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T'epopksn A.C., A6 mxaH A.T., Aiipan D. A. E11-2011-60
O MOzenMpoB HHUM CT TUCTHYECKHX CBOWCTB KJI CCHYeCKUX 3D cHMH-cTeKomn

Hccnenyorest €T TUCTHYECKHE CBOKMCTB KJI ccMYeckoro 3D CIMH-CTEKOIBHOrO Cl10s ONpENe/IeHHOMH
IIUPHHEl U OeCKOHeYHOH JUIHHBL. 3D cIMHOBOE CTEKJIO NMpPEeACT BIsieTcs B BHAE HC MOIS Heymopsao-
yeHHbIX 1D npoctp HerBennbix crmu-ueneid (ICL), rae B3 uMoneHcTBUS MEXIy CHMH-LEISIMU SIBIISIOTCS
ciyd WiHbIME (Hewpe JibHBIA  HC MOib 1D TICLI). Mok 3 HO, YTO B Ipejiesie BBIOJHEHUsS DProAgnyecKoil
runore3sl bupkrog 3D CHMH-CTEKIO MOXET ObITh I'€HEPHUPOB HO BCIIOMOT TEJIbHBIM I' MUJIBTOHU HOM
HeynopsigouenHoit 1D TICLL co ciyu itHeiM okpyxenueM. Heynopsnouennstii 1D TICL] onpenensiercs
H PpEeryIsapHOIl pelnerke, e B K XJIOM y3lle PeIIeTKH IIOMeIl eTCS ONMH CIIyd HHO OpHeHTHPOB HHBIH
ciuH. T KXe Npearosn I ercd, YTo K Kbl CIUH CIIyd WHO B3 UMOJCHUCTBYET C LIECThIO OMMXK HIIMMM
COCEHIMHU CIIMH MU (OB CIHH H pelleTKe U YeThIpe B OKPYXEHHH). B y31 X peleTku CIHH-IeNOYKH
OJTy4eHbl PeKYPPEHTHbIE TP HCLIEHICHTHbIE yp BHEHHUs. DTH yp BHEHHUs COBMECTHO ¢ ycimoBusimMu Cuibbe-
CTp MO3BOJIAIOT II T 3 I TOM HMOCTPOHTH CHHH-IIENIOYKY B OCHOBHOM COCTOSIHHU DHEPIUH, IJie BCE CITMHBI
H XOIITCS B MUHHM JIBHOIl 3HEPrUM KJI CCHYECKOro I MWIbTOHH H . H ocHoBe aTuX yp BHeHuii p 3p 6o-
T H ODHUIUH JIbHBIH BBICOKOIIPOM3BOAMUTEIIBHBINM II P JUIEJBHBINA JIFOPUTM Il Mojenupo Hud 3D crnuHo-
BOTO CTeKJI . P ccuuT HBI p CIipefiesieHHs p 3JTHYHBIX I P METPOB HEBO3MYIIEHHOTO CIIMHOBOTO CTEKNI . B
Y CTHOCTH, H JIMTHYECKM JOK 3 HO U YUCIEHHBIMU P CYET MH IIOK 3 HO, Y4TO P CIpeJereHHue KOHCT HThI
CIUH-CIIMHOBOTO B3 MMOJEHCTBUS B MOJEIBHOM I' MIUIBTOHH He OMK #mmx coceneil I'eitzenGepr , B oT-
JIMYUe OT IIMPOKO MCIONb3yeMoro p crpeneneHud I' ycc —DuB pac —AHIEpPCOH , YHOBIETBOPSET 3 KOHY
Ib( -ycTOHYMBOrO p crpeneneHus JleBu, KOTOpHI He uMeeT Auctepcuu. IIpeamoxeH HOB S opMyl
111 MOCTPOEHHS! CT TUCTHYECKOH CYMMbI B BUIE OJIHOMEPHOIO MHTErp J OT P CIpelelieHHs 3Hepruu
He MOma 1D TICL.

P 6ot Bbimonuer B JI 6op Topmu mH(OpPM HUOHHBIX TexHonoruil OVSIH.

IMpenpunt O6GbEeAUHEHHOTO UHCTUTYT SIAEPHBIX HcclenoB Huil. Jyow , 2011

Gevorkyan A.S., Abajyan H.G., Ayryan E. A. E11-2011-60
On Modeling of Statistical Properties of Classical 3D Spin Glasses

We study statistical properties of 3D classical spin glass layer of certain width and infinite length. The
3D spin glass is represented as an ensemble of disordered 1D spatial spin chains (SSC) where interactions
are random between spin chains (nonideal ensemble of 1D SSCs). It is proved that in the limit of Birkhoff’s
ergodic hypothesis performance, 3D spin glasses can be generated by Hamiltonian of disordered 1D SSC
with random environment. Disordered 1D SSC is defined on a regular lattice where one randomly
oriented spin is put on each node of lattice. Also, it is supposed that each spin randomly interacts
with six nearest-neighboring spins (two spins on lattice and four in the environment). The recurrent
transcendental equations are obtained on the nodes of spin-chain lattice. These equations, combined with
the Silvester conditions, allow step-by-step construction of spin chain in the ground state of energy where
all spins are in minimal energy of classical Hamiltonian. On the basis of these equations an original high-
performance parallel algorithm is developed for 3D spin glasses simulation. Distributions of different
parameters of unperturbed spin glass are calculated. In particular, it is analytically proved and numerical
calculations show that the distribution of spin—spin interaction constant in Heisenberg nearest-neighboring
Hamiltonian model, as opposed to widely used Gauss—Edwards—Anderson distribution, satisfies Lévy
alpha-stable distribution law which does not have variance. A new formula is proposed for construction
of partition function in the form of one-dimensional integral on energy distribution of 1D SSCs.

The investigation has been performed at the Laboratory of Information Technologies, JINR.
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1. INTRODUCTION

The wide class of phenomena and structures in physics, chemistry, ma-
terial science, biology, nanoscience, evolution, organization dynamics, hard-
optimization, environmental and social structures, human logic systems, financial
mathematics, etc. are mathematically well described in the framework of spin
glass models [1-9].

The considered mean-field models of spin glasses as a rule are divided into
two types. The first consists of the true random-bond models where the coupling
between interacting spins are taken to be independent random variables [10-12].
The solution of these models is obtained by n-replica trick [10, 12] and requires
invention of sophisticated schemes of replica-symmetry breaking [12, 13]. In
the models of second type the bond randomness is expressed in terms of some
underlining hidden site randomness and is thus of a superficial nature. It has
been pointed out in the works [14-16], however, this feature retains an important
physical aspect of true spin glasses, viz. they are random with respect to the
positions of magnetic impurities.

Note that all the mentioned investigations as a rule are conducted at equilib-
rium’s conditions of medium. This fact plays a key role in both analytical and
numerical simulation by Monte Carlo method.

Recently, as authors have shown [17], some type of dielectrics can be studied
by model of quantum 3D spin glass. In particular, it was proved that the initial
3D quantum problem on scales of space-time periods of an external field can be
reduced to two conditionally separable 1D problems where one of them describes
an ensemble of disordered 1D spatial spin-chains between which are random
interactions (further will be called nonideal ensemble).

In this paper we discuss in detail statistical properties of classical 3D spin
glass with suggestion that interactions between spins have short-range character.
We prove that nonideal ensemble of 1D SSCs exactly describes the statistical
properties of classical 3D spin glasses in the limit of Birkhoff’s ergodic hypothesis
performance. In the work a new high-performance algorithm for simulation of
this traditionally difficult calculated problem is developed.

In Section 2 the classical spin glass problem on 3D lattice is formulated.
Equations for stationary points and corresponding Silvester conditions are ob-



tained for definition of energy minimum on lattice nodes (local minimum of
energy). The formula for computation of different parameters distributions of
spin glass is defined.

In Section 3 a theorem on reduction of 3D spin glass problem to the problem
of nonideal ensemble of 1D SSCs is proved.

In Section 4 numerical experiments are adduced for unperturbed 1D SSCs
ensemble with spin chain’s length 103dy. In particular, distributions of energy,
polarization and spin—spin interaction constants of nonideal ensemble are investi-
gated in detail.

In Section 5 partition function is investigated in detail in the configuration
integral’s representation. A new representation is suggested for partition func-
tion in the form of one-dimensional integral on energy distribution of nonideal
ensemble.

In Section 6 the obtained theoretical and computational results are analyzed.
It is very important to note that it has been proved that in the framework of
the developed method it is always possible to exactly compute the ground-state
energy of 3D spin glasses.

2. FORMULATION OF PROBLEM

The objects of our investigation are solid-state dielectrics, type of SiO2
glass (amorphous silicon dioxide). According to the numerical ab initio sim-
ulations [7], the structure of this type compound can be well described by 3D
random network (Fig. 1,a). The red and brown lattice points on this figure cor-
respond to different atoms, while the links between them correspond to covalent
bounds. As a result of charges redistribution in outer electronic shells, atoms
of Si acquire the positive charge and atoms of O correspondingly the negative
charge. Thus, we can consider compounds of this type as a disordered 3D sys-
tem of similar rigid dipoles (hereinafter termed as a system of 3D disordered
spins, Fig. 1,b). Let us remind that under the similar rigid dipoles are meant the
dipoles for which the absolute values are equal (|p;| = |p;| = p°, where p; and
p; are two arbitrary dipoles), and they do not vary under the influence of an
external field.

The Hamiltonian of 3D classical spin glass system reads

H({r}) == Y_ Ji;8:8;, {r}=rirs...,
<ij>

where indices ¢ and j run over all nodes of 3D lattice, r; correspondingly de-
notes the coordinates of ¢th spin (see Fig. 1,b). For further investigation we will
consider a spin glass layer of certain width L, and infinite length (see Fig.2).
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Fig. 1. The structure of amorphous silicon dioxide SiO2 is described by 3D random network
with covalent bonds. Every silicon vertex (gold sphere) has 4 edges and every oxygen
vertex (red sphere) has 2 edge *

We will consider 3D compound in the framework of nearest-neighboring Hamil-
tonian model. Let us note that even for this relatively simple model numerical
simulations of spin glasses are extremely hard to solve NP problems.

At first we will consider an auxiliary Heisenberg Hamiltonian of the form

Ho({r}: No) = HSV({r}; No) + HP ({r); No), (1)

where the first term Hél)({r}; N,):

Nz—1

HP({rk No) == Y Jiir1SiSi,
=0

describes the disordered 1D spatial spins chain (SSC), while the second term
2
HE ({x}; No):

HY ({r}; N,) Z S Jii,8iS,

correspondingly describes the random surroundings of 1D SSC (see Fig.2). In (1)
Jii+1 and J;;_ are correspondingly random interaction constants between arbi-
trary ¢ and ¢ + 1 spins and between ¢ and i, spins, S;, S;4+1 and S;_ are spins

*The colored version of the figures of the present work is available at http://www.jinr.ru/publish
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Fig. 2. 1D SSC with the random environment. Recall that each spin chain is surrounded
by four spin chains which randomly interact with it. Symbols ® designate spins from the
random environment (four spin chains of surrounding)

(vectors) of unit length, which are randomly orientated in O(3) space. From the
general reasons it follows that with the help of (1) Hamiltonian and by way of
successive constructing we can restore the Hamiltonian of 3D problem. Recall
that the meaning of the construction is as follows. On the first step the central
spin chain on the x axis with its surroundings from four random spin chains is
considered (see Fig.2). On the second step as central spin chains are consid-
ered corresponding spin chains from the random surroundings, each of which
are surrounded by new four neighboring spin chains. Thus, repeating this cycle
periodically, we can construct the Hamiltonian of 3D problem. This idea will be
rigorously proved below.

For further investigation of spin glass problem, it is useful to write the
Hamiltonian (1) in spherical coordinates system:

N.—1
Ho({r}; Nx) = —Z {Jz it1 |:COS wz CcOos wi+1 cos (gOi—(pi_H)—l-SiIl wz sin w1+1:| +
=0

4
+ > i,

o=1

—

cos 1; cos 1, cos (p; — ;) + sin; sin wia} } 2)



Now the main problem is to find the angular configurations and spin—spin interac-
tion constants which can make the Hamiltonian minimal on each node of lattice.
Let us consider the equations of stationary point:

OHoy 0 O0Hy
i
where ©; = (v;, ;) defines the orientation of ith spin (¢;, ; are correspondingly
the polar and the azimuthal angles). In addition, ® = (@1, 05 ... 0Oy, ) describes
the angular configuration of spin chain consisting of NV, spins.
Substituting (2) into (3), we can find the following recurrent equations:

Doy 0, 3)

Jiz1i {— sinv; cos ;1 cos (p; — Yi—1) + cos1p; sin 1/%71} +

+ Jiit1 [— sint); cos 1 cos (@i — @iy1) + cos 1, sin ¢i+1} +
4
+ Z Jii, [— sint); cos s, cos (p; — @i, ) + cos 1 sin %—U} =0, 4
o=1

{ [Jzeu cos ;1 sin (p; — wi—1) + Jiig1 costhip1 X
4
X sin (¢p; — <pi+1)} + Z Jii, cost;, sin (¢; — cpia)} cos1p; = 0.

o=1

In order to satisfy the conditions of local minimum (Silvester conditions) for
Hy, it is necessary that the following inequalities be valid:

szwb(@?) >0, Awbwz(G?)A%%(eg) - Ai“pl(@?) >0, (%)

where Ay,0;, = 0°Hy/0a? and An,p, = Aa,p; = 0°Ho/0a;00;, in addition:

Awiwi(G?) = JFU{COS 1/)? COoS ;_1 COS (4,0? —@i—1) +sin 1/)? sin 1/)1;1}—1—
+ Jm‘+1{COS PY coshit1 cos (@) — pir1) + siney sin ¢i+1}+
4
+ Z Jii, {COS VY cos s, cos (0 — ;) + sinvy sinp;, },
o=1
Apip(07) = {Jiq i cos i1 cos (@) —pi1)+Jiiy1 cos Py cos (@] —piy1)+

4
£ i, costhi, 05 () = 0i,) o5 Ul Ay, (O) = 0.
o=1



Recall that ©F = (1Y, ¢©?) designates the angular configuration of the spin in the
case that the condition of local minimum for Hj is satisfied.

Thus, it is obvious that the classical 3D spin glass system (see Fig.1,b)
can be considered as a nonideal ensemble of 1D SSCs (see Fig.2) and there are
random interactions between spin chains.

Now we can construct distribution functions of different parameters of 1D
SSCs nonideal ensemble. To this effect, it is useful to divide the nondimensional
energy axis ¢ = ¢/de into regions 0 > €9 > ... > &,, where n > 1 and
€ is the real energy axis. The number of stable 1D SSC configurations with
length L, in the range of energy [ — de,e + de]| will be denoted by My _(¢),
while the number of all stable 1D SSC configurations correspondingly by symbol
M = %7 My, (e;). Accordingly, the energy distribution function can be

=1
defined byj the expression

Fr, (e;do(T)) = My, (e)/M}™, (6)

where the distribution function is normalized to unit:
n 0
lim Y " Fp (e5;do(T))de; = / Fr_(e:do(T))de = 1.
j=1 e

In a similar way we can also construct distribution functions for polarizations,
spin—spin interaction constant, etc.

3. REDUCTION OF 3D SPIN GLASS PROBLEM
TO 1D SSCS ENSEMBLE PROBLEM

Modeling of 3D spin glasses is a typical NP hard problem. This type of
problems are hard-to-solve even on modern supercomputers if the number of
spins in the system are more or less significant. In connection with the aforesaid,
the significance of new mathematical approaches development is obvious and on
this basis an effective parallel algorithm for numerical simulation of spin glasses
can be elaborated.

Theorem: The classical 3D spin glass problem at the limit of isotropy and
homogeneity (ergodicity) of superspins distribution (sum of spins in chain) in 3D
configuration space is equivalent to the problem of disordered 1D SSCs ensemble.

It is obvious that the theorem will be proved if we can prove that in the case
that the distribution of superspins in 3D configuration space is homogeneous and
isotropic, the following two propositions take place:



a) In any random environment which consists of four arbitrary spin chains,
it is always possible to find at least one physically admissible solution for spin
chain (the direct problem),

b) It is possible to surround an arbitrary spin chain from the given environ-
ment with such environment which can make it physically admissible spin-chain
solution (the reverse problem).

First we prove the direct problem.

By using the following notation:

Eit1 = cosit1, Mit1 =sin(p; — wit1), @)

the system of equations (6) can be transformed as follows:

Cr+ Jiiga [\ 1 = &y — tan; §ipa /1 =07, ] =0,
Co+ Jiig1 &1 mip1 =0, (®)

where parameters C; and Cy are defined by the expressions
4
Ci=Ji_1; [sin Yi—1 — tan; cos ;1 cos (p; — i—1)] + Z Jiiy X
o=1

X [Sin 1;, — tan; cos;, cos (i — cpia)] ,
4
CQ = Jifl 3 COS ’1/12;1 sin ((,0z — (,02;1) + Z Jz io COS ’l/}ia sin ((,0z — cpia).
o=1

From the system (8) we can find the equation for the unknown variable 7, 1:

Clni+1 +CQ\/1 — 77?+1 tany; + \/Ji2i+1"7i2+1 — 022 =0. 9)

We have transformed Eq.(9) to the equation of fourth order which is exactly

solved further: o2 A
2 2 2

7 = ) 771 = 5 (10)

i Jz‘z i+1 772‘2+1 B

where

A= cg{me cos? 1); + Cs + 2C% sin® 1), [1 + 0;1\/42”1 — 02— C2 cot %} }
Cy = —Cf + C3 sin® 4y,
B = J;liH cos* ; + 2C3Ji2i+1 cos® ; + (012 + 022 sin® wi)2.

Note that from the condition of nonnegativity of the value under the root we can
find the following nonequality:

i = CE +C3. (11)



In consideration of (7), we can write the following conditions:
2 2
0<&ii <1, 0<m, <1

As it follows from Eq.(10), if the solutions in previous two nodes (i — 1) and
i are known, then the solutions (1;11,p;+1) in the node (i + 1) can be defined
only by constant J;;11. In this connection, a natural question arises: are there
solutions for spin chain in arbitrarily given environment?

Let us consider the Silvester conditions (5) which can be written in the form
of the following inequalities:

Jiig1 081y cos g cos (@) — ip1) > —ar — sing) sintpiiq,
Jiit1 0081 cos (@) — pir1) cosy) > —as,  (12)

where constants a; and as are defined by the expressions

ar = Ji—14 {COS Wy coshi_1 cos (@] — @i—1) + sinyy sin %‘-1} +
1
+ Z Jii, [cos VY cos s, cos (@ — ;) + sin? sin;, } ,

o=1

4
ag = {Ji_liCOS ;1 cos (SO? — (pi_l) + Z Jii,, coSs ¢ia coSs ((p? — (pia)} coSs ¢?

o=1

So, the problem leads to the answer to the following question: are inequalities (11)
and (12) compatible or not. Taking into account solutions (10), it is easy to prove
that conditions (12) are automatically compatible at large absolute values of J; ;4.
On the other hand, there is no any contradiction with condition (11). Thus, the
direct problem or the proposition a) is proved.

Now our aim is to prove the reverse problem or the proposition b) which con-
sists in the following. We choose a spin chain from the environment (see Fig.2),

for example, {is} = (04,14,...,Ny4). In this spin chain all angular configura-
tions of spins (684), e @53)) are known, but the constants that define spin—spin

x

interactions in spin chain and interactions between spin chain and its environment
still are not defined. We will prove that it is always possible to surround each
spin chain by environment such that the selected spin chain will be the correct
solution from the main physical laws point of view (see conditions (4), (5)). In
the considered case {is} = {iy}, the spin chain is surrounded by four neigh-
bors, one of which {ig} = {i,} is fully determined, while three spin chains
{i1}, {i3} and {i,} should be still specified (see Fig.3). Recall that the mark «'»
designates a new environment with three spin chains. However, for simplicity
we will omit or more clearly make change them in the subsequent calculations
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Fig. 3. The projection of spin-chains ensemble onto the (Y, Z) plane. Spin chains are des-
ignated by symbols O and ) which correspondingly form the old and new environments

({Zé)}v {Z/l}’ {1/2}’ {Z;)}, {Z;l}) - ({iO}v {il}v {iZ}v {iS}v {14}) The pI‘OOf of the
proposition should be conducted as follows. We will suppose that the constants
of spin—spin interactions in the considered chain and the corresponding parame-
ters of two spin chains of environment are known. We will show that by special
choosing of parameters of the third spin chain {i3}, it is possible to ensure the
condition of local minimum energy is satisfied in the considered spin chain.

Let us define the following denotations for constants:

c1 = Ji—1i[—sintp; costhi_q cos (; — @i—1) + costp; sineh; 1]+
+ Jii, [ sing; cos i, cos (i — @i, ) + cost; sines, ],
c2 = —siny; cosPit1 cos (i — pir1) + cosy;sinthiyq, (13)
c3 = Ji—1icosi_ysin (¢; — @i—1) + Jii, cos, sin(p; — ¢i,),
€4 = costiyr8in(@; — @iy1), o =4.

Using (13), we can transform Eq. (4) to the following form:

3
c1+ cadiirn + Z Jii, [—sin; cos i, cos (p; — i, ) + costh; siny; ] =0,
o=1
3
cs+cadiip1 + Z Jii, cos i, sin (pi — i, ) =0,
o=1



which are equivalent to the following relations:

3
1
Jiir1 = _a_ - Z Jii, [—sine; cos ;. cos (p; — i, ) + cos; sin;_ ],
C2 C2
o=1
L3 (14)
C3 .
Jii = - - — JiiUCOS¢iUSlH i — Piy)-
+1 o ;::1 (pi — i)
After excluding J; ;41 from (3) we find the following equation:
3 (]
Z { o [—sin; cosy, cos (p; — @i, ) + cos; sina; | —
C2
o=1
- &coswia sin (¢; — cpia)} —c5 =0, c5= a_ s (15)
Cq C2 C4

Having made the following designation:
2 J: -
D= Z{ idg [— sin; cos v, cos (v; — @i, ) + cosp; sin; |—
o=1 €2

X

Cq

we can transform Eq. (15) to the following form:

Jii . )
D + —2[—sin; cos )y, cos (@; — ig) + cos; sint;,]—
C2

iis

— —= cos Yy, sin (@ — @4,) = 0.

Cq

Now substituting
T = COS Yi,

into (16), we find the equation

J,,
D+ %[—xsinwicos(goi — i) + V1 — 122 cos]—
2

Jiig .
—z—=2sin(p; — ¢4,) = 0.

Cq

From (18) the following square equation can be found:

Kox? 4+ 2Kz + Ko =0,

10

— —Z cos 1, sin (p; — @ia)} — c5,

(16)

7

(18)

(19)



where the following designations are made:

2
. Co .
Ko = cos® ¢; + (sm i cos (p; — @iy) + o sin (p; — <pi3)> ,
4

Decy (. c2 .
Ky = =2 (st cos s = ) + Zsin g = ) ).
4

113

D 2
K2 = (ij) — COS2 ’(/)1

The discriminant of the square equation (19) has the form

2
. Co .
D, = (sln i cos (@i — @iy) + C—2 sin (p; — cpi3)> cos? i+
4

2 Dey\* 2
+ 4 cos“Y; — 7 cos“; =0, (20)

which on some set of J;;, can be positive; i.e., the ith spin in spin chain {i4}
will satisfy the local minimum conditions.
Let us define:
y = cos (@i — @iy ). (21)

Substituting (21) into (16), we will find that

Jii . . Jii
D + —2[—y sint); cos iy, + cosp; sina,] — —2 cosh, /1 — 32 = 0,
Cq

C2

After squaring we will have the following equation:
Moy® + 2Myy + Mz = 0, (22)

where the following designations are made:

2
((C_2> + Sil’l2 7/%) COSQ /(/)igv
Cq4

D
My = —sin; cos 1, (COS Y sin;, + J—C2>’
idg

Des\ 2 e\ 2
My = (cos W sin; + 2) — (—2> cos? Vi -
Jiig c4

My

The discriminant of the square equation (22) has the form

DCQ

2 2
D, = (C—2> cos? 1b; + sin? 1; cos? Viy — (J + cos Y, sin 1/%) > 0. (23)
C4 i3

11



Obviously, there are some set of constants J;;, on which D, > 0. However, it
is more important to find the region of the interaction constant J;;, values for
which both determinants D, and D, are positive.

In particular, as the analysis of the following condition shows:

DCQ DCQ
= = Jiiz 2 ) 24
cos ; 3 cos ; 24
discriminant D,, is always nonnegative. On the other hand,
DCQ
S i = —_—, 25
s, Jii5C081; 25

which will assure that the D, discriminant is always nonnegative. A simple analy-
sis of the conditions (24) and (25) shows that they are compatible. In other words,
the set of constants J;,, which satisfies the energy local minimum condition is
not empty and therefore the proposition b) is proved.

So, we have proved the validity of a) and b) propositions. It is obvious
that at the simulation of 1D SSC problem we can in this way fill up 3D space
by 1D SSC, which is equivalent to obtaining 3D spin glass. When the number
of 1D SSCs is so much that the directions of spins in 3D space are distributed
isotropically and homogeneous, the statistical properties of both problems (3D
spin glass and 1D SSCs nonideal ensemble) will be obviously identical.

The theorem is proved.

4. RESULTS OF PARALLEL SIMULATIONS

One important consequence of the theorem is that for the numerical simu-
lation of the problem we can use the algorithm for solving the direct problem.
Obviously, a large number of independent computations of 1D SSC, which can
be carried out in parallel, in statistical sense make it equivalent to the problem
of 3D spin glass. This approach considerably reduces the amount of needed
computations and helps us effortlessly simulate statistical parameters of 3D spin
glasses of large size.

The strategy of simulation consists of the following steps (see Fig.4). At
first, the angular configurations of four spin chains are randomly generated which
form random environment of the spin chain that we plan to construct later. On
a following step, a set of random constants J;;  are generated, which character-
izes the interactions between the random environment and the spin chain. The
interaction constants are generated by Log-normal distribution. The angular con-
figurations of the random environment are generated in the same way as it is
described in [18]. Now that the environment and its influence on disordered

12
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Fig. 4. The algorithm of parallel simulation of statistical parameters of disordered 1D SSCs
nonideal ensemble. The symbol €2;, describes the input of environment, M is a number
of simulation or overall number of spin chains in the nonideal ensemble, NV, is a number
of spins in chain

1D SSC are defined, we can go over to the computation of a spin chain which
must satisfy the condition of local energy minimum. Note that the scheme of
further computation of nonideal ensemble of 1D SSCs (see Fig. 2) is identical
to the scheme of the computation of an ideal ensemble of disordered 1D SSCs
(see [18]). Note that all calculations of 1D SSCs nonideal ensemble are done for
spin chains with 102 dy length which require huge computational resources.

As the simulations show, for the ensemble which consists of 10° spin chains,
the dimensional effects practically disappear (see Figs. 5, a, b and 6) and the energy
distribution F'(¢) has one global maximum and is precisely approximated by
Gaussian distribution (see Fig. 5, a).

Mean values of polarizations on coordinates are not very small, especially
when it comes to coordinate x (thickness of spin glass layer): p, = —0.13508,
py = 0.036586, p, = —0.059995 and correspondingly the average energy of 3D

“+oo
SSC is equal to £ = —990.88, where p = [ F(p)pdp, p = (pu,Py:D=), € =
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Fig. 5. a) The energy distribution of 1D nonideal ensemble of SSCs with 10® length. The
red line shows a numerical data visualization, while the green one illustrates its fitting
by Gaussian function. b) The visualization of numerical data of spin—spin interaction
constants (pink line) and Gaussian distribution (blue line). The analysis of the numerical
data proves that the green curve is not analytic function and by the character is the Lévy
skew a-stable distribution function
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Fig. 6. The polarization distributions on different coordinates after 10° simulations

0
| F(e)ede and F is the distribution function. As our numerical investigations
—o00

have shown using the example of systems where the thickness of the spin glass
layer is not so large o 25dy—100dy, for a full self-averaging of superspin it is
necessary to make oc N2 simulations. In other words, the system can be fully
ergodic in the considered case if we continue the numerical simulations of the
spin chains up to oc 10° times.
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It is analytically proved and also the parallel simulation results show that the
spin—spin interaction constant cannot be described by Gauss—Edwards—Anderson
distribution (see Fig.5,b). It essentially differs from the normal Gaussian distri-
bution model and can be approximated precisely by Lévy skew alpha-stable dis-
tribution function. Let us recall that Lévy skew alpha-stable distribution is a con-
tinuous probability and a limit of certain random process X («, 3,7, d; k), where
the parameters correspondingly describe an index of stability or characteristic ex-
ponent « € (0; 2], a skewness parameter § € [—1;1], a scale parameter v > 0, a
location parameter 6 € R and an integer & which shows the certain parametriza-
tion (see [19,20]). Let us note that the mean of distribution and its variance are
infinite. However, taking into account that spin—spin interaction constant has lim-
ited value in real physical systems, it is possible to calculate distribution mean and
its variance. In particular, if J € [~5,45], then J = 0.89717 and J2 = 5.3382.

In the work we also present polarization distributions on different coordinates
(see Fig.6). The polarization distributions are obviously very symmetric by
coordinates in the considered case (see Fig.0).

One of the advantages of the developed algorithm is that we are able to take
into account the branching solutions at the successive constructing of the spin
chain (see Fig. 7). As calculations show, the number of branching solutions v for
spin chains of length 102 d is not more than 25. At the simulation process only
those spin chains are considered for which Silvester conditions are satisfied on
each node. If on some node the conditions are not satisfied, we try to regenerate
Jii4+1 1n order to obtain a new solution. However, if the solution is not found after
a large quantity of simulations, it means that the weight of these solutions are all

25

O RIS KT 2L

Fig. 7. The number of branching of solutions v shown along with the spin-chain length
depending on different initial conditions which are indicated by way of various colors

15



extremely small and further simulations of these spin chains are unpractical. Thus,
when the ensemble consists of a large number of spin chains, the self-averaging
of superspin (sum vector of spin chain) in 3D space occurs with high accuracy.
It is important to note that the summation procedure on the number of spins in
chain or on the number of spin chains in ensemble is similar to the procedure
of averaging by the natural parameter or «timing» in the dynamical system. The
latter means that at defined space scales of spin glasses it is possible to introduce
the concept of ergodicity for both separate spin chains and ensemble as a whole.

5. PARTITION FUNCTION

The main object of investigation of statistical mechanics, information science,
probability theory, etc., is the partition function which is defined for classical
many-particle case in configuration space as follows [21]:

2(9) = [ exp[-BH(r)]dridr ... 5= (26)

where kp is the Boltzmann constant and 7" is the thermodynamic temperature.
Obviously, when the number of spins or spin chains in the system are large, we
can consider the integral (26) as a functional integral. In any case the number
of integration in the expression (26) as a rule is very large for many tasks and
the main problem lies in the correct calculation of this integral. However, in
the representation of (26) configurations of spin chains that are not physically
realizable obviously make a contribution. Moreover, the weight of these configu-
rations is not known in general scenario and it is unclear how to define it. With
this in mind and also taking into account the ergodicity of the spin glass in the
above-mentioned sense, we can define the partition function as

0
Z(B; Ny) = / exp [ﬂs]F(s;Nw)ds, 27)

— 00

where F'(e; N;) is the energy distribution function in nonideal ensemble of 1D
SSCs with certain length NV, (see also definition (6)). Note that the partition func-
tion will be defined more precisely and comprehensively if the distribution func-
tion F'(g; N) is replaced by the new distribution function F'(¢; p; N,.), where p is
spin-chain three-climensional vector of polarization and the integration in (27) is
performed on space (¢;p).

Now we can define the Helmholtz free energy for ensemble of 1D SSCs in two
different ways. Using standard definition for Helmholtz free energy, we can write

Q(B; Ny) = — In[Z(B; No)],  Qu(B5Na) = In[Z.(8; Nz)|. (28)

N, N.3
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Note that the dependence on NV, of the expressions in (28) arises due to the finite
layer width. In particular, using the expression of partition function (26), we can
find the average value of free energy coming on one spin in the chain (see also [22]):

1 /&Y [sinha;
Q(ﬂ;Nz)Z—Nﬁ<Z ln{ : Z}>’ ri = Jiiy10, (29)
r i=0

where (...) designates averaging by 1D SSCs ensemble. Now the main prob-
lem is the investigation of behavior of free energy subject to the parameter (3.
Correspondingly, we can define two forms of free energy derivatives:

Nz—1

q(B; N) = 3@(5;;\@) = N152 < Z {1 +ln{smjxi} —x; cothxi}>,
xT 1:0 K3
. _ aQ*(/Bv Nz) _ 1 l . _ Z*;ﬁ(ﬁ; Nz)

where Z,, 3(8; Nz) = 0Z.(8; Nz)/08.

6. CONCLUSION

A new parallel algorithm is developed for the simulation of the classical 3D
spin glasses. It is shown that 3D spin glasses can be investigated with the help of
an auxiliary Heisenberg Hamiltonian (1). The system of recurrent transcendental
equations (3) and Silvester conditions (4) are obtained by using this Hamiltonian.
Let us note that exactly similar equations of stationary points (3) can also be
obtained if the full 3D Hamiltonian (see the first unnumbered formula) is used in
the framework of short-range interaction model. That allows us to construct step
by step a spin chain of the specified length with taking into account the random
surroundings. It is proved that in the limit of Birkhoff’s ergodic hypothesis
performance, 3D spin glass can be generated by Hamiltonian of disordered 1D
SSC with random environment. We have proved that it is always possible to
construct a spin chain in any given random environment which will be in ground-
state energy (direct problem). We have also proved the inverse problem, namely,
every spin chain of the random environment can be surrounded by an environment
so that it will be the solution in the ground state. In the work, all the necessary
numerical data were obtained by way of a large number of parallel simulations
of the auxiliary problem in order to construct all the statistical parameters of 3D
spin glass in the limit of ergodicity of 1D SSCs nonideal ensemble. As numerical
simulations show, the distributions of all statistical parameters become stable after
o N2 independent calculations which are realized in parallel. The idea of 1D
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Fig. 8. Two derivatives of Helmholtz’s free energy shown depending on reverse temper-
ature 3, which have been calculated by formulas (30) after 10° simulations. The figure
shows that at low temperatures the curves approach each other which is rather natural,
resulting from the decrease of the system’s entropy

spin chains parallel simulations, based on this simple and clear logic, greatly
simplifies the calculations of 3D spin glasses which are still considered as a
subset of difficult simulation problems. Let us note that computation of spin—
spin interactions distribution function from the first principles of the classical
mechanics is a very important result of this work. Analysis shows that the
distribution is not an analytic function. It is from the class of Lévy functions
which does not have variance J2 and mean value .J.

Despite the absence of calculations by other methods, it is obvious that the
developed scheme of calculations should differ from other algorithms, including
the algorithms which are based on Monte Carlo simulation method [23], in the
accuracy and efficiency. We were once again convinced in the accuracy and
efficiency of the algorithm after analyzing the results of different numerical ex-
periments by modeling the statistical parameters of 3D spin-glass system which
are presented in Figs.5,a, b and 6.

In the work a new way of partition function construction (configuration
integral) is proposed in the form of one-dimensional integral of the energy distri-
bution, which unlike the usual definitions does not include physically unrealizable
spin chains configurations (see the difference of free energy derivatives on Fig. 8).
It is obvious that the new definition of partition function is more correct and in
addition it is very simple for computation.

Finally, the developed method can be generalized for the cases of external
fields which will allow us to investigate a large number of dynamical problems
including critical properties of 3D classical spin glasses.
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