u,p) the measure DM (u,p) has

the form:
DM (u,p) = [ [ du(z,t)dp(x, )5 (u — %ﬁ) 5 (p + W) (6.9)

:(5ij5($—l’,)(5(t—t/), 1,5 =+, —.

x,t

') We will apply inverse reduction procedure. Let G' be a group of canonical transformations acting on the simplectic
manifold 7 and let G be the Lie algebra of G with G* dual of it. Then the momentum [32] mapping J : ¥ — G* introduces
the integrals of motion which reduces the ¥ manifold. Noting that the set of levels J~'(n) (solution of equations J(w) =7,
7 €7) is a manifold then ~,, = J~'(n)/G,, is the reduced phase space, where G, is the co-adjoint isotropy subgroup of G.
Therefore, the differential measure dM = dM (n,~y,) for reduced phase space. For integrable mechanical systems (infinite
dimensional as well, see, e.g., [24]) 7, shrinks to the point and in this case dM = dM(n) is the measure of momentum
manifold. Just this simplest case would be considered working with Lagrangian (6.1) and more general and interesting
case with measure DM = DM (n,vyy), 7n # &, will be considered later. So, the reduction procedure of our Hamiltonian
system with symmetry G looks like canonical transformation [31]. This problem is nontrivial since, generally speaking,
dim ¥ and dim+y are not the same for model (6.1).
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with the total «Hamiltonian»

1 1 2
Hj(u,p) = de {§p2 + E(Gmu)Q — %[COS()\U) - 1] - ju} . (6.10)
The problem will be considered assuming that u(z,t) belongs to Schwartz space:
2
(2, )] g0 = O (mod%). (6.11)

This means that u(z,t) tends to zero (mod3T) at || — oo faster than any power of 1/|z|. Note that
W =p, i.e., u and p are not the independent quantities.

The measure (6.9) allows one to perform arbitrary transformations. But, as was explained in
Introduction, we will use the analog of canonical transformation which conserves the form of
equations of motion. Hence, it is sufficient on this stage of calculations to know only the fact that
this transformation exists [24]. One may propose that as a result we should find for N-soliton

topology:

DX ar(en) = [T s np™ (¢ - FE) 000 (4 ZED) - (612

where h; is the «transformed Hamiltonian»:
hy = hov(n) — [ doj(e. ux (i) (6.13)

and uy(x;&,m) is the N-soliton configuration the time dependence of which is parametrized by
(&,m). Therefore, the local coordinates (£, 7) are defined by the equations:

O O 611
where h; must obey the Poisson conditions 1):
{uc(z,t),hj} = 5};:(}5’ nl {pc(z,t),hj} = _5ui(}ij, nk (6.15)
One can see choosing
hj(§,n) = Hj(uc, pe) (6.16)
that the initial equations have been restored:
_ Ouc;  Ou, 0H,;

! c — = 1= C) h - .
The same we will have for p.. Therefore, (uc, p.) are solutions of equations of motion (6.14), if the
equality (6.16) is hold.

The field theory case in (1 + 1)-dimensional configuration space needs additional explanations.
First of all, the analog of (5.10) must be introduced:

Au,p) = JH dVe)dNn(e) [ o(u(, t) — ue(z;:6,m)6(p(x,t) — pe(a; &,m))  (6.17)

if the N-soliton configuration is considered. Notice that the one-dimensional J-functions are
introduced in (6.17) and u., p. are the functions of sets (&, 7n), dim(&,n) = 2N. Introducing (6.17) we
make the attempt to «hide» the time dependence entirely into the set of independent variables (&, 7).

Comparing (6.9) and (6.12) one can note that x dependence disappeared and the transformed
measure depends on the number N = 1,2, ... Therefore, occurs the reduction of the quantum degrees
of freedom since the power of the coordinate set is continuum and the number of solitons N is
the countable set. This means that the proposed transformation to coordinates of solitons will be
unavoidably singular.

Notice then that the x dependence of A(u,p) remains unimportant since last one always appear
under the integrals over all u(x,t) and p(z,t). At the same time, it is important that introduced in

1) See the previous Section.
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the previ?)us Section A, disappeared in the final result, if the integral form of Poisson brackets (6.15)
are hold *).

One can try to propose also the local form of canonical commutators (6.15), if the
definition (6.16) is hold. Indeed, one can find inserting (6.16) into (6.15) that:

- 5Hj(uc,pc) 6Hj (umpc)

c ) 1H‘ ¢y Me - ) c ) 1H‘ ¢y Me - — 1
(o). Hy e pe)} = S (e 1) H e )} =~ S (6.18)
These equalities must hold for arbitrary j. Making use the definition:
Hj (xc,Pc) = deﬁj(x07pc)a
where flj is the Hamiltonian density, one can write from (6.18):
( §H.; §H.;
dy{uc(z; €,m), uc(y; €, J +Jd uc(w; €,m),pe(y; €,m)} — 0(x — =0
| yluc(z; €, m) (yﬁn)}duc(y’t) y({uc(w;§,n),pe(y; §,m)} — o( y))épc(yyt)
and
ool €m) o ) L1 [yt fuetas & oty — o D0
C"E;vac;v - ucx;avc;v — o\r — = V.
J pn e Pl S 1y )Y S D Sucly.

Then one can propose the solutions of these equations:

{uc(; & m)ue(y; §,m)} = {pe(@:6,m), pe(y; 6, =0, {uc(x;6,n),pc(y;§,m)} = 6(z —y). (6.19)

But it is interesting that the local commutators (6.19) are not satisfied 2). One can see this inserting
the soliton solution into (6.19). On the other hand, the integral form (6.18) is satisfied. All this
means that w. and p. are not the completely independent variables. It must be stressed that the
local relations (6.19) are not the necessary conditions in our formalism.

In our terms, the quantum force j(z,t) excites the (£,7n) manifold only, leaving the topology
of classical trajectory (u,p). unchanged. We can use them immediately since the complete set of
canonical coordinates (&,7) of sin-Gordon model is known, see, e.g., [24].

6.2.3. Perturbation theory on the cotangent bundle. The classical Hamiltonian h; is the sum:

N
hi(n) = Jazpa(r)w [r2 v m + 3 hem), (6.20)
=1

where o(r) is the continuous spectrum and h(n) is the soliton energy. Note absence of interaction
energy among solitons.
New degrees of freedom (&, 7)(t) must obey Eqgs. (6.14):

=) — [ dej(e.pPNEET g = B~ [ PYET g2

Hence the sources of quantum perturbations are proportional to the time-local fluctuations of soliton

configurations
dun(x;6,m)  Oun(z;€,7)
oni &

One can split the Lagrange source onto «Hamiltonian» ones:

J(x,t) = (Je. Jn)-

This gives weight functional U(uxn;eg, e,) and operator ]K(eg,en;jg,jn). As a result,

p(q) — Z e—ik(eg,en;j@jn) JDNM(g’ n)eiSO (UN)e_iU(“N;GE'eﬁ) |]__‘(q’ UN)|2 (622)
N

1) See the transformation (5.12), described in the previous Section. For more confidence one can introduce the
appropriate cells in the x space [24].
%) That circumstances were mentioned first by V. Voronyuk.
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where, using vector notations,

R(ee, ey je. ju) = IJdt{Jg() Zelt) + 7 () 2 (). (6.23)

The measure takes the form:

N
DVM(&,n) = [T TT d&i(t)dni(£)5(& — Qm) — Ge.a(£)3(ii — jna(t)). (6.24)

i=1 1

The effective interaction potential

2
Ulun;eg, en) = —2)\&2 Jdmdt sin Auy (sin Ae — Ae) (6.25)
with
9 & 9 €
ez, t) = ec(t) - % () % (6.26)

Performing the shifts:
() — &(t) + Jdt’ga CYjealt') = (1) + E1),

mi(t) — mi(t) + jdtgu—t)ym( ) = mt) + (), (6.27)

we can move the Green function g(¢ — ¢') into the operator:

~ 1 -~ ~ ~
R(ce,eni €,7) = 5 jdtdt'g@ — A - Belt) + 7 () - By ()} (6.28)
Notice that the Green function g(t —t') of Egs. (6.21) is again the step function:
gt —t)=0@-1t). (6.29)

Its imaginary part is equal to zero for real times and this allows one to shift C'y to the real-time
axis (see [26]).

As a result,
DNM(&,m) H T dsst)dmi(£)5(&s — n +n'))d(n:) (6.30)
i=1 t
with
uy = un(z; €+ n+17). (6.31)
The equations: .
& = Qmi + ;) (6.32)

are ftrivially integrable. In quantum case n; # O this equation describes the motion on
nonhomogeneous and anisotropic manifold. So, the expansion over (¢, €, 7, €,) generates the
local in time deformations of 5 manifold, (§,n) € yn completely. The weight of this deformations
is defined by U(un; e, €y).

Using the definition

JDw(s(x') = de(O) = deo,

functional integrals are reduced to the ordinary integrals over initial data (&, 7). These integrals
define the zero modes volume.

6.3. Quantum Corrections. The proof of (6.5) we would divide on two parts. First of all, we
would consider the semi-classical approximation (Subsubsec.6.3.1) and in Subsubsec.6.3.2. we will
show that this approximation is exact.

6.3.1. Introduction and definitions. The N-soliton solution uy depends on 2N parameters.
Half of them N can be considered as the position of solitons and other IV as the solitons momentum.
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Generally at |t] — oo the uy solution decomposed on the single solitons us and on the double soliton
bound states uy, [24]:

ny 9
t) = Z ug j(z,t) + Z up (. t) + O(e™ ),
j=1 k=1

We will see later that main elements of our formalism are the one soliton us and two-soliton bound
state u; configurations. Its (£, n) parametrizations, confirmed into Egs. (6.15), have the form:

4 2
us(2;€,1) = —~ arctg{exp(mpach fn — )}, f = /\— (6.33)

and 5 s
Bng mpx sh 5L cos 52 — &3

2 mhacchﬁ’“smﬁ?72 &

up(z; &,m) = 4 arctg{tg }. (6.34)

A

The (&,7n) parametrization of solitons individual energies h(n) takes the form:

mp, 2my, 5771 . 5772
hs(n) = —=chpn, h = ——ch— > 0.
(n) 5 ¢ B, hy(n) 3 9 >
The bound-states energy h; depends on 7, and 7y. First one defines inner motion of two bounded
solitons and second one the bound states center-of-mass motion. Correspondingly we will call these
parameters as the internal and external ones. Note that the inner motion is periodic, see (6.24).
Performing last integration in (6.22) with measure (6.30) we find:

N =5 . . .
pla) =) J [ [{dgodno}ie™ etSotume =il tunicecnl |1 (g uy ) 2, (6.35)
N Y=l
where , )
un = un(no+n',& + Qt) + &) (6.36)
and
Qt) = Jdt’@(t —t)Q(>no +1'(t)). (6.37)
In the semi-classical approximation & =1’ =0 we have
un = un(z;m0, 0 + Q(no)t). (6.38)
Note now that if the surface term '
Jaﬂ(emaﬂw) =0, (6.39)
then ' '
JdeeZqI(GQ +m?)un(z,t) = —(¢° — m?) Jdee’qxuN(x, t)=0 (6.40)

since ¢?> belongs to mass shell by definition. The condition (6.39) is satisfied since uy belongs
to Schwartz space (the periodic boundary condition for u(z,t) does not alter this conclusion).
Therefore, in the semi-classical approximation (6.5) is hold.

Expending the operator exponent in (6.35) we will find the expansion over

prm(q) = (1/20)™ (1/2i)™ lim | OZJdN&)dNnOJH{dtidt;@(ti —t;)g’(t;)x

n! m! I eeen)=
(E n 65 €n N i=1

X JH{dtidtQQ(ti — )7 (t) }e oD (g un ) PT [ 2 (¢ H emtluniecenl}| o, (6.41)
i=1

=1 7j=1

where U(uy;eg, e,) was defined in (6.25), (6.26). Notice that the action of operators E’, N creates
terms:

Jd%eiqze(t — (0% + mP)upn (z,t) # 0. (6.42)
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6.3.2. Quantum corrections. Now we will show that the semi-classical approximation is exact
in the soliton sector of (6.1), (6.11) theory.
The structure of the perturbation theory is readily seen in the «normal-product» form:

N
p(q) = ZJH{dEOan} —iU (uns5/2i) ¢iSo ”LLN)’F(q uN)]2 ) (6.43)
N =l
where
/.\_/}_8UN_¢'auN_w’> 8uN (644)
I Ty T e T WX ‘
and R R
Jx = Jdt’@(t — X () (6.45)

with 2N-dimensional vector X = (£, 7). In Eq. (6.44) w is the ordinary simplectic matrix.

The colons in (6.43) mean that the operator j should stay to the left of all functions. The
structure (6.44) shows that each order over jx, is proportional at least to the first-order derivative
of uy over conjugate to X; variable.

The expansion of (6.43) over jx can be written [26] in the form of total derivatives (omitting
the semi-classical approximation):

N 2n 9
LOEDS J [ [{d¢odno}: { o X (un) } (6.46)
i=1

N

where Py, (uy) is the infinite sum of «time-ordered» polynomials (see [26]) over uy and its
derivatives. The explicit form of Px,(uy) is complicated since the interaction potential is non-
polynomial. But it is enough to know, see (6.44), that

oupn

PXZ'(UN) ~ wijaTo-.
J

(6.47)
Therefore,
p(q) =0 (6.48)

since (i) each term in (6.46) is the total derivative, (ii) we have (6.47) and (iii) uy belongs to
Schwartz space.
We can conclude that the equality (6.48) is hold since

oupn

9Xo =0 at Xoe oW, (6.49)

where OW is the boundary of W.
In our consideration we did not touch the continuous spectrum contributions. In considered

approach these contributions are absent since they are realized on zero measure: theirs contributions
are ~ {volume of yn}~!

7. SUMMARY
Let as summarize the general results of the present and of the previous Sections.

1. The m- into n-particles transition (nonnormalized) probability R, would have on the Dirac
measure the following symmetrical form:

m n
k=1

:e—iK(j,e)JDM( ) 1So (u)—iU( ue)H ’F Qe U ’2H|F Dk u 2 =

= O(u) [ ] IT(qiiw)? H T (pg; w)|?. (7.50)
k=1 k=1
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Here p(q) are the in(out)-going particle momenta. It should be underlined that this representation
is strict and is valid for arbitrary Lagrange theory of arbitrary dimensions.

2. The operator O contains three elements. The Dirac measure DM, the functionals So, U(z, e)
and the operator K(j, e).

The expansion over the operator

~ 1 ) ) 1 ~

K(j,e) = = 2 % (2, 1)E 751

(j.e) 2Re J dxdtdj(x,t) Se@. D) 2Re J dxdtj(x,t)e(x,t) (7.51)
Cy cy

generates the perturbation series. We will assume that this series exists (at least in Borel sense).
3. The functionals U(u,e) and Sp(u) are defined by the equalities:

So(u) = (So(u+ €) — So(u— €)) + 2Re J dudte(z, )0 + m2)u(, 1), (752)
Ct
U(u,e) =V(u+e)—V(u—e)—2Re J dxdte(z, t)v (u), (7.53)
Ct

where Sp(u) is the free part of the Lagrangian and V' (u) describes interactions. The quantity So(u)
is not equal to zero if u have nontrivial topological charge.
4. The measure DM (u,p) has the Dirac form:

. 0H;(u,p) . 0H,(u,p)
DM = — — 7.54
(u,p) gdu(x,t)dp(w,t)é <u 5 ) o <p+ S (7.54)
with the total Hamiltonian
1 1
Hj(u,p) = de{§p2 + E(VU)Q +v(u) — ju}. (7.55)
This last one includes the energy ju of quantum fluctuations.
5. Dirac measure contains the following information:
a. Only strict solutions of equations
op ou

with j = 0 should be taken into account. This «rigidness» of the formalism means the absence of
pseudo-solutions (similar to multi-instanton, or multi-kink) contribution.

b. pnm is described by the sum of all solutions of Eq. (7.56), independently from their «nearness»
in the functional space.

C. pnm did not contain the interference terms from various topologically nonequivalent
contributions. This displays the orthogonality of corresponding Hilbert spaces.

d. The measure (7.54) includes j(x) as the external adiabatic source. Its fluctuation disturbs the
solutions of Eq. (7.56) and vice versa since the measure (7.54) is strict.

e. In the frame of the adiabatical condition, the field disturbed by j(z) belongs to the same
manifold (topology class) as the classical field defined by (7.56) [26].

f. The Dirac measure is derived for real time processes only, i.e., (7.54) is not valid for tunnelling
ones. For this reason, the above conclusions should be taken carefully.

g. [t can be shown that theory on the measure (7.54) restores ordinary (canonical) perturbation
theory.

6. The parameter I'(q;u) plays the role of particle production vertex. It is connected directly
with external particle energy, momentum, spin, polarization, charge, etc., and is sensitive to the
symmetry properties of the interacting fields system. For the sake of simplicity, u(x) is the real
scalar field. The generalization would be evident.

As a consequence of (7.54), I'(q; u) is the function of the external particle momentum ¢ and is
a linear functional of u(x):

6.0 (u)
ou(x)

D(q;u) = —deeiqf = deeiqf(aQ +mPu(z), ¢ =m?, (7.57)
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for the mass m field. This parameter presents the momentum distribution of the interacting fleld
u(z) on the remote hypersurface oo if u(z) is the regular function. Notice, the operator (9% + m?)
cancels the mass-shell states of u(z).

The construction (7.57) means, because of the Klein-Gordon operator and since the external
states being mass-shell by definition [33], the solution py,, = 0 is possible for a particular topology
(compactness and analytic properties) of quantum field u(x). So, I'(¢;u) carries the following
remarkable properties:

— it directly defines the observables,

— it is defined by the topology of u(x),

— it is the linear functional of the actions symmetry group element u(x).

If (7.56) have nontrivial solution w.(z,t), then this «extended objects» quantization problem
arises. We solve it introducing convenient dynamical variables [34]. Then the measure (7.54) admits
the transformation:

ue: (u,p) — (&,m) e W =G/G,, (7.58)
and the transformed measure has the form:
. Oh; Oh;
DM (u,p) = [] d&(t)dn(t)s (5 - %) 5 <7'7 + #) : (7.59)
x,tC

where h;(&,m) = Hj(uc, pe) is the transformed Hamiltonian.

[t is ev1dent that (§,m) are parameters of integration of Egs. (7.56) and they form the factor space
W = G/G,. As a result of mapping of the perturbation generating operator K on the manifold W,
the equations of motion became linearized:

DM = Hé(é——)—k)é(iy—jn). (7.60)
[f Feynman’s ie-prescription is adopted, then the Green function of Eq. (7.60) is
gt —th)=0@1-1), (7.61)
with boundary property:
0(0) = 1.

7. Expansion of exp{K(j, e)} gives the «strong coupling» perturbation series. Its analysis shows
that the action of the integro-differential operator O leads to the following representation:

P (P, @)} (7.62)

0 0

pnmp,q=Jd£0 o P (2 @) + dn(0

(1.0) = | {400) - gg7honp. )+ nf0) - 5o

w

This means that the contributions into Ry,.,.(p,q) are accumulated strictly on the boundary,
«bifurcation manifold», W, i.e., depends directly on the topology property of W.

8. It was shown that the MP is absent in the frame of Lagrangian (6.1). For this purpose one
should modify the sin-Gordon Lagrangian adding, for instance, the term:

1 o L. 9.0 2

2(8@) 2M o 3u<I> (7.63)
to describe collision of «external» field ® on the solitons. This model allows one to introduce the
nontrivial probabilities p(q1, qo,...) considering creation (and absorption) of the field ®. Note that
field u(x) is still «confined» even with this adding.

c

8. CONCLUSION

The final goal of the present approach is to construct the workable at arbitrary distances, i.e., for
arbitrary momenta of produced hadrons, S-matrix formalism for theories with (hidden) symmetry.
But this aim remains unachieved in the present paper. In subsequent papers more realistic field
models in 4d Minkowski space-time metric will be described. But one should not consider the
demonstrated examples of Yang-Mills S-matrix as the definite proves since I am note sure that
the used O(4) x O(2) solution of Yang—Mills equation in the Minkowski in the situation of general
position guarantees the largest contribution. Moreover, only the SU(2) theory will be considered.
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Unfortunately, we cannot find in the frame of 't Hooft ansatz [35] the solution for larger SU(N)
group [36].

[t will be shown how one or another physical phenomenon may be seen in the field theory with
symmetry. Namely,

— no plain waves production exists in theories with symmetry,

i.e., for instance, the gluons cannot be seen in a free state since simply the last ones are absent
in quantum theory of the symmetry manifolds, or, in other words, since the gluon states and the
«states» of the symmetry manifold belong to the orthogonal Hilbert spaces. The quark fields will
not be included in this simplest example. But more realistic model with quarks shows that

— inclusion of matter cannot change previous conclusion that the gluons cannot be created.

In the other example we will show how the

— binding potential may arise among quarks.

Here the situation of general position selection rule will be extremely important: it will be used
that the situation when (¢g) potential is independent from the scale of Yang—Mills fields is mostly
probable.

The quantum field theory with constraints will obey the following important property:

— the perturbation theory of quantum systems with symmetry may be free [rom any
divergences,

i.e., it may ') be rightful at arbitrary distances, for VHM case as well. It is the evident consequence
of lessening of the number of dynamical degrees of freedom because of symmetry constraints 2).

There exists also the intriguing question of asymptotic freedom. The point is that there is no
running coupling constants in our strong coupling perturbation theory without divergences. On the
other hand, the asymptotic freedom is the experimental fact. We will show how

— the effect of asymptotic freedom may arise
in our quantum theory of the symmetry manifolds. The main question here is to find the
experimentally observable corrections to the asymptotic freedom law.

In summary, the aim of future publications would be the question: is the offered approach
complete from physical point of view? It is important since offered quantization scheme in the
situation of general position on Dirac measure must be true for arbitrary distances, since it is free
from arbitrary scale parameters 3).
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