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Aiipsia D. A. u 1p. E11-2011-31
Hpe)lCT BJICHUA H IIP BJIIEMBIX MOJ IIJT H PHBIX MHOT'OCJIOMHBIX
TOHKOIUIEHOYHbIX BOJIHOBOJOB

ITpoBejieH TEOPETUUECKUIT H JIU3 P CIPOCTP HEHUs H Hp BsieMbIX (COOCTBEH-
HBIX) MOJl B MHOTOCJIOMHBIX JU3JIEKTPUUYECKUX BOJIHOBOA X B P MK X MOJIENIU BOJ-
HOBOIOB Ccp BHeHHd. Ilom r J0Ch, UTO p CCM TPHB €MBIi BOJHOBOX OOp 30B H He-
M THUTHBIMHM CP€J MH, Y KOTOPBIX AMBJIEKTPUYECKHE ITPOHUL] €MOCTH BELIECTBEHHBI.
Hcronp30B 1 ¢b 3 nuch BOJIHOBBIX yp BHeHuil mig TE- u TM-mon uepes nonepeu-
HbIE U MPOJIOJIbHbIE KOMIIOHEHTBHI IT0JIEH B IEK PTOBBIX KOOPAMH T X. PemeHus yp B-
HEHHWI BOTHOBOOHBIX MOJ 3 MFHCHIB JIUCh Yepe3 p 3HbIe (PYHA MEHT JIbHBIE CHCTEMBI
peleHnii: KOMIUIEKCHO3H YHBIE M BEIIECTBEHHO3H YHbIe (PyHKIUH. i K KO u3
HUX BbIBEJIEHbI COOTBETCTBYIOLIUE (HOPMBI AUCHIEPCUOHHBIX cOoTHOIIEeHUH i TE- u
TM-MoI TpeXCJIOHHBIX U YEThIPEXCJIONHBIX BOJHOBOAOB. Pe JIM30B HbBI yCTOWUYMBBIE
METOMbI PElICHUS] HEIMHEHHBIX TP HCIEHISHTHBIX JIreOp HMUYECKUX IUCIEPCHOHHBIX
yp BHEHHil U COOTBETCTBYIOIIUX CHUCTEM JIMHEWHBIX JIreOp MYECKMX yp BHEHUid jis
BBIYUCJICHUS T10JIE BOJIHOBOAHBIX MOA. IIpuBeneHBI BBIP X€HUS, MO3BOJISIOLIME BbI-
YUCJIUTh TOJILUMHBI OTCeueK sl cooTBeTcTByomux TE- u TM-Mmon.

P 6or Bemonnen B JI 6op Topuu nHcopM LMOHHBIX TexHostoruidi OUAN.

IMpenpunt O6beAUHEHHOTO UHCTUTYT SIAEPHBIX HcclenoB Huil. dyom , 2011

Ayryan E. A. et al. E11-2011-31
Representations of Guided Modes of Integrated-Optical Multilayer Thin-Film
Waveguides

We investigate the guided propagation (eigen) modes in the regular multilayer
dielectric waveguides. The waveguide involves several nonmagnetic media with real
dielectric constants, and the description of the corresponding wave equations is done
in terms of transverse and longitudinal field components in Cartesian coordinates.
In order to allow comparison with various previous approaches, the solutions of
the equations of the guided modes are expressed in terms of both real valued and
complex valued fundamental systems of solutions. For each of them we derive
the appropriate form of the dispersion relation for the TE and TM modes of three-
layer and four-layer waveguides. Stable methods of solving the resulting nonlinear
transcendental algebraic dispersion equations and related systems of linear algebraic
equations are implemented and used for the calculation of the fields of the waveguide
modes.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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1. INTRODUCTION

This publication represents the first stage of the consideration of the method
of comparison of waveguides as a verification way of the method of adiabatic
modes. This method was published in [1-9] with applications to solving some
specific problems. They presented the results of comparing the results obtained by
the method of adiabatic modes with the results of alternative methods of solving
specific problems [1-9].

We will consider the material medium, consisting of dielectric subregions that
fill in together all three-dimensional space. That means that the dielectric constants
of the subdomains are different and real, and the permeability everywhere is equal
to the permeability of vacuum.

We consider the environment with zero charges and currents. Scalar Max-
well’s equations can be obtained from the vector equations. The boundary condi-
tions for the normal components can also be obtained from the boundary condi-
tions for the tangential component (see, [10-20]). Material equations in this case
we believe to be linear. Thus, the electromagnetic field in a space filled with
dielectrics in the Gaussian system of units is described by the equations:

10B 10D

rotE=————, rotH= ,
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where D = ¢E, B = yH, E, H are vectors of the electric and magnetic fields,
D — electric displacement vector, B — the vector of magnetic induction, ¢ —
the speed of electromagnetic waves in a vacuum. In this case, the boundary
conditions are valid:

H-[, = H:|,, E;|, =E-[, (1.2)
and the asymptotic boundary conditions at infinity are:

[E]

0, [H[| ——0, (1.3)

that ensures the uniqueness of solutions of (1.1)—(1.3).
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Fig. 1. Cross section of an integrated-optical structure is formed by a regular three-layer
waveguide (left panel) and a smoothly irregular four-layer waveguide (on the right side of
the figure). The three-layered waveguide is formed by 1-3 media, and four-layer — by
1-4 media. On the figure are indicated by: 1 — framing the environment or cover layer
(air) with a refractive index n., 2 — waveguide layer with a refractive index ny, 3 —
substrate with a refractive index ns, and 4 — the second waveguide layer with a refractive
index n;; d is a thickness of the first waveguide layer of integrated-optical structure; h —
the thickness of the second waveguide layer

The method of adiabatic modes is to describe the individual guided modes
of irregular integrated optical waveguide (see Fig. 1) as:

Y,z

Bl .0) = exp o) Al e | ity [ 5o/, ds (/2|
By, 2)
. (1.4)
H(z,y,z,t) = exp (iwt)wexp —iko/ﬁ(y’,z’) ds(y',2") |,
By, 2)

where ((y, z) = \/ﬂg(y, z) + B2(y, z) is a length (norm) of two-dimensional vec-

tor field B(y, z) = (8y(y, 2), B:(y, z))*, composed of partial derivatives of eikonal
By(y,z) = 0¢/0y, B:.(y,z) = 0¢/0z, as well as 3, = ky/ko, B, = k./ko. The

Y,z
eikonal (phase) ¢(y,z) = ko | B(y',2")ds (y',7") is calculated by integrating
along the rays, after the dispersion relation and the isolated computation of rays
and wave fronts in the horizontal plane [1,2,9], where ds = \/dy? + dz? is a
ray length.

Substituting (1.4) into Maxwell’s equations (1.1) leads to a system of ordinary
differential equations of second order for the longitudinal components of vector-



functions E, (z;y, z) and H,(x;y, 2):
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for quasi TM modes and
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for quasi-TE modes.

For transverse and vertical components of the vector-valued functions
E,(z;y,2) and H,(z;y,2) we thus obtain the analytical expressions in terms
of E,, H, and their derivatives with respect to the vertical argument z:

0%H, O°E O2E.  O°H
2 z_ Zand \?E, = —=2 — p——= 1.7
X T ooy T S awor X 9200 " otoy (.7)
for quasi-TM modes and
H, °E 9%E.  O9°H
Hy = ——~ +e———and X’F, = —— + pl——— 1.8
Xate = 50w T 00y ™™ X T 920y T Hot0n (1.8)

for quasi-TE modes. Here we use the notations x2 = k2ep+p.p.+0p./0z, x> =
Xﬁ +pypy+3py/3y, Dy = _ikoﬂy_(Qﬂ)_laﬂ/ay, . = —ikoB;— (Qﬂ)_laﬂ/az
In the case of a smoothly irregular integrated optical waveguide, «the condition
of quasi-classicality» is performed [1,2,9]

§ = max |V, 0] (ko) " < 1, (1.9)

that allows us to solve the problem (1.5)—(1.8) by asymptotic method in the
dimensionless small parameter d.

The study of approximation of zero and first order problem (1.5)—(1.8), and
comparison of our approximations with the models of other authors describing
smoothly irregular waveguides [6, 8, 9], have led us to the formation of a hierarchy
of matrix models describing the propagation of guided modes in a smoothly irreg-
ular waveguides and to the necessity of their detailed study. The most inaccurate
model of this hierarchy is the matrix model of comparison waveguides [6, 8,9]. In
fact it is a model of regular planar multilayer thin film waveguides with variable
thickness of the layers. To establish the essential characteristics of the models of
propagating modes and other objects of the study, it is sufficient to study details
of the three- and four-layer planar dielectric waveguides.

In various books [11-18] and papers [21-37] for integrated optics various
forms of reducing Maxwell’s equations to different systems of ordinary differ-
ential equations for TE and TM modes are used. At the same time, various



forms of the conditions for the solvability of these ordinary differential equations,
called dispersion relations, are used. Bearing in mind the subsequent using of the
model of regular planar multilayer thin-film dielectric waveguides with variable
thickness of the layers to describe irregular waveguides, as well as further com-
parison of obtained in their framework analytical and numerical results with those
of other authors, we consider here all possible systems of ordinary differential
equations for TE and TM modes, as well as all forms of the dispersion equations.
After that, we show that every expression of [11-37] coincides with one of our
expressions, and show by numerical calculations that different forms of expres-
sions describe quantitatively equally guided (waveguide) modes of regular planar
multilayer thin-film dielectric waveguides with variable layer thicknesses.

2. THE REDUCED ORDINARY DIFFERENTIAL EQUATIONS
FOR GUIDED MODES

We shall describe the electromagnetic field with complex amplitudes to sim-
plify the calculations [1]. We will consider the material medium, consisting of
dielectric subregions that fill in together all three-dimensional space. The latter
means, that the dielectric constants of the subdomains are different and real, and
the permeability is everywhere equal to the permeability of vacuum. It follows
that in the absence of external currents and charges, induced currents and charges
are equal to zero.

In equations (1.1): € = €,¢¢9 is the permittivity of the medium; pu = p, o is
the permeability of the medium; ., u, are relative permittivity and permeability,
respectively (in the nonmagnetic medium p, = 1 is assumed); €¢ and pgo are
dielectric and magnetic constants of vacuum, respectively; w./ue = nko, n
is the index of refraction of the medium (here and further of the layer under
consideration in multilayered dielectric structure); ko = 27/ )Xo, w is the cyclic
frequency of the electromagnetic field; E, H are the vectors of the electric and
magnetic fields.

Assume also that all subdomains are endless and are limited by planes parallel
to the plane yOz, so that further ¢ = £(z), u = 1 (see Fig. 2).

Waveguide is formed by media 1-3. The figure indications are: 1 is a
framing medium or cover layer (air) with refractive index n.; 2 is a waveguide
layer (film) with a refractive index ny; 3 is a substrate with refractive index n;
d is the thickness of the waveguide layer. Film and substrate are homogeneous
in the = and z directions, the substrate is usually much thicker than the film.

We consider the propagation of monochromatic polarized electromagnetic ra-
diation in the above three-layer dielectric regular system (see Fig.2) (assuming
an energy source located infinitely far away from the area under consideration).
Under the conditions of the transverse resonance (also known as the quanti-
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Fig. 2. Scheme of a flat three-layer dielectric waveguide

zation conditions of Bohr—Sommerfeld [11]), the dielectric system is a regular
three-layer dielectric waveguide capable of supporting guided waveguide modes.
These conditions are reduced to the implementation of the relevant dispersion
relations in the early work on integrated optics called the characteristic equations
(see [11-17]).

Maxwell’s equations in Cartesian coordinates in the GHS are as follows:

0H. 0H, €¢0E, O0E. O0E,  poH,
dy 9z c ot By 92 ¢ ot
OH, O0H. 0B, OB, O0E. _ poH, o
0z oz c Ot 0Oz Oz c Ot

OH, OH, 0B, OE, 0B,  poH,
Ox dy ¢ ot Oz dy ¢ Ot

We seek after solutions of equations (2.1) of the class of infinite (twice) differ-
entiable functions of four variables, harmonically time-dependent and invariant

0

under translation along the axis Oy, so that they satisfy relations 90 = 0,
Y

0H,; . 0F; . . . . .

En = —jwH;, —L = —iwk;. Consideration of these relationships reduces the
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system (2.1) as follows:

_3Hy__iw_a _BEy_iw_uH
9z ¢ v 9z ¢ U
O0H, OH, Twe O0E, OF, iwp
SO o _Why 22
0z Oz c Y 9z Oz c Y (2.2)
OHy _ _iwe OBy _ iwpt 1y
dr ¢ 7 ox ¢ 7

The system of equations (2) splits into two independent subsystems for two
different polarizations (they correspond to two types of guided modes: TE modes
and TM modes). In view of kg = %, the subsystems are as follows:

0B, OB,

W Oz = ZkO,LLHy, (23)
1 0H,
tkoe Oz 24
1 0H,
- 7 2.5
ikoe’:‘ or ( )
and OH, OH
% 0w ikoe By, (2.6)
1 0FE,
=— — 2.7
ikop 0z’ 2.7)
1 0FE,
z = = _— 2.8
ikop Oz (2.8)
Substitution of (2.4) and (2.5) into (2.3) leads them to the form of Helmholtz
equation:
1 0 (10H, 1 0 (10H, .
— |- — - | = H,. 2.
iko 0z (5 0z ) * tko Oz (5 Oz ) ikopHy 29)

Similarly, substitution of (2.7) and (2.8) into (2.6) leads them to the form of
Helmbholtz equation:

1 9%E, 1 9%E,

— - = —ikoeE,. 2.10
tkop 022 ikop Ox? troey (2.10)
We transform two equations to the standard form:
0? 0?
<@ +tazt k35u> E, =0, (2.11)
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Equation (2.11) is obtained from the wave equation for TE mode with the leading
component F,, while Eq. (2.12) is obtained from the wave equation for TM
mode with the leading component H,, so in the theory of planar waveguides
(see [11-17]), both of these equations are usually called the wave equations.
The method of separation of variables leads to a factorization of solutions,
resulting in:
E,(z,y,z,t) = Ey(z) exp{i(wt £ ko 2)}. (2.13)

Similarly, the solution of Eq. (2.12) has the form:
Hy(z,y,z,t) = Hy(x)exp{i(wt £ koB2)}. (2.14)
In this case, from (2.7) and (2.8) we get:
1 0H, _ikoB . _ B

ikoe Oz ikoe Y Y ( )

1 0H,
=———7 2.16
’ikoE or ( )

Similarly, from (2.4) and (2.5) we get:
H, = —Z,kOﬁEy — —éEy, 2.17)
ikop H

1 dE,
z — = " 2.18
ikop dx (2.18)

For the solutions of the form (2.13), (2.14), Eqs. (2.11) and (2.12) take the form:
d’E,

T kg (en— %) By () = 0, (2.19)
d (1dH,
“dr (Ed—f) + kg (ep — %) Hy () = 0. (2.20)

Thus, Egs. (2.19) and (2.20) for the transverse components £, and H, determine
the TE- and TM-polarized solutions of Maxwell’s Eqgs. (2.1). Expressions (2.16)
and (2.18) define a second pair of tangential components required for the formula-
tion of boundary conditions (1.2). Expressions (2.15) and (2.17) will be required
to write the energy conservation law.

Equivalent reduction of Maxwell’s Eqs. (2.1) to a pair of equations for the
longitudinal components E, and H,, can be obtained as follows. Let us represent
the solutions of the form

E(z,y,2,t) = Ey(z) exp {i(wt £ koS 2)}, (2.21)



H(z,y,z,t) =Hy(x)exp {i(wt £ koS 2)} (2.22)

in the form:
E=E +FE.e&., H=H, +H.é..

Let us represent also a three-dimensional operator V in the form:

. 0 -
Vle%-@& =V, —ikofe,

) 5 5 5 (2.23)
V. =Ce + 8o =8,

Let us put x? = kZ(eu — [3?), then taking into account the condition §/9y = 0,
the system of Maxwell’s equations after additional application of Vx splits into
two subsystems. Subsystem for the TM modes, recorded in the longitudinal
components, takes the form:

V2E.+Xx*E,=0,H, =0,

= IWE . = N
H, = ?[(VlEz) X ez]a

. ik -
BL=- (’;f) V.E..

Subsystem for the TE modes, recorded in the longitudinal components, takes the
form:

V2H.+x*H.=0,E, =0,

. ko8 =
H, =- (Z Of> V.H,
X
w =
B =-ZE(V. 8 x &)

If we decompose longitudinal and transverse components further by coordinates,
the above subsystems of equations turn to the following form:
for TM modes

P2E.
—— +hi(en— %)E. =0, H.=0,
kB dE.
B, = - (z;f) = B, =0, (2.24)
iwe\ dE,
H, = (= H, =0,
! <x2> aw el



and for TE modes

d’H,
dan +k0(€/“L_/62)HZ :07 EZ :07
ikoB\ dH,
H, = — ( z ) I H, =0, (2.25)
wp\ dH,
Ey:<7> e E,=0

3. THE METHOD OF SOLUTION OF THE REDUCED ODE
FOR TE AND TM MODES OF DECOMPOSITION
OF THE FUNDAMENTAL SYSTEMS OF SOLUTIONS

Shown in Fig.2 stratified along the axis Ox the dielectric medium admits
a square integrable distributions E;(x), H;(x); j = =,y, 2 if the asymptotic
behavior of these distributions tends to zero with the distance along the axis Ox
of the waveguide layers tending to infinity. For this purpose it is necessary that
the dielectric constants of the plates — the substrate €; and the covering layer
€. — were lower than dielectric constants €71 and € s, of the adjacent waveguide
layers, in case the structure consists of the m waveguide layers and two parietal.
In this case, the internal waveguide layers may have a dielectric constant not
higher than ¢, and ¢, assuming inside antiwaveguide modes.

Comment. Equations (2.19) and (2.20) for the transverse components, and
similar Eqs. (2.24) and (2.25) for the longitudinal components, are equal to
(within signs) one-dimensional quantum mechanical Schrodinger equation for the
potential well of stepwise or for a system of potential wells separated by an
internal barrier (analog to antiwaveguide layer). Function of potential energy for
such a problem has a mirror symmetric form for the distribution of dielectric
constants of the layers of the planar waveguide.

Solutions (2.21) and (2.22) describe the forward and backward waves prop-
agating along the axis Oz with the speed 3 times less than the speed of light.
Square-integrable distributions E;(z), H;(z); j = z,y,z are solutions of the
Eqgs. (2.19) and (2.20) or Egs. (2.24) and (2.25), corresponding to the discrete
spectrum of values (3 that lie in the range of ns = /g, (and while n; > n. and

€s 2 €.) to a maximal value Nmax = MaAX Nk = /Emax, Emax = MAaX €.
1<k<m 1<k<m

For each fixed 3; we introduce the notation 7 = kq / ﬁ? —€c, ¥ = koy/ ﬁ? —

as well as wi = ko, /ﬂ? — gy, for those sectors that have ﬁ? —ef = 0. If
ﬂjz — efr < 0, we introduce the notation Xi =koy/efk — ﬂjz.



3.1. Expressions for the TE Modes Through the Transverse Electric Field
Component.  Let us write explicit expressions of the components Ez’j of the
electric fields of the TE modes with a coefficient of phase delay §; through
the general solution of Eq. (2.19) for all dielectric layers with permittivities
€cyEfls-+-»Efks---,Efm,Es, as well as explicit expressions of the components
HP of the magnetic fields of the TE modes with the help of Eq. (2.18), necessary
to record the tangential boundary conditions at the interfaces of layers.

In those layers, in which ﬂjz — ek = 0, the general solution of Eq. (2.19) has
the form: _ 4 _

El = Al exp {via} + A} exp{—7iz}. (3.1

In the parietal layers of the overall solution, only those terms should be kept,
which satisfy the asymptotic boundary conditions at infinity (1.3), so that

Fl = At exp{yiz}, FEI = A_ exp{—riz}. (3.2)

In those layers, in which ﬂjz —erk < 0, the general solution of Eq. (2.19) has the
form: _ _ 4
E] = A exp {ix}z} + A, exp{—ixjz}. (3.3)

Respectively, in those layers in which ﬂjz — ey = 0, the components H * have
the form:

. J , ,
H] = 27’; (AZ' exp {7z} — A, exp {—’yix}) . 3.4
In the parietal layers the expressions of the components H, have the form:
S A , o A
H! = = Atexp{yla}, H! = ——<A exp{—~lz}. (3.5)
’ iko ’ ) iko )

In those layers, in which ﬂjz — ey, < 0, expressions of the components H f are
as follows:

) J . )
H] = z—s (Az exp {ixjz} — A} exp {—zxim}) . (3.6)

In addition to providing a general solution of (2.19) in the form of (3.3) one can
use the other two equivalent representations:

E] = A§ cos {x}x} + A} sin {x]z}, 3.7
then the expressions of the components H* have the form:
Xj

Hf = X (A sin {xx} — A} cos {xho}) (3.8)
’Lk()

10



And also if 4 _
E] = Cycos{x,xz + ¢1}, (3.9

then the expressions of the components H* have the form:

| j ,
Hl = _z’XTkC’“ sin {x.z + ¢r}. (3.10)
0

Using expressions (3.7) and (3.8) allows the numerical calculations for dielec-
tric waveguides using real arithmetic, which will be seen later. Using expres-
sions (3.9) and (3.10) allows us to write dispersion relations in the most wide-
spread trigonometric form.

3.2. Expressions for TM Modes through the Transverse Magnetic Field
Component. We now write the explicit expressions of the components H;“ of
the magnetic fields of TM modes with a coefficient of phase delay [3; through
the general solution of Eq. (2.20) for all dielectric layers with permittivities
€csEfly--+»Efky- -+, EfmsEs, as Well as explicit expressions of the components
of the electric fields of TM modes using Eq. (2.16), necessary to record the
tangential boundary conditions at the interfaces.

In those layers, in which ﬂjz — ek = 0, the general solution of Eq. (2.20) has
the form: A A A

H] = B} exp {v]z} + B} exp{—viz}. (3.11)
In the parietal layers of the overall solution, only those terms should be kept,
which satisfy the asymptotic boundary conditions at infinity (1.3), so that

Hi = BF exp {3le}, HI = By exp{—iz}. (3.12)

In those layers, in which ﬂjz — sk < 0, the general solution of equation (2.20)
has the form: A ‘ ‘

H] = B} exp {ixjz} + By, exp{—ixiz}. (3.13)

Accordingly, in those layers, in which ﬂ? — €y = 0, the expressions of the

components E* are as follows:
J
El =—
k iko&k

(B,;Ir exp{ylz} — By exp {—71155}) . (3.14)
In the parietal layers the expressions of the components E, are as follows:

EI = __’yg B exp {’ij} El = ,yg
S S S ) C ZkO€C

BT —~iz}. 1
T cexp{—lr}. (.19

In those layers, in which ﬁ? —erk < 0, expressions of the components Ef are as
follows: )
. J . .
Bl = —kx—k (Bk+ exp {ixla} — BT exp {—z‘xix}) . (3.16)
0€k

11



In addition to providing a general solution of (2.20) in the form of (3.13), one
can use the other two equivalent representations:

H} = Bf cos {x}a} + B} sin {x}z}, G.17)

then the expressions of the components E* are as follows:

. J . .
Bl = (B,g sin {xJx} — B cos {Xix}) , (3.18)
’Lkoﬁk
and also if 4 4
Hj = Dy, cos {x,x + V1 }, (3.19)
then the expressions of the components E* are as follows:
. ) A
E] = =% Dy sin {xiz + ¥1}. (3.20)
Zk‘o&k

Using expressions (3.17) and (3.18) allows the numerical calculations for di-
electric waveguides using real arithmetic, which will be seen later. Using ex-
pressions (3.19) and (3.20) allows us to write dispersion relations in the most
widespread trigonometric form.

3.3. Expressions for the TE Modes in Terms of Longitudinal Magnetic
Field Component. In the same way as was done in 3.2. for the fields of TM
modes through the transverse components of magnetic fields H¥, write explicit
expressions for the fields of TE modes in terms of longitudinal components H k
of magnetic fields of the general solution of equation (2.25) with a coefficient of
phase delay 3; for the layers with permittivities ec,ef1,...,€¢k;. -, Efm,Es, aS
well as explicit expressions of the components E;j of electric fields.

In those layers, where ﬂjz — €k = 0, a common solution H f to Eq. (2.25)
has the form:

H] = Bf exp {v]x} + B, exp {—7iz}. (3.21)
In the parietal layers the solutions have the form:
}NIg = B:‘ exp {yIx}, ffg = Bc_ exp {—Jz}. (3.22)

In those layers, in which ﬂjz — ey < 0, the general solution of Eq. (2.25) has the
form:

H] = B} exp {ix}z} + By exp {—ixz}. (3.23)
Accordingly, in those layers, in which ﬁ? — sk = 0, the expressions the compo-
- ’ dH*
nents EF = (W/;k> % have the form:
Xk
E,JC = jw (%) (B,‘: exp {’y,jcx} — By exp {—’yix}) . (3.24)
k

12



In the parietal layers the components Eg, have the form:

S c

Bl = —iw (M—;> Bl exp{yiz}, EJ=iw (M—;> B exp{—Jz}. (3.25)
v v

In those layers, in which ﬂjz — sk < 0, expressions of the components E?JJ are as
follows:

El=—w (%) (B,j exp {ix,z} — By, exp{—ixim}) : (3.26)
k

General solutions of Eq. (2.25) for the components H & can also be represented
as (3.18): o 3 4 3 _
Hj = By cos{xjx} + B} sin{x,z}, (3.27)

then the expressions for the components E{l take the form:

El = —iw <,u_§> (B,g‘ sin {xJx} — Bj cos {Xfcx}) (3.28)
Xk
And also if B 3 4 R
Hj = Dy, cos {x,x + Y1}, (3.29)

then the expressions for the components Eg, take the form:

El = —iw (“—j) Dy, sin {xx + r}. (3.30)
Xk

3.4. Expressions for TM Modes in Terms of Longitudinal Electric Field
Components. In the same way as was done in Subsec. 3.1 for the fields of TE
modes by transverse components Ek. we write explicit expressions for the fields
of TM modes in terms of longitudinal components Ef of electric fields with a
coefficient of phase delay [3; of the general solutions of (2.24) for layers with
permittivities €, €¢1,...,Efk,---,Efm,Es, as well as explicit expressions of the
components fI{f of magnetic fields.

In those layers in which ﬂjz — ey = 0, common solution Ef to Eq. (2.24)
has the form:

El = Af exp{yla} + A exp{—~lz}. (3.31)

In the parietal layers, the solutions have the form:

Bl = Af exp{yla}, EJ=A] exp{—iz}. (3.32)

13



In those layers, in which ﬂf —erk < 0, the general solution of Eq. (2.24) has the
form:

El = Af exp {ixlz} + A5 exp {—ixlz}. (3.33)
Accordingly, in those layers, in which ﬁ? — €y = 0, the expressions of the
- ’ dE®
components H{j =— (lw§k> Z are as follows:
¢ X2
ag) o (e (g j i~ j
Hj = —iko 2 (Ak exp {1z} — A, exp{—vkx}) . (3.34)
k

In the parietal layers, the expressions of the components fI{l are as follows:

]ffj _ . 537?; 1+ 7 [7j Ech 11— j
1= —iko | —5* | AY exp {yix}, H] =iko 2z AT exp{—+lx}.
Xs c
. (339)

In those layers, in which ﬁ? — ey < 0, expressions of the components Hgl are as
follows:

H] = ko (i—?) (/Nl;: exp {ixiz} — A exp{—ixix}) : (3.36)
k

General solutions of Eq. (2.24) for the components E’f can be represented as (3.7):
El = A§ cos {xlx} + A sin {xlz}, (3.37)

then the expressions for the components Ifll’j take the form:

H = iw <€—§> ( A¢ sin {xx} — Aj cos {X?ﬁ}) . (3.38)
Xk
And also if
El = Cy cos {xlx + ¢}, (3.39)

then the expressions for the components IjL’j take the form:

‘gljc = jw (E—’;> C), sin {Xfcx + qNSk} (3.40)
Xk

14



4. BOUNDARY EQUATIONS FOR THREE-LAYER WAVEGUIDES

4.1. TE Modes, Expressed through the Transverse Component ;. The
boundaries between layers of three-layer planar waveguide cross the axis Oz at a
point x = a; between the substrate and the waveguide layer and at a point x = as
between the waveguide layer and covering layer. On these boundaries for the
TE mode, which is expressed through a transverse component F,, the boundary
conditions have the form: Eys(a1) = Eyf(a1) and H,s(a1) = H,¢(a1) at a point
x = aq and also Eyf(a2) = Eyc(az) and H,f(a2) = H..(az) at a point = as.
Let us express them in terms of amplitude coefficients A

Al exp{vla1} = AT exp {ixjar} + Ay exp {—ixja1},
2 A% exp rlar) = 1 (47 exp {irdar} - A7 exp {~irdar})
ko ® sa1 ko 1 eXptxial 1 Xp—rxaaiy |,
AT exp {ixqas} + Ay exp {—ixjaz} = A7 exp{—laz},
X1 (4% oxp (ivd e i) 0% - J
T ( 1 exp {ixjas} — A7 eXp{—%xlaz}) = Tihg e exp{—laz}.
The result is a homogeneous system of linear algebraic equations (SLAE) M%‘*E(ﬂ)
for the unknown amplitude coefficients A¥, A}, AT, A7, whose solution gives
us its values in the expressions (3.2), (3.3) and (3.5), (3.6). Notation M+%(3)
emphasizes that the system is obtained from the boundary equations for the TE
mode, which is expressed through the transverse (L) component E,, has dimen-
sion 4 and its matrix elements depend on 5. Homogeneous SLAE is nontrivial
solvable under the condition of vanishing of its determinant, this condition in
integrated optics is called the dispersion relation. The dispersion relation gives
the dependence of the phase retardation 3 of the thickness of the waveguide layer
d = az — a; (see Fig.3).
If, instead of expressions (3.3) and (3.6), we use the expressions (3.7) and
(3.8), the boundary conditions for the tangential components take the form:

Af exp{vla1} = Af cos {x]a1} + A} sin {xja1},
’Y‘Js‘. + j X{ C o J s J
%As exp{yla1} = i (A1 sin{xja1} — Af cos {Xlal}) )
0 ko
Teos{xjaz} + Ajsin{xjaz} = A exp{—~las},

J . ) J

X ( {sin{xjaz} — Aj cos {leag}) = —7—CAC_ exp {—las}.
Zk‘o ’Lko

We have obtained a homogeneous SLAE M#£4+7¢(3) with real matrix elements,

therefore, if the condition det {M#3(3)} = 0 is fulfilled, one can find its

real-valued solution A}, AS, A$, AZ. The dispersion equation for this is a real

transcendental algebraic equation for [, its solutions are presented on Fig. 4.
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1.52

1.51

6 d,un. A

Fig. 3. Graphs of the dispersion relations for the first five TE modes of a three-layer
polystyrene waveguide obtained by complex-valued functions of the fundamental system
of solutions

22ﬁ
]
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0 02 04 06 08 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Fig. 4. Graphs of the dispersion relations for the first five TE modes of a three-layer
polystyrene waveguide obtained using real-valued functions of the fundamental system of
solutions

4.2. TM Modes, Expressed through the Transverse Component . At
the same boundaries for the TM mode, which is expressed through a trans-
verse component H,, the boundary conditions are fulfilled: Hyg(a1) = Hyf(a1)
and E.s(a1) = E.f(a1) at a point z = aq and also Hys(as) = Hyc(az) and
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E.f(a2) = E..(az) at a point x = as. Let us express them in terms of amplitude
coefficients B :

Bt exp {yla;} = B exp {ix]a,} + By exp{—ixjai1},

J

J ) . .
L pexp{yla} = 2 (B exp{idar} — By exp{-ixjar}),
Zko{-?s k051

B exp {ixjaz} + By exp{—ixjaz} = B; exp {—1las},
AL (Bfr exp {ixjaz} — B exp{—ileag}) = ——<"B- exp{—7las}.
k‘oe’:‘l Zk‘o&c

The result is a homogeneous system of linear algebraic equations (SLAE)
M#4,(8) for the unknown amplitude coefficients B, By, Bf", B., whose
solution gives us its values in the expressions (3.12), (3.13) and (3.15), (3.16).
Notation Mﬁ/[(ﬂ) emphasizes that the system is obtained from the boundary
equations for the TM mode, which is expressed through the transverse (L) com-
ponent H,, has dimension 4 and its matrix elements depend on 3. Homogeneous
SLAE is nontrivial solvable under the condition of vanishing of its determinant,
this condition in integrated optics is called the dispersion relation. The dispersion
relation gives the dependence of the phase retardation 3 of the thickness of the
waveguide layer d = as — ay.

T T T T T T T T T T T
0 1.5 3.0 4.5 6.0 7.5
d,un. A

Fig. 5. Graphs of the dispersion relations for the first five TM modes of a three-layer

polystyrene waveguide obtained using complex-valued functions of the fundamental system
of solutions
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If, instead of expressions (3.13) and (3.16) we use the expressions (3.17)
and (3.18), the boundary conditions for the tangential components take the form:

B exp{vlai} = Bf cos {x]a1} + Bj sin {x]a1 },

Ve
ikoEs

J

1
ik051

Bf exp (v} = = (Bfsin {xia1} - B cos {xfa1}),
BS cos {xJas} + B sin {xlas} = BS exp{—7las},
; A

X in {xJ i v ‘
ikolel (Bf sin{xJas} — Bj cos {X]1(12}) — ikopgc B exp{—~las}.

We have obtained a homogeneous SLAE M#35¢(3) with real matrix elements,
therefore, if the condition det{M=+32¢(3)} = 0 is fulfilled, one can find its real-
valued solution B}, Bf, Bf, B.. The dispersion equation for this is a real
transcendental algebraic equation for .

2.27_

2.1

2.0 4

1.9+

1.8

1.7 1

1.6

1.5

4+
0 02 04 06 08 1.0 12 1.4 1.6 1.8 2.0 2.2

Fig. 6. Graphs of the dispersion relations for the first five TM modes of a three-layer
polystyrene waveguide obtained using real-valued functions of the fundamental system of
solutions

4.3. TE Modes, Expressed in Terms of the Longitudinal Component H..
The boundaries between layers of three-layer planar waveguide still cross the axis
Oz at a point © = a1 between the substrate and the waveguide layer and at a point
T = ay between the waveguide layer and cladding layer. On these boundaries
for the TE mode, which is expressed through a longitudinal component H., the
boundary conditions have the form: ﬁzs(al) = ﬁzf(cu) and Eys(al) = Eyf(al)

18



at a point x = a; and also I:IZf(CLQ) = flzp(ag) and Eyf(aQ) = Eyp(ag) at a
point = = as. Let us express them in terms of amplitude coefficients B

Bt exp{~ylai} = Bf exp {ix]a1} + By exp{—ixia,},

() Bt = (2

)(B+exp{lea1} B exp{—ixia1}),
Vs

X1

B exp {ixlas} + By exp{—ixlas} = B exp {—las},

—w (M—j> (Bf exp {ixias} — By exp{—ixjaz}) = iw (%) B exp {—~las}.
X1

C

The result is a homogeneous system of linear algebraic equations (SLAE)
1\7[9“4M(ﬂ) for the unknown amplitude coefficients Bf, By", B, B., whose
solution gives us its values in the expressions (3.21)—(3.23) and (3.24)—(3.26).
Notation l\N/I%/I(ﬁ) emphasizes that the system is obtained from the boundary
equations for the TM mode, which is expressed through the longitudinal compo-
nent ., has dimension 4 and its matrix elements depend on 5. Homogeneous
SLAE is nontrivial solvable under the condition of vanishing of its determinant.
The dispersion relation gives the dependence of the phase retardation 3 of the
thickness of the waveguide layer d = as — ay (see Fig.5).

Calculations of dispersion curves, made using the expressions obtained through
the waveguide equation for the longitudinal components, coincided with the cal-
culations of dispersion curves for the same waveguide modes, obtained through
the transverse components.

If, instead of expressions (3.23) and (3.26) we use the expressions (3.27)
and (3.28), the boundary conditions for the tangential components take the form:

B exp {ylar} = B cos {xdar} + B sin {xdan}.
—iw ( ) Bfexp {7la1} = —iw ( ) (B{ sin {x’a1} — B; cos {Xlal})
o X1

BS cos {xJaz} + B sin {xlas} = BT exp{—7las},

—w (Nl) (BCSIH{XIGQ} B cos{xlaz}) (M—;> B, exp{—vlaz}.
X1

C

We have obtained a homogeneous SLAE MH4R6(5) with real matrix elements,

therefore, if the condition det {M”4Re( B)} = 0 is fulfilled, one can find its
real-valued solution B+ Bl, Bl, B . The dispersion equation for this is a real
transcendental algebraic equation for ﬂ, its solutions are presented on Fig. 6.
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In this case calculations of dispersion curves, made using the expressions
obtained through the waveguide equation for the longitudinal components, coin-
cided with the calculations of dispersion curves for the same waveguide modes,
obtained through the transverse components.

4.4. TM Modes, Expressed in Terms of the Longitudinal Component £ ..

At the same boundaries for the TM mode, which is expressed through the
longitudinal component E., the boundary conditions have the form: FE.(a1) =
E.f(a1) and Hys(a1) = Hyf(ar) at the point = a;, and also E.f(a2) =
E..(az) and Hy¢(az) = Hyc(az) at the point & = ao. Let us express them in

terms of amplitude coefficients A;":

Afexp{yia1} = Af exp {ix]a1} + A7 exp {—ixla1},

iw (7) Afexp{rla} =w (%) (4 exp {idar} - A7 exp{=irdar}),
¥ X

1

AT exp {ix]as} + AT exp {—ixlas} = A7 exp{—rlas},

w (;%) (A} exp{ixjaz} — Ay exp{—ixjas}) = —iw (%) Ag exp {—vlaz}.

1 c
The result is a homogeneous system of linear algebraic equations (SLAE)
MU (8) for the unknowns AF, A}, Af, A- whose solution gives us the
values of the unknown amplitude coefficients in the expressions (3.31)—(3.33)
and (3.34)-(3.36). Notation 1\7[9~4M(ﬂ) emphasizes that the system is obtained
from the boundary equations for the TM mode, which is expressed through the
longitudinal (||) component F., is of dimension 4 and its matrix elements de-
pend on f3.

Calculations of the dispersion relations for TM modes, performed using the
expressions obtained through the waveguide equation for the longitudinal compo-
nents, coincided with the calculations of dispersion curves for the same waveguide
modes, obtained through the transverse components.

If, instead of expressions (3.33) and (3.36), we use the expressions (3.37)
and (3.38), the boundary conditions for the tangential components take the form:

AT exp{rlar} = Af cos {xfar} + Afsin {xfau },
iw (—‘;) Afexp{yiar} = iw % (flf sin {xJ a1} — A$ cos {X{al}) ,
v X1
i cos {xdaa} + A3 sin {xdaz} = A7 exp {~~laal},
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w<€1> (Acsm{xlag} Ascos{xlag}) —iw <%>A exp {—las}.

X1

We have obtained a homogeneous linear algebraic equations M“4R9(5) with
real-matrix elements, therefore, if the condition det {M%ﬁ”e( B)} = 0 is valid,
one can find its real-valued solutions AJr A¢, A‘{, A . The dispersion equation
in this case is a real transcendental algebraic equation for 5.

And in this case also calculations of dispersion curves for TM modes, ob-
tained through the longitudinal components, coincided with the calculations of
dispersion curves for the same waveguide modes, obtained through the transverse
components.

5. BOUNDARY EQUATIONS FOR FOUR-LAYER WAVEGUIDES

5.1. TE Modes, Expressed through the Transverse Component ;. The
boundaries between layers of a four-planar waveguide cross the axis Oz at a
point x = a; between the substrate and the first waveguide layer, at a point
T = ag between the first waveguide layer and the second waveguide layer and at
a point x = agz between the second waveguide layer and the covering. On these
boundaries for the TE mode, which is expressed through a transverse component
E,, the boundary conditions are valid: FEys(a1) = Eyf(a1) and H.s(a1) =
Hzf(a1) at a pOiIlt xr = ai, Eyl(ag) = Eyg(ag) and HZ1(G,2) = Hzg(ag) at a
point = a9, and also Eys(a3) = Eyc(as) and H.2(a3) = H.(az) at a point
x = asz. Let us express them in terms of amplitude coefficients Af:

Al exp {yla1} = Af exp {ix]ai} + Ay exp{—ixja1},

7 j
ZTSOAJF exp {%al} = (A+ exp {leal} A7 exp {—leal})

AT exp {ixlas} + AT exp {—ixlag} = AF exp {ix}az} + A exp {—ixbaz},

J ) .
2 (4F exp {irdas} — AT exp {—infaa}) =
J
X g — .
= k_j (A;' exp {ixjaz} — A5 exp {—zx%ag}) ,
Af exp {ixhas} + Ay exp{—ixbas} = AT exp {—1las},

j , : ] :
:—i <A2+ exp {ixjas} — A3 exp {_iX%a3}) = _%Ac_ exp {—las}.
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The result is a homogeneous system of linear algebraic equations (SLAE) M%%(ﬂ)
for the unknowns A¥, , AT, Af, AF, AT, AZ whose solution gives us the val-
ues of the unknown amplitude coefficients in the expressions (3.2), (3.3) and
(3.5), (3.6). Notation M7, (3) emphasizes that the system is obtained from the
boundary equations for the TE mode, which is expressed through the transverse
(L) component E,, is of dimension 6 and its matrix elements depend on [.
Homogeneous SLAE is nontrivial solvable under the condition of vanishing of its
determinant. This dispersion relation gives the dependence of the phase retarda-
tion (3 of the thickness of the first waveguide layer d = a2 — a; and the thickness
of the second waveguide layer h = a3 — as.

If, instead of expressions (3.3) and (3.6), we use the expressions (3.7) and
(3.8), the boundary conditions for the tangential components take the form:

Af exp {rlar} = A5 cos {xar} + A sin {xJar},

J , J A .
T AF exp {rdar} = =L (A5 sin{xdar} — Af cos {xlar})
iko ko

AS cos {\Jas} + A3 sin {xJas} = AScos {xbaz} + A5 sin {x}az},

J
X c j s j
- _iklo <A1 sin {xJas} — Aj cos {leag}) =

J ) .
~ 2% (agsin ko — Ageon rdon)
0

A cos {\bas} + A3 sin {xbas} = AT exp{—~las},

j A
—_X—2 (Ag sin {Xgag} — Aj cos {X%ag,}) = —7—£A; exp {—2as}.
Zk‘o ’Lko

We have obtained a homogeneous SLAE M#%/%(3) with real matrix elements,
therefore, if the condition det {M£8/*¢(8)} = 0 is valid, one can find its real-
valued solution A}, A§, A5, AS, A5, A . The dispersion equation for this is a
real transcendental algebraic equation for .

5.2. TM Modes, Expressed through the Transverse Component [1,. At
the same boundaries for the TM mode, which is expressed through a transverse
component H,, the boundary conditions have the form: H,s(a1) = Hys(a1)
and Ezs(al) = Ezf(al) at a point xr = ai, Hyl(ag) = HyQ(ag) and Ezl(ag) =
E.>(a2) at a point & = a9, and also Hy2(as) = Hyc(a3) and E.2(a3) = E..(as)
at a point x = ag. Let us express them in terms of amplitude coefficients B,f:

Bt exp {yla;} = B exp {ix]a,} + By exp {—ixa1},
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oK
ikoe’:‘s

J
; X i _ i
Bl exp{+ia} = Kél (Bl+ exp {ixja1} — B exp{—zx{al}) ,

Bi exp {ix{ag} + By exp {—ix{ag} = By exp {ixéag} + B3 exp {—ixéag},

J ) )
kX—l (BT exp {ixjaz} — By exp{—%’xiaz}) =
0€1
d | |
= (B;r exp {ixjas} — By exp{—ix%ag}) ,
0€2
Bj exp {ix}as} + By exp{—ix}as} = B; exp{—1las},
X_%BJr inJ — BT i __72 B~ A
3 3 exp{ixzas} — By exp{—ixzas}) = —- . exp{—vlas}.
0E2 tkoee

The result is a homogeneous system of linear algebraic equations M#+5,(3) for
the unknown B, Bi", B, BS, BS, B_, whose solution gives us the values of
the unknown amplitude coefficients in the expressions (3.12), (3.13) and (3.15),
(3.16). Homogeneous SLAE is nontrivial solvable under the condition of vanish-
ing of its determinant, this condition gives the dependence of the phase retarda-
tion 3 of TM mode on the thickness of the waveguide layers: d = as — ay and
h = az — ag.

Graph of the dispersion curve for the TM mode repeats the features of the
graphic of the dispersion curve for the TE mode shown in Fig.7.

B + h)
2.1 4

d+ h,un. 1

Fig. 7. Dispersion curve of three-layer d = 0+ 4(\) and four-layer d = 4\, h = 0+ 1())
planar regular waveguide, calculated for TE mode
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If, instead of expressions (3.13) and (3.16) we use the expressions (3.17)
and (3.18), the boundary conditions for the tangential components take the form:

B exp{riar} = B{ cos {xja1} + Bj sin {xjas},

~ , Vv L ‘ ,
~i B e () = o (Bisin (xm} — B cos {xja})

BS cos {\}az} + Bj sin {xlas} = BS cos {x}as} + B sin {x}az},

J
X1
ikoEl

(Bt sin {xfaz} - Bi cos {x{az}) =

X5

ik062

(Bssin ) - B3 o))

B; cos {X%as} + B3 sin {X%%} = BT exp {_,Ygag}’
o ' ' " ‘
Toes (BS sin {xjas} — B3 cos {X%ag}) _ ikocgc B~ exp{—~las}.

We have obtained a homogeneous SLAE M+55¢(3) with real matrix ele-
ments, therefore, if the condition det {M7F57¢(3)} = 0 is valid, one can find its
real-valued solution B, Bf, Bj, BS, Bs, B, . The dispersion equation in this
case is also a real transcendental algebraic equation for 3.

In this case, the timetable of the dispersion curve for the TM mode repeats

the features of the graph of the dispersion curve for the TE mode shown in Fig. 8.

ph)
2.1

2.0+

1.9 4

1.5 T T T T T T T T T T T 1
4.0 4.2 4.4 4.6 4.8 5.0
h,un. A

Fig. 8. Dispersion curve of four-layer d = 4\, h = 0 + 1() planar regular waveguide,
calculated for TE mode
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5.3. TE Modes, Expressed in Terms of the Longitudinal Component H..
The boundaries between layers of three-layer planar waveguide still cross the
axis Oz at a point z = a; between the substrate and the first waveguide layer, at
a point x = ay between the first waveguide layer and the second waveguide layer
and at a point x = ag between the second waveguide layer and cladding layer.
On the boundaries for the TE mode, which is expressed through the longitudinal
component HZ, the boundary conditions have the form: Hzg(cn) Hzl(al) and
Eys(al) = Ey1(a1) at a pOlIlt xr = aj, HZ1(G,2) = Hzg(ag) and Ey1(a2) =
Eys(az) at a point « = ag,and also Hs(az) = H,.(a3) and Eys(az) = Eye(as)
at a point x = agz. Let us express them in terms of amplitude coefficients Bi.

Bt exp{yla;} = B exp {ixia,} + By exp {—ixjai1},

—iw (u_)) Bf exp{yia:} =
Vs
= —w( > (BJr exp {ixja1} — By exp{—leal})
X1

Bf exp {ixiag} + Bf exp {—ix{ag} = B; exp {ix%ag} + B; exp {—ix%ag},

—w<m> (B} exp {ixlas} — By exp {—ixlas}) =
X1

= —w <M2> (Bj exp {ixhas} — By exp {—ixéag}) )

X2

By exp{ixjas} + By exp{—ixjas} = B, exp{—~las},

- <M2> (B+ exp {1X2a3} By exp{—szag}) =

X2
=iw (=) B ex {—vja }
’}/Z c p cW3J-

The result is a homogeneous system of linear algebraic equations MH w(B)
for the unknown B, B, By, By, BJ, B., whose solution gives us the
values of the unknown amplitude coefficients in the expressions (3.21)—(3.23) and
(3.24)—(3.26). Homogeneous SLAE is nontrivial solvable under the condition of
vanishing of its determinant, this condition gives the dependence of the phase
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retardation 8 of TE mode on the thickness of the waveguide layers: d = as — a1
and h = a3 — as.

Calculations of the dispersion curves for TE modes, performed using the
expressions obtained through the waveguide equation for the longitudinal compo-
nents, coincided with the calculations of dispersion curves for the same waveguide
modes, obtained through the transverse components.

If, instead of expressions (3.23) and (3.26) we use the expressions (3.27)
and (3.28), the boundary conditions for the tangential components take the form:

BY exp{riar} = B cos {xjar} + Bj sin {xjas},

—iw (N—j> Bt exp {yla1} = —iw (M—;> (Bf sin {xJa,} — B; cos {X{al}) )
Vs X1

By cos {xjaz} + Bf sin {x]az} = B cos {xjas} + Bj sin {x3a2},

— iw (“—) (Bf sin {x]az} — B cos {xjaz}) =
X1

= —iw 'u—f (B§ sin {x}as} — Bj cos {xé@}) )
X2
BS cos {x}as} + Bisin {x}as} = BS exp{—~las},
iw [ 2 ) (Besin {+7 B35 cos {? —iw e B j
—iw | = | ( Bzsin{xzas} — B3 cos {xzas}) =iw | = ) B exp{—~las}.
X2 e

We have obtained a homogeneous SLAE 1\7[96; °(8) with real matrix ele-
ments, therefore, if the condition det {1\71‘7'%2 “(8)} = 0 is valid, one can find its
real-valued solution Bj, Bf, Bf , Bg, Bg, Bc‘ . The dispersion equation in this
case is also a real transcendental algebraic equation for 3.

In this case calculations of dispersion curves for TE-modes, obtained through
the longitudinal components, coincided with the calculations of dispersion curves
for the same waveguide modes, obtained through the transverse components.

5.4. TM Modes, Expressed in Terms of the Longitudinal Component F ..
At the same boundaries for the TM mode, which is expressed through the longitu-
dinal component E,, the boundary conditions have the form: E.¢(a1) = F.1(a1)
and Hys(a1) = Hyl(a1) at a pOiIlt T =ay, F, (ag) = Ezg(ag) and Hyl(ag) =
Hyo(az) at a point © = ag, and also E.2(a3) = E..(a3) and Hys(as) = Hyc(as)
at a point x = ag. Let us express them in terms of amplitude coefficients flf:

Af exp {vla1} = AT exp {ixia1} + A exp {—ixSa1},
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. Es 5 ; € 5 . e .
iw (—J) At exp {(Yla1} = w (—i) (Ai" exp {ixjai1} — A] exp {—zleal}) ,
X

s 1

/ﬁ' exp {ix]iag} + /Nll_ exp {—ix{ag} = fl; exp {ixéag} + /NXQ_ exp {—ixéag},

c _ o o o
w (—;) (A;r exp {ixjaz} — A7 exp{—zx{ag}) =

X1

6 ~ . . ~_ . .
=w (—j) <A2+ exp {ixjaz} — A5 exp {—zx%ag}) )

X2

A exp {ixdas} + Ay exp{—ixjas} = A exp {—1las},

NCI R ———
X2
. Ec 11— 1
= —iw (—J) A7 exp{—+las}.

The result is a homogeneous system of linear algebraic equations (SLAE)
1\7[¥6M(ﬂ) for the unknowns A+, AT, AT, A, AJ, A7, whose solution gives us
the values of the unknown amplitude coefficients in the expressions (3.31)—(3.33)
and (3.34)—(3.36). Notation I\N/IrM(ﬂ) emphasizes that the system is obtained
from the boundary equations for the TM mode, which is expressed through the
longitudinal (||) component E,, is of dimension 6 and its matrix elements depend
on 3.

Calculations of the dispersion curves for TM modes, performed using the
expressions obtained through the waveguide equation for the longitudinal compo-
nents, coincided with the calculations of dispersion curves for the same waveguide
modes, obtained through the transverse components.

If, instead of expressions (3.33) and (3.36) we use the expressions (3.37)
and (3.38), the boundary conditions for the tangential components take the form:

At exp {rlary = A5 cos {xar} + A sin {xJar},

iw (%) Afexp{yia} = iw (%) (121; sin {xJa1} — A$ cos {X{al}) ,
s 1

Af cos {xjaz} + A7 sin {x{az} = A5 cos {xhas} + A3 sin {x}az},
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iw % (flﬁj sin {xJas} — A5 cos {X{ag}) =

X1

- fe oo (i is j
= iw (—?) (A2 sin {x3as} — A3 cos {X%CLQ}) ,
X2
A cos {\bas} + A3sin {xbas} = A7 exp{—~las},

. €2 T o j %5 j . €c\ 57— j
w| = 5sin{xzas} — A3 cos {x3as}) = —iw | = | AZ exp{—~las}.

X2 Ye

We have obtained a homogeneous SLAE M%{;e (B) with real matrix ele-

ments, therefore, if the condition det {1\71‘7'16]\1}@(6)} = 0 is valid, one can find its

real-valued solution Af, A§, A5, A5, A5, A-. The dispersion equation in this
case is also a real transcendental algebraic equation for 3.

In this case also calculations of dispersion curves for TM modes, obtained
through the longitudinal components, coincided with the calculations of dispersion
curves for the same waveguide modes, obtained through the transverse compo-
nents.

6. THREE-LAYER WAVEGUIDE DISPERSION RELATIONS IN THE
TRIGONOMETRIC FORM

6.1. TE Modes in the Record through the Transverse Components. So-
lutions in the substrate and cover layer are of the form (3.2) and (3.5), in the
waveguide layer solutions have the form (3.9) and (3.10). The boundary condi-
tions for a three-layer waveguide at the points x = a; and = ay are written
as:

AT exp {yla1} = Oy cos {xJa1 + ¢1}, (6.1)
o : X '
= At exp{yla1} = - Crsin{xja1 + ¢1}, (6.2)
’Lko Zk‘o

Ci cos {xjaz + é1} = A7 exp {—laz}, (6.3)
X{ - J o 'YZ — j

—=Cysin{xjaz + ¢1} = —==A- exp{—~laz}. (6.4)

’Lk() ’Lk()

We divide Eq. (6.2) to Eq. (6.1) and obtain

A

J
- X j
ko = ik tg {Xlal + ¢1} (6.5)
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We divide Eq. (6.4) to Eq. (6.3) and we obtain

o

tg{xm +o} = (6.6)
’Lko
Equality (6.5) is equivalent to
J ’Yg s
tg{xia1 + é1} = —— = —tg (1), 6.7)
X1
and the equality (6.6) is equivalent to
: o
tg {x1a2 + o1} = kA (6.8)
1

Introducing the left-hand side of expression (6.8) into the form tg {X{az +¢1} =
tg {xJ (a2 — a1) + xJa1 + ¢1} and applying the transformation tg (A + B) =
tg (A) +tg (B)

1 Ftg (A)tg (B)
result relation

tg (xf(a2 —a1)) =tg (o7 + ¢7) =tg (arctg <7J> + arctg (7S )) . (6.9)

X1 X1

to the relations (6.7) and (6.8) several times, we obtain the

Relation (6.9) is equivalent to the relation det {M7%(3)} = 0 in Subsec. 4.1 and
they both hold for all solutions of the roots 3;(d) of the dispersion equation (6.9).
From relation (6.9) follows the dispersion relation in the form:

Xrd = arctg (76 ) + arctg <7fn> + mm, (6.10)
X1 X1

often used in the literature on planar optics [21-28]. Relation (6.10) satisfies
every root 3,,(d) of the dispersion equation for TE modes with the number m of
its phase shift mm.

6.2. TM Modes in the Record through the Transverse Components.
Solutions in the substrate and cover layer are of the form (3.12) and (3.15), and
in the waveguide layer solutions have the form (3.19) and (3.20). The boundary
conditions for a three-layer waveguide at the points z = a; and x = a9 are
written as: )

Texp{yla1} = Dy cos{xiai + 1}, (6.11)

X!
Zk B+ exp{yla;} = —D1 sin {xJai + 1}, (6.12)
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Dy cos {xlaz + 11} = B exp {—las}, (6.13)
X1
ikoEl

. J )
Dysin{xjas + 1} = %Bc_ exp {—7las}. (6.14)
0cc

We divide equality (6.12) to equality (6.11) and transform it to

€17}

tg{xjar + 1} = ——= = —tg (¥}, (6.15)

€sX7

we divide equality (6.14) to equality (6.13) and transform it to

J — glryg — c 6 16
tg {x1a2 + Y1} o] = tg (¢1). (6.16)
eX1

Introducing the left-hand side of (6.16) into the form tg {le as+i1} = tg {le (ag—
tg (4) £ tg (B)

1Ftg (A)tg (B)
to the relations (6.15) and (6.16) several times, we obtain the result relation

a1)+x}a;+1 } and applying the transformation tg (A+ B) =

tg (xf(a2 — a1)) = tg (Y7 + 1) =

J J
= tg | arctg % + arctg % . (6.17)
€eX1 €sX1

Relation (6.17) is equivalent to the relation det {M#4,(3)} = 0 in Subsec. 4.2
and they both hold for all the roots 3;(d) of the solutions of dispersion Eq. (6.17).
Relation (6.17) implies the dispersion relation in the form:

Xfd = arctg (617371) + arctg (617‘:”) + mm, (6.18)
€cX1 EsX1

often used in the literature on planar optics [21-28]. Relation (6.18) satisfies

every root (,,,(d) of the dispersion equation for TM modes with the number m

of its phase shift m.

6.3. TE Modes in the Record through the Longitudinal Components.
Solutions in the substrate and cover layer are of the form (3.22) and (3.25), and
in the waveguide layer solutions have the form (3.29) and (3.30). The boundary
conditions for a three-layer waveguide at the points z = a; and x = ao are
written as: ~ ~ A ~

B exp{yJa1} = D; cos {xjai + 1}, (6.19)

—iw (M—;) Bfexp {7la1} = —iw (M—Jl> DS sin {xJar + 1}, (6.20)
s X1

30



D; cos {X{ag + 1;1} = BC_ exp {—wgag}, (6.21)

—iw (u—;> DSsin {x}as + 91} = iw (u—§> B exp{—las}. (6.22)
Xl c
We divide relation (6.20) to relation (6.19) and transform it to

S

s X -
tg {xja1 + 91} = — Xzs = —tg (1), (6.23)
then divide relation (6.14) to relation (6.13) and transform it to

tg {xjaz + Y1} = % = tg (¢1). (6.24)
Introducing the left-hand side of (6.24) in the form tg {xJas+¢1} = tg {x’ (aa—
tg (A) + tg (B)

1Ftg (A)tg (B)
to the relations (6.23) and (6.24) several times, we obtain the result relation

a1)+x} a1+ } and applying the transformation tg (A+ B) =

tg (xf(a2 — 1)) = tg (¢ + ¢}) =

3 i I i
=tg (arctg (%) + arctg (%)) . (6.25)

Relation (6.25) is equivalent to the relation det {M%E(ﬂ)} = 0 in Subsec. 4.3 and
they both hold for all solutions of the roots 3;(d) of the dispersion equation (6.25).
Relation (6.25) implies the dispersion relation in the form:

X fd + arctg (X:n> + arctg (X:n> = mm, (6.26)
’-YC rYS

often used in the literature on planar optics [21-28]. Relation (6.26) satisfies

every root 3,,(d) of the dispersion relation for TE modes with the number m of

its phase shift mm (see Fig.9).

6.4. TM Modes in the Record through the Longitudinal Components.
Solutions in the substrate and cover layer are of the form (3.22) and (3.25), and
in the waveguide layer, solutions have the form (3.29) and (3.30). The boundary
conditions for a three-layer waveguide at the points * = a; and x = ag are
written as:

AF exp {yla1} = Cycos {xJa1 + ¢1}, (6.27)

s 1

w (6—;> fﬁ' exp {’yﬁal} = jw (%) C, sin {X{al + (;31}, (6.28)
v X
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Fig. 9. Dispersion curves for the first five TE and TM modes of polystyrene waveguide
on a glass substrate (n. = 1.000, ns = 1.515, ny = 1.590 for A = 0.633 pm), calculated
using the trigonometric forms of the characteristic equation

C} cos {X{ag + q~51} = fl; exp {—las}, (6.29)
iw (%) Cisin{xlas + ¢} = —iw (8—;> A7 exp {—~las}. (6.30)
X ot

1 c
We divide equality (6.28) to equality (6.27) and transform it to

, - cax? -,
tg {xia1 +¢1} = <—le> = tg (1), (6.31)
E17s
then we divide equality (6.30) to equality (6.29) and transform it to
it d eexi o
tg{xioz +dn}=—{ )= —tg(¢9)- (6.32)
17c

Introducing the left-hand side of (6.32) in the form tg {xas +¢1} = tg {x] (aa—
tg (A) + tg (B)

17 tg (A)tg (B)
to the relations (6.31) and (6.32) several times, we obtain the result relation

a1)+xJ a1+ 1} and applying the transformation tg (A=+ B) =

tg (xs(az — a1)) = tg (65 + 4}) =
J J
tg | —arctg ECX; — arctg % . (6.33)
€17%e €17s
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Relation (6.33) is equivalent to relation det {MgfLM(ﬂ)} = 0 in Subsec. 4.4 and
they both hold for all solutions of the roots 3;(d) of the dispersion relation (6.33).
Relation (6.33) implies the dispersion relation in the form:

m m
Xfd + arctg <%> + arctg <%> = mm, (6.34)
a1 €17s"

often used in the literature on planar optics [23-28]. Relation (6.34) satisfies
every root (3,,(d) of the dispersion relation for TM modes with the number m of
its phase shift mm (see Fig. 10).
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Fig. 10. Dispersion curves for the first five TE and TM modes of tantalum waveguide on
a glass substrate (n. = 1.000, ns = 2.150, ny = 1.590 for A = 0.633 pm), calculated
using the trigonometric forms of the characteristic equation

7. THE DISPERSION RELATIONS OF THE FOUR-LAYER WAVEGUIDE
IN THE TRIGONOMETRIC FORM

7.1. TE Modes in the Record through the Transverse Components. So-
lutions in the substrate and cover layer are of the form (3.2) and (3.5), and in
the waveguide layer solutions have the form (3.9) and (3.10). The boundary
conditions for a three-layer waveguide in the points * = a;, * = ag and = = ag

are written as: 4 ,
At exp{ylai} = C1cos{xja1 + ¢1}, (7.1

J , J ,
7—514;" exp{vyla1} = ~ XM 0y sin {xjai + é1}, (7.2)
’Lko ’Lko
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C] cos {X{ag + ¢1} = Cscos {X%ag + ¢2}, (7.3)

J A J A
~ Xy gin {xla2 +¢1} = — X2 0y sin {xpa2 + ¢2}, (7.4)
’Lko ’Lko
Cy cos {xhas + ¢2} = AT exp {—las}, (7.5)
J , J A
~ 22 0, gin {xbas + ¢} = —7—014; exp{—~las}. (7.6)
’Lko ’Lko

We divide equality (7.2) to equality (7.1) and obtain

. J
tg {xia1 + 1} = —% = —tg(¢}), (1.7)
1

we divide equality (7.4) to equality (7.3) and we obtain

() tg Ixdaz + ¢1} = (X3) tg {xdaz + ¢2}. (1.8)

Then we divide equality (7.6) to equality (7.5) and obtain

. J
tg {xjas + ¢} = % = tg (45). (7.9)
2

Representing the left and right sides of (7.8) as

tg {xiaz + é1} = tg {xi(az — a1) + xja1 + ¢1} (7.10)
and , 4 4
tg {xdaz2 + g2} = tg {x3(a2 — az) + xbaz + ¢a}, (7.11)
tg (A) £tg (B
as well as applying the transformation tg (A + B) = tg(4) g (B) several

~ 1Ftg(A)tg(B)
times to the relations (7.7) and (7.9)—(7.11), we obtain the result relation

J
tg (¢ + X2 (a2 — a)) = L tg (x1(az — ar) — 7). (7.12)
X2
Relation (7.12) is equivalent to relation det {M=%(3)} = 0 in Subsec. 5.1 and
they both hold for all the roots 3;(d) of the solutions of dispersion relation (7.12).

Relation (7.12) implies the dispersion relation in the form:

X5'h = arctg (%) — arctg (X—lmtg (()d"d) — arctg%)) +mm, (7.13)
X2 X2 X1
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often used in the literature on planar optics [29-32]. Relation (7.13) satisfies
every root 3,,(d) of the dispersion relation for TE modes with the number m of
its phase shift ma.

In works [33-34] the characteristic equations were first solved numerically
for real refractive indices, and in [21] for complex refractive indices. Our calcu-
lations [3, 6,9, 37] coincided with the results [21,33-34].

7.2. TM Modes in the Record through the Transverse Components.
Solutions in the substrate and cover layer are of the form (3.12) and (3.15), and
in the waveguide layer, solutions have the form (3.19) and (3.20). The boundary
conditions for a three-layer waveguide in the points x = a1, £ = ag and © = as
are written as:

Bt exp{ylai} = Dy cos{xlas + 1}, (7.14)
'Yj + j X{ j
- p Jar} = =L Dy sin {y] 7.15
Thoe. s exp {yia1} e sin {x7a1 + ¥1}, (7.15)
D cos {x{ag + 11} = Dy cos {X%az + 2}, (7.16)
X : X5 -
e Dysin{xjas + 1} = sz sin {x3as + 12}, (7.17)
Dy cos {xhas + 1y} = BT exp {—~las}, (7.18)
X3 j gt j
D5 si 7 =—° B~ —~ . 7.19
Toes 2 sin {xpa3 + 2} Thoe. e exp{—vlas} (7.19)

We divide equality (7.15) to equality (7.14) and transform it to

. E g
tg (xdar + i} = — 25 = —tg (4}, (7.20)

€sX1

divide equality (7.17) to equality (7.16) and transform it to

X ; _(x ;
-, tg{xia2 + Y1} = - tg {x3a2 + Yo} (7.21)

Then we divide equality (7.19) to equality (7.18) and transform it to

j — 6275 — (& 722
te {xzas +v2} = - o = tg (v5). (7.22)
cX?2
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Introducing the tangents to the left and right sides of (7.21) as

tg {xlas + U1} = tg {xI (a2 — a1) + xJa1 + 1} (7.23)

and
tg {xbaz + ¥} = tg {x4(az — a3) + xhas + 1} (7.24)
tg (A) £tg(B)

1 ¥ tg (A)tg (B)
tions (7.20) and (7.22)—(7.24) several times, we obtain the result relation

and applying the transformation tg (A + B) = to the rela-

J
tg (145 + xa (a2 — ag)) = —i tg (x1(as — a1) — ¥3). (7.25)
1X2

Relation (7.25) is equivalent to relation det {M+$,(3)} = 0 in Subsec. 5.2. and
they both hold for all solutions of the roots 3;(d) of the dispersion equation (7.25).
Relation (7.25) implies the dispersion relation in the form:

e m
X5 h = arctg (%) +

€cXa

axT" m €174
+ arctg —tg | (x1'd) —arctg—"| | + mm, (7.26)
€1X2 €sX1

often used in the literature on planar optics [29-32]. Relation (7.26) is satisfied
for every root f3,,(d) of the dispersion equation for TM-modes with the number
m of its phase shift mm. In this case our calculations [3,6,9,37] also coincided
with the results of studies [21,33-34].

7.3. TE Modes in the Record through the Longitudinal Components.
Solutions in the substrate and cover layer are of the form (3.22) and (3.25), and
in the waveguide layer solutions have the form (3.29) and (3.30). The boundary
conditions for a three-layer waveguide in the points * = a;, * = ag and = = ag
are written as: ~ ~ A ~

B exp{yJa1} = D; cos {xjai + 1}, (7.27)

—iw (N_;) Bt exp {4la1} = —iw (u_;) DSsin {xJa; + 1}, (7.28)
s Xl
Dy cos {xlaz + 11} = Dy cos {xhaz + 1}, (7.29)
. M1\ Ae j TN s B2 ) ~e . J 7
—iw | = Disin{xjaz + 1} = —iw = D5 sin{xjas + ¢2}, (7.30)
X1 X2
Dy cos {x}as + 12} = BT exp {—las}, (7.31)
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—iw (M—j> DS sin {xbas + o} = iw (M—;> B exp{—9las}. (7.32)
X2 e

We divide equality (7.28) to equality (7.27) and transform it to
) _ Xﬂl' -
tg{xia1 + 1} = | =5 | =tg (1), (7.33)
divide equality (7.30) to equality (7.29) and transform it to
(‘%) tg {xjaz + d1} = (“—j) tg {xjaz + g2}, (7.34)
X1 X2

then we divide equality (7.32) to equality (7.31) and transform it to

tg {xjas + 2} = — (:—%) = —tg (¢5)- (7.35)

Introducing the tangents to the left and right sides of (7.34) as
tg {xlas + ¥1} = tg {x](as — ar) + xjar + ¢n} (7.36)

and . ~ . . ~
tg {xa2 + P2} = tg {x3(a2 — a3) + x3a3 + 2}, (7.37)
and applying the transformation tg (A + B) = te(4) £tg (B) several times to

17 tg(A)teg (B)
the relations (7.33) and (7.35)—(7.37), we obtain the result relation

X

tg (—15 + x2(az — a3)) = s tg (xa(az —a1) + P). (7.38)
H2X7

Relation (7.38) is equivalent to relation det {M‘}?E(ﬁ)} = 0 in Subsec.5.3, and

they both hold for all solutions of the roots 3;(d) of the dispersion equation (7.38).
Relation (7.38) implies the dispersion relation in the form:

X X X
X5 h + arctg —]2 + arctg —]2 tg | (xT'd) + arctg —]1 =mm, (7.39)
Ye X1 Vs

we have not seen in the literature on planar optics. Relation (7.39) is satisfied for
every root 3,,(d) of the dispersion equation for TE modes with the number m of
its phase shift mm.

Calculations made according to the relations (7.39) coincided with the cal-
culations carried out according to the relations (7.13) and with the calculations
of [33,34].
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7.4.TM Modes in the Record through the Longitudinal Components.

Af exp {ylar} = Cy cos {xjar + b1 },
. Es 1+ j . €1 ~ . J 7
iw | — | Ay exp{vlar} =iw | — | Cisin{xja1 + ¢1},
Vs X1

Ch cos{xlaa + ¢1} = Cy cos {xhas + da},
. €1 . j TN . €2 . j bt
iw | — | Crsin{xjaz + ¢1} =iw | = | Casin{xza2 + ¢2},
X1 X2
Cy cos {xbas + ¢o} = A7 exp {—~las},
€

iw <€—§> Cysin {xjas + ¢po} = —iw (—j) A7 exp{—+las}.
X2 c

We divide equation (7.41) to equality (7.40) and transform it to

E17s

. - J -
tﬂﬁm+%h<5%>E%W%

divide equality (7.43) to equality (7.42) and transform it to

(%) tg {xjaz + 1} = (%) tg {x3az2 + é2},

X1 X2

and divide equality (7.45) to equality (7.44) and transform it to

) ~ J .
@u@www=—<iﬁ>z%M%>

82%

Introducing the tangents to the left and right sides of (7.34) as

tg {xjaz + o1} = tg {xI(az — a1) + xja1 + ¢1}

tg {xjaz + ¢2} = tg {x}(az — as) + xjas + ¢}

38

Solutions in the substrate and cover layer are of the form (3.22) and (3.25), and
in the waveguide layer solutions have the form (3.29) and (3.30). The boundary
conditions for a three-layer waveguide at the points z = a;, * = ag and = = ag
can be written as:

(7.40)

(7.41)

(7.42)

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

(7.50)



tg (A) £ tg (B)

1Ftg(A)tg (B)
the relations (7.49) and (7.50), we obtain the result relation

and applying the transformation tg (A + B) = several times to

tg (—(;35 + x2(az —a3)) = c 78 (x1(ag —a1) + q;i) (7.51)

Relation (7.51) is equivalent to relation det {My’lM(ﬁ)} = 0 in Subsec.5.4, and
they both hold for all solutions of the roots 3;(d) of the dispersion equation (7.51).
Relation (7.51) implies the dispersion relation in the form:

J
X5 h + arctg @ —
Ye€2

J J
— arctg (% tg ((XTd) + arctg%)) =mm, (7.52)
€2X1 Ys€1

we have not seen in the literature on planar optics. Relation (7.52) satisfies every
root 3, (d) of the dispersion relation for TM modes with the number m of its
phase shift ma.

Calculations made according to the relations (7.52), coincided with the cal-
culations carried out according to the relations (7.26), and with the calculations
of [33,34].

8. FIELDS OF GUIDED MODES

In Subsec. 4.1, Figure 4 shows the dispersion curves of the first five TE
modes and the first five TM modes of a three-layer polistirol waveguide on a
glass substrate. These dependencies are calculated as zeros of the determinant
of linear algebraic equations with real matrix elements for undefined fields, the
amplitude coefficients and the solutions are real functions ((d). Substitution
of the calculated value of 3(d) into the matrix M7+ (3) makes the nontrivial
solvability of homogeneous SLAE

Mirife(5)A = 0. (7.53)

There is a real solution A, A§, A5, A of system (7.53). These real coefficients
are multiplied by the real-valued functions of the fundamental system of solutions
of (3.7), (3.8), as a result we obtain a real-valued amplitude of the vertical
distribution of the three nonzero field components of the waveguide modes, whose
graphs are shown in Figs. 11, 12.
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Fig. 11. Vertical distribution of components E,, H., H, of the fields of waveguide
mode T'E1, corresponding to point 1 in Fig.4, and the fields of waveguide mode T E',
corresponding to point 2 in Fig.4

Fields of TM modes are given by a system of linear algebraic equations
Miile(8)B = 0. (7.54)

The vanishing of the determinant of this matrix det {MF3%¢(3)} = 0 gives the
dispersion curves for TM modes of a three-layer waveguide. Figure 6 shows
the first five dispersion curves of three-layer polystyrene waveguide on a glass
substrate. After the substitution of computed 3(d) into a matrix Mz#3,(3), sys-
tem (7.54) admits a real solution B}, B¢, B, B, . These real coefficients are
multiplied by the real-valued functions of the fundamental system of solutions
of (3.7), (3.8), as a result we obtain a real-valued amplitude of the vertical dis-
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Fig. 12. Vertical distribution of components E,, H., H, of the fields of waveguide
mode T E1, corresponding to point 3 in Fig.4, and the fields of waveguide mode T E',
corresponding to point 4 in Fig.4

tribution of the three nonzero field components of waveguide TM modes whose
graphs are shown in Figs. 13, 14.

In case the field of guided modes were expressed through complex-valued
functions of the fundamental system of solutions of (3.3) and (3.6), the amplitude
coefficients of the fields should be calculated from the SLAE

Mi#4(8)A = 0. (7.55)
The vanishing of the determinant of this matrix det {Mz%(8)} = 0 gives the

dispersion curves of TE modes of three-layer waveguide. Figure 5 shows the first
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Fig. 13. Vertical distribution of components H,, E., E, of the fields of waveguide mode
T My, corresponding to points 1 and 2 in Fig.6

five dispersion curves of three-layer polystyrene waveguide on a glass substrate.
After the substitution of computed 3(d) into the complex-valued matrix M#+4(3),
system (7.55) admits a complex-valued solution Af, AT, Af, A. These com-
plex coefficients are multiplied by complex-valued function of the fundamental
system of solutions of (3.3) and (3.6), as a result we get a complex-valued ampli-
tude of the vertical field distribution of waveguide TE modes. Figure 15 shows
graphs of the real and imaginary parts of the component F,, and Figure 16 shows
graphs of the real and imaginary parts of the component H.,.

In the case where the field of waveguide TM modes of a three-layer waveguide
is written in terms of complex-valued function of the fundamental system of so-
Iutions of (3.12) and (3.13), the amplitude coefficients of the fields are calculated
from the SLAE

M#3,(8)B = 0. (7.56)
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Dispersion curves of TM modes of a three-layer waveguide are given by the
solutions of the characteristic equation det {M=+4,(3)} = 0. Figure 7 shows the
first five dispersion curves of TM modes, a three-layer polystyrene waveguide
on a glass substrate. After the substitution of computed 3(d) into the complex-
valued matrix M#1,(3), the system (7.56) admits a complex-valued solution
B, Bf , Bf“ , B_ . These complex coefficients are multiplied by complex-valued
functions of the fundamental system of solutions (3.12) and (3.13), as a result we
obtain a complex-valued amplitude of the vertical field distribution of waveguide
TM modes. Figure 17 shows graphs of the real and imaginary parts of the
component H,, and Figure 18 shows graphs of the real and imaginary parts of
the component F,.

On figures 19.1-19.6 are presented the fields, calculated for the TE; mode, in
the vicinity of the transition from the first waveguide layer to the other waveguide
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Fig. 16. Graphs of the real and imaginary parts of the component H. of the waveguide
mode T'E4 polystyrene waveguide

layer in the interval from d = 4\ , h = 0A to d = 4\, h = 0.15), corresponding
to the dispersion relation of a four-layer regular waveguide.

Field components H, do not provide additional visual information, so we
omit them in this work. A more detailed energy and phase analysis of the
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Fig. 17. Graphs of the real and imaginary parts of the component H, of the waveguide
mode T'M, polystyrene waveguide
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Fig. 18. Graphs of the real and imaginary parts of the component E. of the waveguide
mode T'M, polystyrene waveguide

evolution of fields in the vicinity d = 4\, h = 0 + 1(\) of the dispersion curve
of a three-layer and four-layer planar regular waveguide will be held in one of
the following papers in the comparison of different approximate models of the

irregular waveguide.
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9. DISCUSSION AND CONCLUSIONS

In most publications on the planar waveguide, dispersion relations (the char-
acteristic equation) are used in the form (6.10), (6.18) and (7.13), (7.26). In [12],
the expression of the characteristic equation in the form det {M(3)} = 0 is pre-
sented and is approved without proper reasoning that it implies the trigonometric
form of the dispersion relation.

In most books [11-20] on planar optics, waveguide modes are calculated by
the solutions of wave equations for the transverse components of electromagnetic
field modes. In [38], a method for calculating the guided modes through the
longitudinal components is presented.

In all the cases, described in [11-20,38-40], characteristic equation of a
dielectric planar waveguide is derived from Maxwell’s equations without cor-
respondence with field equations. In these cases waveguide modes fields are
computed in one way or another, with the normalization of the amplitude on
the incident field amplitude or without normalization, using methods that do not
ensure the stability of the amplitude coefficients for changes in the parameters of
the waveguide.

In the case of numerical simulation of smoothly irregular waveguides in sub-
sequent stages of the problem stated in Section 1, we have to use computational
methods for solving systems of linear algebraic equations that are resistant to
changes in the parameters of the waveguide. In order the developed for this
purpose algorithms and computer programs reproduce the simulation results of
regular waveguides, we have at this stage to use the A.N.Tikhonov regular-
ized algorithm for solving systems of linear algebraic equations with imprecise
data [6,9,41].
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