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Orthonormal Polynomial Approximation of Water Drop Evaporation
Data with Errors in Two Variables

The investigation for ˇtting drop water evaporation data as a result of original
microscope observations is presented. Our approximation algorithm with construction
of orthonormal polynomials (orthonormal polynomial expansion method, OPEM) is
applied to data with uncertainties in both independent and dependent variables. For
this purpose our numerical method is developed here to include both errors. We
also review its principles and analyze the orthonormal and ®usual¯ expansions of the
approximating function.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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1. INTRODUCTION

The evaporation of liquid drops considered as a physical process is of interest
from applied point of view in ecology and for various technical applications. The
process of forced evaporation of liquid drops placed within an air �ow seems to
be more interesting for technical purposes [1]. Up to now the wetting properties
of liquids are of considerable interest for research. This is not only because of
the various applications in industry, but also due to some unsolved topics in the
theory of liquid wetting [2Ä4]. A general study of drop evaporation is contained
in [5]. For general formulae to calculate time of evaporation and evaporation
mass of a liquid (not necessarily water) drop placed on non-wettable substrate,
we refer to [6, 7]. Here we are interested in the application of evaporation
process to a precise optical measurement of the water drop's contact angle during
the evaporation. Using this information, one can determine the so-called water
spectrum which re�ects some properties of water [3]. Due to the dependence of
energy spectrum (in the special case of natural waters) on chemical compositions,
or physical ˇelds, etc., the spectra re�ect the joint in�uence of all such factors.
Generally speaking, the in�uence of the ecosystem as a whole on the natural
waters thus presents a potential application to ecology.

2. PHYSICAL DATA

The water spectrum is determined by the method of evaporating drop taken
from the probe and placed on a non-wettable substrate [1] (see here Fig. 1).
We consider small water drops 2 of mass 1Ä10 mg, placed on a hydrophobic
substrate 3 with a contact angle θ. Here we study the variations of the wetting
angle of a sessile drop of water in two cases: before and after treatment in cleaning
station. In the course of evaporation of the drop, as the drop's contact angle
changes, we measure the frequency of appearance f of these angles within ˇxed
angle intervals. One can summarize that in this way the ®state spectrum¯ with
respect to the contact (wetting) angle is obtained of the corresponding system
of contact among the substrate, the water drop and the air. For this purpose,
one measures by microscopic observations at regular time intervals (here every
2 minutes) the values for several drops (to enable drawing statistical conclusions).
In this way one obtains a set of discrete values fi, i = 1, . . . , M , the frequencies
of occurrence of θi.

It is known that the water spectrum is sensitive to environmental in�uences
such as radiation [2], physical ˇelds [3], and others. Simultaneously with the
probe measurement, one determines the spectrum of the deionized water, the
so-called ®control¯. The arithmetic difference between the two spectra is called
differential spectrum, which is independent of incidental in�uences on the spec-
trum of the probe.
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Fig. 1. Experimental setup

Fig. 2. Experimental data from deionized (B) and non-treated water (C)
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Here N and n are the refraction indexes of water and glass correspondingly,
d is the thickness of the glass plate, the segment denoted by δ in Fig. 1 can be
neglected since δ � a, a is a measured width of the dark ring. According to
the laws of geometric optics, one can calculate the tangent of contact angle as a
function of the above cited parameters as follows:

tan θ = n/
(√

N2Δ − n2 − Δ1/2
)

; Δ = 1 + d2/a2.

We present such curves that correspond to the water in Fig. 2 (deionized water
control with open squares and non-treated water, probe with full circles).

3. PROBLEM DEFINITION

• To ˇnd the best approximation curve of measured water data in Fig. 1,
including errors in both variables;

• To extend our original orthonormal polynomial expansion method (OPEM),
according to some criteria, to evaluate orthonormal description of given data;

• To ˇnd the best approximating curve with usual polynomials, evaluated by
orthonormal;

• To present the evaluated approximated curves in the evaluated new corridor
of errors and in ˇgures and tables.

4. NUMERICAL METHOD Å OPEM ®TOTAL VARIANCE¯

Let the {θi, fi, i = 1, . . . , M} be arbitrary pairs of monitoring data θ = θi

and f = fi, introduced in Section 2. They are given with experimental errors in
both variables Å σ(fi) and σ(θi). Following the ideas of Bevington (1977) [8]
(where his proposal is to combine the errors in both variables and assign them to
dependent variable), we consider the total uncertainty (total variance) S2(θ, f),
associated with (θ, f)(see also [8Ä10]):

S2
i (θ, f) = σ2(fi) +

(
∂fi

∂θi

)2

σ2(θi). (1)

One deˇnes the errors corridor C(θ, f), which is the set of all intervals

[f(θ) − S(θ, f), f(θ) + S(θ, f)], (2)

associated which each pair (θ, f). The ˇrst criterion to be satisˇed is that the
ˇtting curve should pass within the errors corridor C(θ, f). In the cases of errors
only in f , (i.e., σ(θ) = 0, σ(f) �= (0)) the errors corridor C(θ, f) reduces to the
known set of intervals

[f − σ(f), f + σ(f)] (3)
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for any f . The second criterion is that the ˇtting curve fappr(θi) satisˇes the
expression

χ2 =
M∑
i=1

wi[fappr(θi) − f(θi)]2/(M − L) → min, wi = 1/S2
i (4)

(L Å optimal number of polynomials). The preference is given to the ˇrst
criterion. When it is satisˇed, the search of the minimal chi squared stops.

Our procedure gives results for approximating function by two expansions:
with orthogonal coefˇcients {ai} and usual ones {ci} at the optimal degree L:

fappr(m)(θ) =
L∑

i=0

aiP
(m)
i (θ) =

L∑
i=0

ciθ
i. (5)

The polynomials satisfy the following orthogonality relations:

M∑
i=1

wiP
(0)
k (θi)P

(0)
l (θi) = δk,l (6)

over the discrete point set {θi, i = 1, 2, . . .}. Then the orthogonal coefˇcients are
evaluated by the given values fi, weights and orthogonal polynomials (no matrix
inversion):

ai =
M∑

k=1

fkwkP
(m)
i (θk). (7)

Our recurrence relation for generating orthonormal polynomials and their deriv-
atives (m = 1, 2, . . .) (or their integrals with m = −1,−2,−3, . . .) are carried
out by

P
(m)
i+1 (θ) = γi+1[(θ − μi+1)P

(m)
i (θ) − (1 − δi0)νiP

(m)
i−1 (θ) + mP

(m−1)
i (θ)], (8)

where μi and νi are recurrence coefˇcients, and γi is a normalizing coefˇcient,
deˇned by scalar products of given data. One can generate Pm

i (θ) recursively.
Some details of the calculation procedure are given in Forsythe paper [11] and
in our papers [12Ä14]. The inherited errors in usual coefˇcients are given by the
inherited errors in orthogonal coefˇcients:

Δci =

(
L∑

k=i

(c(k)
i )2

)1/2

Δai, (9)

Δai =

[
M∑

k=1

P 2
i (θk)wk(fk − fappr

k )2
]1/2

, (10)
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where coefˇcients c
(k)
i are deˇned by orthonormal expansion of polynomials

Pk =
k∑

i=0

c
(k)
i θi, k = 0, . . . , L (11)

and explicitly constructed by recurrence relation in [12Ä14]. The comparison
among MINUIT, effective variance method and OPEM ®total variance¯ for
parabola is also given there (for χ2 and (Δc/c)). The results are comparable.

All the calculations for the sake of uniformity are carried out for θ in [−1, 1],
i.e., after the input interval is transformed to the unit interval. We remark some
advantages of OPEM: It uses the unchanged coefˇcients of the lower-order poly-
nomials; it avoids the procedure of inversion of the coefˇcient matrix to obtain
the solution. All these features shorten the computing time and assure the opti-
mal solution (by the criteria (2) and (4)). The procedure is iterative because of
the evaluation of derivatives on every iteration step, and the result of the kitth
consequent iteration is called below the kitth approximation.

• First iteration step: (kit = 1) Approximation with

{fi, θi, wi = 1/σ2(fi), i = 1, . . . , M}.

Evaluation of the optimal approximating curve fap1,L (dfap1,L/dθ).
• Second iteration step: (kit = 2) Approximation with

{fi, θi, wi = 1/S2
i , i = 1, . . . , M}.

Evaluation of the optimal approximating curve fap2,L (dfap2,L/dθ), etc.
The extended algorithm presented here is called OPEM ®total variance¯.

5. APPROXIMATION RESULTS

Figures 3 and 4 present the obtained optimal OPEM approximation.
Figure 3 shows the given data (C) and approximating values (D) by OPEM
®total variance¯. Figure 4 contains the given and approximating curves and two
types of evaluated data Å lower border E and higher border F , presenting the
new corridor, related to (2). It is well seen that the given f as curve (C) values
and calculated by OPEM approximating values fappr,13

a as (D) are between the
error corridor C(θ, f).

Table 1 presents the given and approximating values by OPEM with usual and
orthonormal coefˇcients at calculated optimal degree L of M = 16 given values
of contact angle θ, f, σθ and σf , and approximating values with orthonormal
coefˇcients fappr,13

a , differences Δ(f, fap,13
a ) = (f − fappr,13

a ), total variance
S(13) (Eq. (1)) and approximating values with usual coefˇcients fappr,10

c and
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Fig. 3. OPEM approximation by 13th degree orthonormal polynomials (D) of non-treated
water data (C)

Fig. 4. Given data (C) and OPEM approximation values by 13th degree orthonormal
polynomials (D), the lower border (E) and the higher border (F) of error corridor
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Table 1. OPEM approximation of contact water angle data

No. θ f σ(θ) σ(f) fappr,13
a Δ(f, fap,13

a ) S(13) fappr,10
a fappr,10

c

1 2.5 1.37 0.8 0.28 Ä1.76 Ä3.135 3.32 1.516 1.516
2 7.5 2.06 0.8 0.48 2.56 0.502 0.77 2.027 2.027
3 12.5 2.74 0.8 0.55 2.57 0.165 0.85 2.644 2.644
4 17.5 5.52 0.8 0.85 6.31 Ä0.795 0.94 6.766 6.766
5 22.0 10.34 0.8 0.93 9.77 0.564 0.95 7.303 7.302
6 27.5 3.45 0.8 0.53 3.98 Ä0.535 0.63 5.153 5.149
7 32.0 4.83 0.8 0.62 4.24 0.583 0.62 4.046 4.037
8 37.5 5.52 0.8 0.76 5.83 Ä0.319 0.77 4.293 4.275
9 42.0 3.44 0.8 0.76 3.50 Ä 0.067 0.77 4.960 4.940
10 47.5 6.20 0.8 0.83 5.28 Ä0.914 0.88 6.313 6.293
11 52.0 9.66 0.8 0.80 10.3 Ä0.697 0.92 8.491 8.425
12 57.5 11.03 0.8 0.76 10.70 0.288 0.79 11.256 11.150
13 62.0 10.34 0.8 1.00 10.50 Ä0.232 1.09 11.001 11.932
14 67.5 8.97 0.8 0.70 8.84 Ä0.121 0.70 8.677 8.776
15 72.0 11.72 0.8 1.10 12.06 Ä0.346 1.62 12.334 12.309
16 77.5 2.74 0.8 0.34 0.13 2.608 8.86 0.791 1.963

Table 2. OPEM approximations results for every step approximation

kit 1 2 3 4 5 6

L (9Ä15) 13 13 13 13 13 13
χ2 1.29489 0.99864 0.99891 0.99941 0.99914 0.99914

L (9Ä12) 10 10 11 11 11 11
χ2 2.36404 2.22976 2.22488 2.17006 2.16189 2.15843

orthogonal coefˇcients fappr,10
a . For comparison one can see the previous results

for OPEM applications in [13,15,16].
For numerical experiments with new presented data (with errors in both

variables) the best results for χ2 are summarized in Table 2. The kitth iterations
are from 1 to 6. The optimal results for χ2 with the polynomial degree L are
shown at corresponding iterations for two cases: L between 9 and 15 and L
between 9 and 12. The second case is for obtaining usual coefˇcients by special
criterion with the minimum of inherited errors (Δc/c).

6. CONCLUSIONS

• We have developed a new version of OPEM algorithm and Fortran 77
package to include errors in both variables according to (2) and (4), deˇning
new ®total variance¯ and taking into account the respective inherited errors (9)
and (10) in coefˇcients.

7



• The results show that the orthonormal and usual expansions values are
close to given ones in the whole interval.

• The approximating curves are chosen at the 2nd approximation step by
optimal degree L to satisfy the proposed criteria (2) and (4).

• Our approximating results with optimal degrees of OPEM orthonormal
polynomials for contact (wetting) angle found by orthogonal and usual coefˇcients
show good accuracy and stability, as demonstrated in the ˇgures and Tables 1
and 2. We obtained suitable descriptions of the angle variations useful for further
investigations and comparison with control curve.

• The presented extended algorithm and package OPEM ®total variance¯ with
its accuracy, stability and speed can be used in the high-energy data analysis
(as shown in our previous papers with earlier versions Å for calibration prob-
lems [17]).
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