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K 6umkwuit B. M. E9-2011-95
YcToiuuBOCTh My4K B CUHXPOTPOH X C LU(POBOI CHCTEMOI

O/l BJICHUS KOTEPEHTHBIX MONEPEYHbIX KOieOd HHUH B 3 BUCHMOCTH

OT 4 CTOTBI O€T TPOHHBIX K010 HHUIi

[TpuBonsTCS pe3yabT ThI UCCIENOB HUSI YCTOWYMBOCTU MyYK B CHHXPOTPOH X C
cucremoit o BiaeHus1 (CII) KOrepeHTHBIX MOMEpeYHbIX Kojed HUil B 3 BUCUMOCTHU
oT 4 cToThl O6er TpoHHbIX Ko0jeO Huil. CII obecrieynB €T KOPpPEKLHIO MONEPEeYyHOro
UMITYJIbC CTYCTKOB H K X1oM obopore ¢ rnomouisio neduiekrop HK ¢ yuerom a H-
HBIX O CMEUIEHHH LEHTP TSXKECTH MydK , U3MEPEHHbIX A TYMKOM mnomoxenus II.
ITox 3 HO, 4TO IUIOLI Ab U KOH(UIYp LHs CEl P TPHCHI VLI CT OWIBHOIO MyYyK 3 BH-
CAT OT Y CTOTHI O€T TPOHHBIX Koye® HUii, KOd(pHULIMEHT mnepel YM Lend o0p THOI
cBi3u, 6 1 HC ¢ 3 Mexay H OeroMm ¢ 361 OeT TpoHHBIX Kojie® Huii ot I mo K u
CIBUIOM (b 3bI COOTBETCTBYIOIIETO CUTH JI B LENU 0Op THOI CBS3M.

P Gor BbimosHeH BJI Gop Topuu (pu3MKH BhiCOKUX dHepruit um. B. U. Bekcnep
n A.M.b muun  OMAU.
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Beam Stability in Synchrotrons with Digital Transverse Feedback Systems
in Dependence on Beam Tunes

The beam stability problem in synchrotrons with a digital transverse feedback
system (TFS) is studied. The TFS damper kicker (DK) corrects the transverse mo-
mentum of a bunch in proportion to its displacement from the closed orbit measured
at the location of the beam position monitor (BPM). It is shown that the area and
configuration of the beam stability separatrix depend on the beam tune, the feedback
gain, the phase balance between the phase advance from BPM to DK and the phase
response of the feedback chain at the betatron frequency.

The investigation has been performed at the Veksler and Baldin Laboratory of
High Energy Physics, JINR.
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INTRODUCTION

A classical transverse feedback system (TFS) in synchrotrons consists of a
beam position monitor (BPM), a damper kicker (DK), and an electronic feedback
path with an appropriate signal transmission from BPM to DK [1,2]. The damper
kicker corrects the transverse momentum of a bunch in proportion to its displace-
ment from the closed orbit measured at the BPM location. The total delay Tgelay
in the signal processing of the feedback loop from BPM to DK is adjusted to be
equal to 7, the particle time of the flight from BPM to DK, plus an additional
delay of ¢ turns:

Tdelay = Tpk + Cj/I’rev ’ (D

where Tie, is the revolution period of a particle. BPM and DK are located at
the fixed positions in the synchrotron. The particle betatron phase advance from
BPM to DK and the phase response of the feedback loop to the corresponding
beam signal should be adjusted for damping of particle oscillations. These both
phases depend on the beam tune that is a tuneable parameter in synchrotrons.
Beam stability conditions in dependence on the beam tune are studied below.

BASIC NOTIONS

Following the matrix description of the free oscillation of a particle in syn-
chrotrons, the matrix equation for its states at the BPM location s, at the (n + 1)
and nth turns after a small kick by the DK is given by [3,4]

)/(\'[n +1,8] = )/(\'[n, sp+ Co] = JT/[\O )?[n, Sp) + EA)?K[n, Skl (2)

where elements of the column matrix X [n, s] are the particle displacement z[n, ]
and the angle z'[n,s] of its trajectory, M, is the revolution matrix, B is a
transfer matrix from the point [n, s¢] on the closed orbit at the DK location to the
point [n, s, + Cy] at the BPM position at the nth turn, Cy is the synchrotron’s
circumference. The first element of column matrix AX[n, s,] is zero, but the
second one equals the kick value Ax’[n, s¢]. Let the kick be in proportion to the



particle displacement at the BPM location at the same turn:

g
\ Bee
where g is a feedback gain, B = ﬁ(s) is the betatron amplitude function at the

point s. Substituting (3) into (2), one can obtain the difference equation in a
matrix form:

Az'[n, s¢] = x[n, s, (3)

—~

X[n+1,s)]=MX|n, s, M= M, +

NS

"~ BT, (4)

K/gP

k)

where T is 2 x 2 matrix in which T51 = 1 and the other elements are zero.
Consequently, the particle dynamics is determined by roots z;, of the characteristic
equation:

det (25 — M) = 22 — [2cos (27Q)+
+gsin (27Q — Yw)] 2k + 1 — gsin =0, (5)

where T is the identity matrix, ) is the beam tune, 1 is the betatron oscillation
phase advance from BPM to DK. The particle motion is stable if |z;| < 1 so that
the damping rate is Dy = —In |2;| and the fractional number of oscillations per
turn is {Q} = arg (zx)/27.

Two eigenvalues z; and 2o of the quadratic equation (5) depend on g, @
and ¥ (Q). Let Qo be the tune on the reference closed orbit in the synchrotron
for particles with momentum py. The tune of injected particles with momentum
po + dp deviates from Qo so that the phase advance 1w (Q) for the tune @ =
Qo + 0Q is as follows:

re(Q) = (@0 + 50) = (1 4 %Cj) re(Qo).

Let us define the rate D for the maximal absolute value of zy:
D = —In (MAX|zg]) . (6)

In the case of under-damping oscillations one can write for Eq. (5) with real
coefficients:

1- gSianK(Q) = %122 = €Xp (_QD) (7

In the case of over-damping oscillations the rate D corresponds to the slowest
exponential decay of oscillations. Hence, one can obtain two numbers of the gain
for the fixed tune ) with the same rate D. The three-dimensional representation
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Fig. 1. Beam stability surface (left) and contour (right) plots

of beam stability data set D(g,@ — Qo) and its contours for fixed dampimg
rates D,,:
Dy = 0.002, D,, = n./80, 1<n.<8 (8)

are shown in Fig.1 in the case of Qp = 59.31 and ¥ (Qo) = 27 x 59.25.
The contour line for the damping time 7 = Ty.,/D that corresponds to Dy
is chosen for damping regime 7 < Tqoc Where the assumed decoherence time
Tgec > D00T,ey. Therefore, the closed curve for Dy can be considered as the
beam stability separatix. It separates the (g, () space into two distinct areas.
The particle motion within the separatrix corresponds to the damped oscillations,
whereas the outside of the separatrix corresponds to non-damped oscillations. For
example, the damping time 7 < 10 7.y corresponds to the internal area of the
closed curve with n, = 8 (the smallest area in Fig. 1, right) where [6Q| < 0.14
for gain g = 0.3. It should be emphasized that in accordance with Egs. (5) and
(7) the separatrix is limited by the fractional part of the tune {Q} = 0.5 and
0Q > —0.25 for {Qo} > 0.25 (or {Q} = 0 and 6Q < 0.25 for {Qo} < 0.25),
and the 6Q size is maximum in the case of |sin ¢ (Qo)| = 1.

DIGITAL TFS

In general, the kick value depends on the bunch displacement at the BPM
location according to the structural scheme of electronics in the feedback loop.
For linear time invariant feedback systems one can write

n—g

Az'[n, s¢] = 40 uln — g Z him]z[n — G —m, s, )

where u[n] is the Heaviside step function, elements ag and h[m] are determined
by the feedback electronics, ¢ is the number of turns for the delay (see Eq. (1)).




Following the approach [3-5] for solving Eqgs. (2) and (9) by using Z-transform,
one can obtain that the particle dynamics is determined by roots zj, of the char-
acteristic equation:

22 — [2cos (2mQ) + g ap z,;qH(zk) sin (27Q) — wPK)} zi+
+1—gagz, "H(z,) singhe =0, (10)

where the transfer function H(z) is determined by parameters h[m] in (9) and ag
is defined for zg = exp (j27(Q) at the reference orbit such that

laozg TH (z0)] = 1, ap sin (wPK(QO) —arg (zaé H(zo))) > 0. (11)

If ¢ = 0, then the solutions zE_LO) = exp(£j27Q) of Eq.(10) correspond to
the solutions for frequencies of the betatron motion equation of a particle in
synchrotrons. If the fractional part of the tune {Q} is not close to 0 or 0.5 [5,6],
then the solutions of Eq. (10) in the linear approximation with g < 1 are expressed
by the following formula:

24 A exp (— % sgn (ap) sin \I/PK) exp (:tj 21Q F j % sgn (ag) cos \IIPK) , (12)

where the sgn (ag) function is an odd mathematical function that extracts the sign
of ap and

\IJPK = wPK —arg (Zo_é H(ZQ)) ) Zq = €Xp (.727‘-@) . (13)

Hence, the best damping of transverse oscillations is achieved by optimal choosing
the BPM and DK positions and the phase response of feedback electronics at the
betatron frequency that provides a phase advance of W, equal to an odd number
multiplied by /2.

To simplify further explanations, one can assume that TFS has no additional
delay (¢ = 0) so that ¥, depends on the tune @) via 1 and arg H.

Properties of H(z) are determined by the feedback electronics. If the kick
depends on the displacement in accordance with (3), then H(z) = 1 (the so-called
ideal feedback loop). The transfer function for TFS with the notch and Hilbert
filters [7] is as follows:

Hi(z) = Hy(2) Hue(2) =
=(1=2"" (hoz > +h2z 21 -2+ h3(1—27%), (14

where 9 9
ho =cos(Ap), h1=—sin(Ap), hg= 3 sin (Ay) .
7r 7r
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Fig. 2. The magnitude G(Q) and phase response ®(Q) graphs for the notch and Hilbert
filters (solid) and for the notch filter and the FIR filter of the first order (dashed)

H(z) for TFS with the notch filter and the FIR filter of the first order [5] is
Hy(z) = Hy(2) Hi(2) = (1 — 2_1) (1+ agz_l) . (15)

The magnitude G(Q) = |ag H(2,)| and phase response ®(Q) = arg H (z,)
graphs against the fractional part of the tune {Q} are shown in Fig.2 for filters
with transfer functions Hi(z) and Ha(z) at Qo = 59.31, Ay = —59.33° and
as = 0.576 so that G(Qp) = 1 and ®(Qy) = 0. One can note for the interval
of |@ — Qo] < 0.1 that the deviations |®(Q) — ®(Qo)| < 130° for the notch
and Hilbert filters considerably exceed the betatron phase advance deviations
27|@Q — Qo] < 36° comparable with the deviations |®(Q) — ®(Qo)| < 25° for the
notch filter and the FIR filter of the first order.

Damping rate contours D = — In (MAX|z|) for TFS with transfer functions
Hy(z) and Hs(z) are shown in Fig.3 in the case of D,, from (8) and ¥ (Qp) =
27 x 59.25. The best damping is achieved for small gains at | sin U, (Qo)| = 1

in agreement with Eqgs.(13) and (12) due to values of Ay = —59.33° and
as = 0.576.
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Fig. 3. Damping rate contours for TFS with transfer functions H1(z) and Hz(z)



One can note that in the case of the notch and Hilbert filters the damping
time 7 < 10 T} corresponds to the internal area of the closed curve with n, = 8
(the smallest area in Fig. 3, left) where 0 < §Q) < 0.02 for gain g = 0.15. The
damping time 7 = 40 T}, corresponds to the closed curve with n, = 2 (the third
curve in Fig.3, left) where —0.022 < 6@ < 0.035 for gain ¢ = 0.1. On the
other hand, in the case of the notch filter and the FIR filter of the first order, the
damping time 7 < 107, corresponds to the internal area of the closed curve
with n. = 8 (the smallest area in Fig.3, right) where |§Q| < 0.065 for gain
g = 0.3. Hence, the area of separatrix in the case of H(z) is much less than
the same area for Hs(z), which, in its turn, is less than the separatrix area for
H(z) =1 (see Fig. 1, right).
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Fig. 4. Dependences of Tyev/7 on gain g for H(z) = 1 (dotted-dashed), Hx(2) (dotted),
H1(z) (solid), H2(z) (dashed) on the left side and for TFS with H1(z) at Ap = —116.4°
(solid), Ap = —76.4° (dashed), Ap = —156.4° (dotted) on the right side

It should be emphasized that the phase advance W.(()p) can be matched
to optimal magnitude by choosing the digital filter parameters according to the
phase advance ¥ (Qo). For example, if ¥w(Qo) = 27 x 59.092 at Qo = 59.31,
then |sin Wy (Qo)| = 1 can be achieved for Ay = —116.4° or az = 2.86 (see
Fig.4, left). One can see that there is no beam stability for TFS with the notch
filter (Hy(z) = 1 — 27 1) for these numbers of 9 (Qo) and Q. Damping times
for the ideal feedback loop (H(z) = 1, but |sinw| < 1) is much bigger than
the same values in the case of Hi(z) and Hs(z) for ¢ < 0.25. Damping rate
contours for TFS with H;(z) and Hy(z) at Ap = —116.4° and as = 2.86 look
like the contours in Fig.3. However, D,,-contours and damping rates depend on
A¢. For example, if Ap = —116.4° + 40°, then the damping rates are less than
those at Ap = —116.4° (see Fig.4, right). This dynamic behavior can be used
for tuning and optimisation of the transverse feedback loop parameters.
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