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Lepton Mixing under the Lepton-Charge Nonconservation,
Neutrino Masses and Oscillations and the «Forbidden» Decay = — e~ +

The lepton-charge (Le, L,, L) nonconserving interaction leads to the mixing of the
electron, muon, and tau neutrinos, which manifests itself in spatial oscillations of a neutrino
beam, and also to the mixing of the electron, negative muon, and 7~ lepton, which, in
particular, may be the cause of the «forbidden» radiative decay of the negative muon into the
electron and v quantum. Under the assumption that the nondiagonal elements of the mass
matrices for neutrinos and ordinary leptons, connected with the lepton-charge nonconservation,
are the same, and by performing joint analysis of the experimental data on neutrino oscillations
and experimental restriction for the probability of the decay = — e~ + ~ per unit time, the
following estimate for the lower bound of neutrino mass has been obtained: m® > 1.5 eV/c?.

The investigation has been performed at the Veksler and Baldin Laboratory of High
Energy Physics, JINR.
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1. LEPTON-CHARGE NONCONSERVATION
AND MIXING OF LEPTONS WITH DIFFERENT FLAVORS

The lepton-charge nonconservation (nonconservation of the lepton numbers
Le, Ly, L;) leads to the mixing of the electron, muon, and tau neutrinos, which
manifests itself in the spatial oscillations at the neutrino beam propagation in
vacuum [1]. At the same time, the lepton-charge non-conserving interaction
should also weakly mix the ordinary leptons with the same electric charge (e,
u=, 77, as well as eT, uT, 77) and should be, in particular, the cause of
the nonzero probabilities of the ;1 decay into the electron and v quantum and
the p* decay into the positron and  quantum, which are forbidden under the
lepton-charge conservation.

Let us emphasize that, in the framework of the scheme under consideration,
the total lepton number L = L. + L, + L. is conserved.

It is accepted to take the lepton numbers of the electron and electron neutrino
to be equal to L, = +1, L, = 0, L, = 0, those of the negative muon and muon
neutrino — to L, = 0, L, = +1, L, = 0, and those of the 7~ lepton and tau
neutrino — to L, = 0, L, = 0, L, = +1. For antiparticles, the respective lepton

numbers have the opposite sign: L, = —1, L, = 0, L, = 0 for the positron
and electron antineutrino, L, = 0, L, = —1, L, = 0 for the positive muon and
muon antineutrino, and L, = 0, L, = 0, L, = —1 for the 7+ lepton and tau
antineutrino.

2. MASS MATRIX AND NEUTRINO STATES
WITH THE DEFINITE MASSES

Taking into account the C'P invariance (1" invariance), the mass matrix for
the neutrino family should be symmetric and, due to hermiticity, real. It has the
general structure of the form:

Mee Me Mer
m) = mfj’e) mgﬁ mELVT) . €))



The diagonal elements of this mass matrix have the meaning of the masses of

electron neutrino (mY = m"), muon neutrino (mff“) = mff')), and tau neutrino

m') = m&”)), whereas the nondiagonal elements (mé‘,’) = mfj’e), m¥ = m¥).

mf}’T) = m%)) characterize the degree of lepton charge nonconservation®. In
doing so, the states with the definite lepton charge («flavor») |ve), |1,), |v,) are
connected with the stationary states |v1), |12), |v3), being related with the definite

masses mji, ma, ms, by the following unitary transformation:

|ve) o )
) | =U| [r2) |- (2)
|vr) |v3)

Let us note that, due to 7' invariance, the unitary matrix U is real. This
means that the inverse matrix (U )~! coincides with the transposed primary one
((U )i_e1 = U,;). Thus, the states with the definite lepton charge represent the
coherent superpositions of stationary states, and the stationary states represent the
superpositions of states with the definite lepton charge, having the same coeffi-

cients:
3 3 3
ve) =Y Ualvi), ) =Y Uuilvi),  |vr) =Y Urilwi), 3)
=1 i=1 =1

Vi) :Uei‘l/e>+Um‘llﬂ>—|—UTi‘yT> . %)

The elements of the unitary matrix U in Egs. (3) and (4) are scalar products of
the neutrino states with the definite lepton charge and neutrino stationary states:

Uei = (Velvi), Upi = (vulvi), Uri = (v-|w). (5)

It is obvious that the neutrino stationary states — as the eigenstates of the mass
matrix, corresponding to the different masses mi, ms, and ms — are mutually
orthogonal:

(vilve) = (v2|vs) = (v1lvs) =0, (6)

in accordance with the unitarity condition, due to which the following equality
holds:

<l/i|l/k:> = UeiUek: + UuiUp,k: + U‘riUTk = 5ik:7 iv k= ]-7 27 3. (7)

*Due to the C'PT invariance, the mass matrices for neutrinos and antineutrinos should coincide
(M) = m@)),



3. NEUTRINO OSCILLATIONS

Just the difference of masses of neutrino stationary states is the cause of
neutrino oscillations.

If a neutrino is generated, at a fixed energy F, in the state |v;) with the
definite lepton charge («flavor») (|v;) — electron, muon, or tau neutrino), then, at
the finite distance L from the point of generation, it turns into the superposition
of the form (see Eqgs. (3), (4)):

3

piL

lvi)r = E (UiUeilve) + UnUpi|vy) + UiUzrilvz)) exp (th ) , (8)
i1

where p; is the momentum of the stationary neutrino |v;) with the mass m; at the
energy E. Since neutrinos are in fact ultrarelativistic particles, we may write:
B m2c?
c 2F

Di )
(In relations (8) and (9), c is the velocity of light in vacuum and 7 is the Planck
constant).

Then the amplitude of transition of the electron neutrino into the muon one
at the distance L from the generation point will have the form:

EL ,m203L
A(|ve) — |vu))L = exp (z%> {UelUu1 exp (_Z 21hE ) I

2 3L 2 SL
+ UnsU, sz exp (—im2c ) + UasU3 exp (—z‘m?’c )} (10)

2hE 2hE
Taking into account the unitarity condition, which implies the equality:
2
(Z UeiUm) =3 U2UL+2) Y UilUpiUaUus =0, (11)
i i i<k k

the probability of transition of the electron neutrino into the muon one at the
distance L from the generation point is as follows:

W(ve) = 1)e = [A(e) — )l =

2 2).3
_ 2772 (((mi—m})PLY
- VR 23 S Uit con (M) -



2 _ 02 3L
UL U UssUs sin? (M) _

4hE
. (m2 —m32)c3L
— AU U0 UesUys sin® (# -

. mé —m3)c3L
— 4UeoU,12U3U,3 sin® (%) . (12)

In doing so, the arguments of oscillating terms in Eq. (12) may be presented
in the form:
1.27(m? — m3)
E
where the masses are given in eV/c?, the energy — in GeV, and the distance
L — in kilometers. The respective periods of spatial oscillations are equal to

L,

i 2nE E
A S LY VI
1.27(m? — m3) m2 —m?

K2

km.

Analogously, the probability of transition of the electron neutrino into the tau
neutrino at the distance L from the point of generation is described by Eq. (12)
with the replacements:

U/Ll — U1, U[LQ — Usra, U;L3 — Usrs.

Meantime, the probability of the event that the electron neutrino does not change
its «flavor» at the distance L from the point of generation amounts to:

(m?2 —m2)c3L
W(lve) = ve))r = D UL +2) Y ULUZ cos (TE’“ -

i<k k
_ (m? —m3)c’L > (m?—m)c’LY _
1 — 4U2 UZ sin” ( TE — 4U% U2, sin® TE
(m3 —m3)c’L
4U U351n ( TE . (13)

Here, we have taken into account that, in accordance with the unitarity condition,

(52) -

Just as one should expect, the unitarity relation

UmU(’k + U[LiU[Lk + UTiU'rk = 6ik



ensures the equality
W(lve) = [ve))r + Wlve) = vu))r + W(lve) = [vr))r = 1.

According to the relations (11), (12), and (13), the admixtures of muon and
tau neutrinos, averaged over the spatial oscillations (over the energy spectrum at
a given distance L), are, respectively, as follows:

W(lve) — |vu) = Ue21U31 + Ue22U52 + Ue23U337 (14)

W(lve) — |vr) = Ue21UT21 + Ue22UT22 + U(323U337 (15)

and the average intensity of the beam of electron neutrinos, attenuated as a result
of spatial oscillations, is proportional to:

W (|ve) = [ve)) = Udy + Uy + Ugs. (16)

It can be shown that the absolute minimum of the quantity W (|v.) — |v.)) is
equal to 1/3 — in accordance with the number of stationary neutrinos n = 3.

If the neutrino oscillations were conditioned — as it was assumed before —
by the existence of only two stationary states, then one would need to take, in
Eq. (12),

Uez = Uyz = 0.

Then, in accordance with the unitarity condition,
UL +U%L=U+Ul=1,
UelUpyz = U1 Ues.
Introducing the mixing angle #, one may write:
Uen =Uy =cos b, Ue=—-U, =sin .

In this case, the probability of transition of the electron neutrino into the
muon one at the distance L from the generation point, calculated according to
Eq. (12), equals

2 . 9v.3
W (|ve) — |v.))p = AUA U?, sin® (M)

4hE

2,23
— sin? 20 sin? (%) (17)

The expression being analogous in structure is still valid with the presence
of three stationary neutrinos as well, if at a given distance L the condition

mt —m3|c°L

1
mweE S



is satisfied and, meanwhile, we have

[m? —m3|c*L _ [m3 — m3|c’L
ARE - ARE
Then formula (12) is simplified:

~ 1.

2 _ m2\3
W(lve) — ) = —4(UeaUps + UeaU,i2)UesU,3 sin? (%) _

2 _ 23
= 4U%U 5 sin (—(ml 47;23)6 > , (18)
since, owing to the unitarity condition for the matrix U,
U(ilU/l.l + UEZU;Q = - €3U/L3'
In doing so,
2 _ 52 SL
W (|ve) — |ve))r = 1 — 4U%U sin (%) . (19)

Formula (19) describes, in particular, the decrease of intensity of the beam of
reactor antineutrino with energy around several MeV at comparatively small dis-
tances from the reactor on account of the transition of the electron antineutrino
into the muon one, which is «sterile» below the threshold of meson production.

4. NONDIAGONAL ELEMENTS OF THE MASS MATRIX AND THEIR
CONNECTION WITH THE DIFFERENCES OF NEUTRINO MASSES

By applying relations (3), the nondiagonal elements of the mass matrix can
be expressed through the differences of masses of neutrino stationary states and
the elements of the unitary matrix U. Indeed, it is easy to see that:

3
m£z) = <V€‘m(l/)|l/p«> = ZUeiUp,imia gl;—) = < ‘V‘r ZUerszu
i=1
(20)
3
m,(fT) = <I//L‘m(y)|l/7—> = ZUHZ'UH"ITLZ',

where m; is the neutrino mass in the stationary state |v;), as before.
Taking into account the unitarity condition:

3
Z UeiUp,i =0,
i=1



we obtain the following expressions for the mass matrix element:
m) = UerUpa (m1 — m2) + UesUps(ms — ma), (21)

or
mé‘;) :UQQUILQ(mQ —m1)+U83U#3(m3—m1). (22)

Analogous expressions may be obviously written for the mass matrix elements
m and m(T”M)

In terms of the mixing angles for the neutrino stationary states, which are
formally analogous to the Maiani angles introduced for the description of mixing

of «lower» quarks d, s, and b [1-4], the matrix U can be presented in the form:

. 1 0 0 cos 13 0 sin 13
U= 0 COS 923 sin 923 0 1 0 X
0 —sin 923 COs 923 —sin 913 0 cos 913
cos B1o sinfp 0
X —sin 912 COS 912 0 . (23)
0 0 1
According to (23), we have:
Uel = COS 912 COS 913,
U;Ll = —sin 912 COS 923 — COS 912 sin 912 sin 923 sin 913, (24)

Ueg = sin 913, UM3 = sin 923 COs 913.

As a result, Eq (21) gives:

1
mg) = 5[(sin 2912 COs 923 COs 913 + (3082 912 sin 923 sin 2913)(7712 — m1)+

+ sin 2913 sin 923(7713 — mg)} (25)

Formula (25), determining the matrix element mgf), incorporates the values
of differences of stationary neutrino masses. Meantime, the experimental data on
neutrino oscillations contain the information only on the differences of squares of
masses.

If the moduli of differences of mass squares are very small as compared with
the square of each of the masses ( which seems to be plausible ), then the masses
of all the three stationary neutrinos may be assumed to be approximately equal
to each other:

mgl/) ~ méu)

& am®), (26)

~m



In this situation, the moduli of all the differences of masses are very small as
compared with the common neutrino mass m(*):

m1 —ma| <mt), mg —ma| < m). 27)

Within this approximation, the differences of stationary neutrino masses are
determined according to the formulas*:

2 2 2 2
_my —my _ _ M3 —my
mi ma 2m(y) 9 ms mo = Qm(”) (28)
Taking into account relations (28), we may rewrite Eq. (25) in the form:
) 1 : 2, : 2 9
myY = [(sin 26012 cos Ba3 cos B134cos” f12 sin a3 sin 26013)(m5—m7)+

eH Am )
+ sin 2613 sin Oa3(m3 — m3)].  (29)

5. STATES OF CHARGED LEPTONS WITH THE DEFINITE MASSES

Taking into account the lepton-charge non-conserving interaction, the mass
matrix for the family of leptons, including the electron, the negative muon and
the 7~ lepton, has the form being analogous to the mass matrix for the neutrino
family:

R Mee Meu Me‘r
M=\ My, M, M;]. (30)
MTe M'r,u. MTT

The diagonal elements of the mass matrix M are equal to the masses of electron
Mee = M, L, = +1, L, =0, Ly = 0), negative muon (M,,, = M,, L. =0,
L, =+1, L; = 0) and 7 lepton (M, = M,;, L. =0, L, = 0, L, =
+1), whereas the nondiagonal elements, being responsible for the lepton charge
nonconservation, are negligibly small as compared with the electron mass M,
and, all the more, as compared with all the differences of masses (M, — M.),
(M; — M,), (M, — M,). Just the same mass matrix corresponds to the family
of antileptons, incorporating the positron (L, = —1, L, = 0, L; = 0), the
positive muon (L, = 0,L, = —1,L; = 0), and the 7+ lepton (L, = 0, L, =0,
L, =-1).

*The experimental data on oscillations [1] testify to the fact that |[m2 — m?| < |[m3 — m3|.
This means that the difference of masses of the first and second stationary neutrinos is very small
as compared with their distinction from the mass of the third stationary neutrino, which is itself also
relatively small.



Due to T invariance, the Hermitian matrix M should be symmetric and,
hence, real:

Meu = M/Ley Im Mey = 0, M, = M‘rea Im M., = Oa 31)
M, = M,,, TmM,, =0.

Within the perturbation theory first-order approximation, the stationary states
of leptons represent the superpositions of states with different lepton charges:

‘6/> =le) + 5ue‘ﬂ>e +&relTe,
W) = 1) + eeule) + erpul)us (32)
|7J> = |T) + €erle)r + €MT‘IU’>T'

The stationary states, denoted by prime, are related with different masses. In
doing so, these masses practically coincide with the masses of leptons:

Mel ~ Me, M#/ =~ M#, M-,—I =~ Z\l-,—7 (33)

and the coefficients of mixing of states with different lepton charges are expressed
through the ratios of nondiagonal elements of the mass matrix to the differences
of masses of respective leptons. Indeed, neglecting the second-order terms over
the lepton-charge non-conserving interaction, we find:

M,
€ep = —Epe = ﬁ, ‘65/L| < 1,
o e
Mer
Eer = —Ere = m, leer| < 1 (34
T e
M-
B e < 1.

3 = —€ = —
uT T
MT — M/L

Let us note that, taking into account the small values of mixing coefficients,
relations (34) follow also from the expressions being analogous to Eqgs. (21)
and (22) for neutrinos.

In Egs. (32), the symbols |x). and |7). denote the «muonic» (L, = 1) and
«tau-leptonic» (L, = 1) states included into the stationary superposition with the
electron mass M, ; the symbols |e), and |7), denote the «electronic» (L, = 1) and
«tau-leptonic» (L, = 1) states included into the stationary superposition with the
muon mass M,; and the symbols |e), and |u), denote the «electronic» (L. = 1)
and «muonic» (L, = 1) states included into the stationary superposition with the
T-lepton mass M.



6. COEFFICIENT OF MIXING OF THE STATES
WITH THE LEPTON CHARGES L, =1 AND L, =1
AND PROBABILITY OF THE DECAY p~ —e™ 47

Let us estimate the probability of the radiative decay = — e~ + v, being
forbidden under the lepton-charge conservation, assuming that this decay occurs
on account of «admixture» of the state |e), with the electronic lepton number
L. =1 to the state of negative muon. Then the probability of decay u= — e~ 4+~
per unit time will be as follows:

W(p™ —e +7) = lecu*W(le)y — e +7), (35)

where €., is the mixing coefficient included in the second formula in Egs. (32).
Meantime, the differential probability of decay of the «heavy electron» with
mass M), into the ordinary electron with momentum

M2 — M2
pP= Wen (36)
(n is the unit vector along the momentum) and the + quantum with energy
M2 - M2,
E, = Wc (37)

per unit time can be calculated according to the standard formula of quantum
electrodynamics [5]:

2
AW (e} = €™ +7) = ===

+ 2
o Kxvy aol’ du, (38)

where € /hc = 1/137 is the fine structure constant, w = E., /I is the frequency of
~ quantum, K =1 — (E,Y/MMC2), X is the vector of polarization of v quantum,
1p 1s the Dirac bispinor describing the ordinary electron with mass M, and

. . A 0 o .
momentum p, o is the four-row Dirac matrix (& = ( 6 0 [5D), o is
the Dirac bispinor corresponding to the resting «heavy electron» with mass M,,.
Passing to the two-row Pauli matrices &, we may write:

U 1/2

E.+ M. V0

Yp = (ap)uo (T) » PO = ( 0 ) (39)
E.+ M.c?
where 1 and vy are the two-row spinors, normalized by unity, and
M2 +M2
B = (Ipf*c® + MZc!)'/? = My® — By = —£——=c (40)
n

10



In doing so, we have:

(41)

L (x6)(6p)e \ (Bt Mec?)"
0 Fp + M2 ° 2E, '

XV apo = (u

Taking into account that the final electron is ultrarelativistic (£, ~ F. ~
(M, c*)/2, K =~ 1/2), we obtain the following expression — after averaging the
differential probability of emission over the polarizations of the «heavy electron»
and summing over the polarizations of the v quantum and final ordinary electron:

62 w
AW (je) — e +7) = =2 B tr 3" () (6m)(6m)(6x)

_leme
" 8the h

A, (42)

The total probability of radiative decay of the «heavy electron» per unit time
amounts to:

e M,c?
W(ley, — e +7) = 57— — (43)

- 2hc h

Taking into account the numerical values (M,c?> = 105.6 MeV, e*/hc =
1/137), the probability of radiative decay of the electronic state with mass M,
(per 1 sec.) equals

~105.6-10°-1.6-1012

W(e), —e +7)= 5 1051 10-%7 137 =0.583-10*" s71.  (44)

According to relations (35) and (38),

W™ —e +7)=WkE' —e+9)=

_ My, ’ 2 M Mz, et (45)
" \M,-M.) 2hc h " 2M,hch’
As follows from the experimental data [6],
W™ —e +7)<12-107"W(u™ — e + 0 + 1), (46)

where W(u~ — e~ + 7. + v,) is the probability of decay of the negative muon
into the electron, electron antineutrino and muon neutrino per unit time, coinciding
practically with the inverse lifetime of the muon:

1
W™ —e +0+v,)=—=0455-10 s,

Tu

11



Thus, in accordance with the experimental restriction (46), we obtain:
W(p~ —e +7)<0.546-107° s~ L (47)
Taking into account Egs. (35), (43), and (45), this means that:

\6@\2 < 0.936 - 10_267 |Mey‘2 <1.032-10~10 eV2/c4,
(48)
|Me,| < 1.016 - 107° eV2/02,

7. HYPOTHESIS ON THE EQUALITY OF NONDIAGONAL ELEMENTS
OF THE MASS MATRICES FOR NEUTRINOS AND CHARGED
LEPTONS AND THE ESTIMATE OF THE LOWER BOUND
OF NEUTRINO MASS

Let us suppose that the mixing of ordinary leptons (e, i, 7) and the mixing of
neutrinos (ve, v, v;) are conditioned by the same lepton-charge nonconserving
interaction. Under this natural assumption, the nondiagonal elements of the three-
row mass matrix for the lepton family should coincide with those of the three-row
mass matrix for neutrinos:

Meu — m(”) M, = m(y) MMT = m("). (49)

e’ er uT

Thus, we will assume that the matrix element M, included into formula (45),

may be replaced by the matrix element mg;) corresponding to the neutrino family.

Then, taking into account Eq. (29) and inequalities (48), we obtain the following
inequality for the neutrino mass m*):

[ Mey| = [mi)| =

ep

1
= m|(sin 2015 cos Oa3 cos 013 + cos? 05 sin Bag sin 2913)(m§ — m?)—&—
m v

+ sin 26013 sin fa3(m3 — m3)| < 1.016 - 107° eV/c*.  (50)
According to the experimental data on neutrino oscillations [6],
sin? 2012 = 0.8670 55, sin® 2053 > 0.92, sin” 26,3 < 0.19;
Im3 —mi| = (8.0£0.3)-107° eV?/c!, |[m3 —m3| = (1.9+3)-107% eV?/c".
Assuming, respectively, that
sin? 2015 = 0.86 (f12 = 34°), sin? 2053 = 0.92 (fa3 = 36.8°), 613 = 0°,

Im3 —m3| =8-107° eV?/c*,

12



we find:
) 0.927-0.8-8
m et vee

4-1.016

This value for the lower bound of neutrino mass is in accordance with the

upper limit of antineutrino mass determined in the works by Lobashev et al. [7]

(m") < 2.3 eV/c?) and Kraus et al. [8] (m") < 2.5 eV/c?) within the study of
electron spectrum in the tritium (§ decay (see also [6]).

= 1.46 eV?/c% (51)

8. CONCLUDING REMARKS

Let us emphasize that our estimate for the lower bound of neutrino mass m ()
is based on the experimental data on neutrino oscillations, on the experimental
restriction for the probability of decay u~ — e~ +  per unit time, and on
the assumption that the nondiagonal element of the neutrino mass matrix mé’,’),
characterizing the mixing of muon and electron neutrinos on account of the
lepton charge nonconservation, coincides with the nondiagonal element of the
mass matrix for ordinary leptons M., characterizing the mixing of negative
muon and electron — which seems natural from our point of view.

Meantime, if |M,| # \mg;) |, then the value for the lower bound of neutrino
mass will change as compared with the magnitude obtained above. In this case,

m¥) > 1.46|n| eV/c?,

where n = M., /mg) is the ratio of nondiagonal elements of the mass matrices
for leptons and neutrinos.

If, in further experiments, the probability of the decay u= — e~ + per 1 sec.
will be determined or the upper limit of this probability will be reduced, this will
testify to the fact that the parameter || < 1 — since, otherwise, we would get a
contradiction with the experimental data on the upper bound of neutrino mass.

Under the choice of another set of parameters (being also compatible with
the modern data on neutrino oscillations), for example, at the values

|m3 —m3| =3-107% eV?/c*,  sin?2613 = 0.19 (613 = 13°),
sin? 2653 = 0.92 (623 = 36.8°),

we would obtain the estimate
m®¥) > 19.2/n| eV/c?,

which may be in accordance with the presently known upper limits for the prob-
ability of the decay u~ — e~ +y per | sec. and neutrino mass only at the ratios

of moduli of matrix elements ‘Meu/mgﬁ)‘ =In| <~ 1071

13



Let us note also that, if the condition

my < mg & \/m3 —m? < mg~\/m3—m3, (52)

were satisfied, then the masses of all the three types of neutrino — at the values
of differences of mass squares for the stationary states presented above — would

differ substantially from each other but would be small themselves (< 0.1 eV/c?).

In doing so, the nondiagonal matrix element méz) would have the absolute value

of ~ 1072 eV/c?, which strongly exceeds the estimate ~ 1075 eV/c? for the
matrix element |M,,|. Such a situation is surely incompatible with the hypoth-

esis for the equality of matrix elements M, and méz) and corresponds to the
inequality |n| < 1.
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