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Lepton Mixing under the Lepton-Charge Nonconservation,
Neutrino Masses and Oscillations and the ®Forbidden¯ Decay μ− → e− + γ

The lepton-charge (Le, Lμ, Lτ ) nonconserving interaction leads to the mixing of the
electron, muon, and tau neutrinos, which manifests itself in spatial oscillations of a neutrino
beam, and also to the mixing of the electron, negative muon, and τ− lepton, which, in
particular, may be the cause of the ®forbidden¯ radiative decay of the negative muon into the
electron and γ quantum. Under the assumption that the nondiagonal elements of the mass
matrices for neutrinos and ordinary leptons, connected with the lepton-charge nonconservation,
are the same, and by performing joint analysis of the experimental data on neutrino oscillations
and experimental restriction for the probability of the decay μ− → e− + γ per unit time, the
following estimate for the lower bound of neutrino mass has been obtained: m(ν) > 1.5 eV/c2.

The investigation has been performed at the Veksler and Baldin Laboratory of High
Energy Physics, JINR.
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1. LEPTON-CHARGE NONCONSERVATION
AND MIXING OF LEPTONS WITH DIFFERENT FLAVORS

The lepton-charge nonconservation (nonconservation of the lepton numbers
Le, Lμ, Lτ ) leads to the mixing of the electron, muon, and tau neutrinos, which
manifests itself in the spatial oscillations at the neutrino beam propagation in
vacuum [1]. At the same time, the lepton-charge non-conserving interaction
should also weakly mix the ordinary leptons with the same electric charge (e−,
μ−, τ−, as well as e+, μ+, τ+) and should be, in particular, the cause of
the nonzero probabilities of the μ− decay into the electron and γ quantum and
the μ+ decay into the positron and γ quantum, which are forbidden under the
lepton-charge conservation.

Let us emphasize that, in the framework of the scheme under consideration,
the total lepton number L = Le + Lμ + Lτ is conserved.

It is accepted to take the lepton numbers of the electron and electron neutrino
to be equal to Le = +1, Lμ = 0, Lτ = 0, those of the negative muon and muon
neutrino Å to Le = 0, Lμ = +1, Lτ = 0, and those of the τ− lepton and tau
neutrino Å to Le = 0, Lμ = 0, Lτ = +1. For antiparticles, the respective lepton
numbers have the opposite sign: Le = −1, Lμ = 0, Lτ = 0 for the positron
and electron antineutrino, Le = 0, Lμ = −1, Lτ = 0 for the positive muon and
muon antineutrino, and Le = 0, Lμ = 0, Lτ = −1 for the τ+ lepton and tau
antineutrino.

2. MASS MATRIX AND NEUTRINO STATES
WITH THE DEFINITE MASSES

Taking into account the CP invariance (T invariance), the mass matrix for
the neutrino family should be symmetric and, due to hermiticity, real. It has the
general structure of the form:

m̂(ν) =

⎛
⎜⎝ m

(ν)
ee m

(ν)
eμ m

(ν)
eτ

m
(ν)
μe m

(ν)
μμ m

(ν)
μτ

m
(ν)
τe m

(ν)
τμ m

(ν)
ττ

⎞
⎟⎠ . (1)
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The diagonal elements of this mass matrix have the meaning of the masses of

electron neutrino (m(ν)
ee ≡ m

(ν)
e ), muon neutrino (m(ν)

μμ ≡ m
(ν)
μ ), and tau neutrino

(m(ν)
ττ ≡ m

(ν)
τ ), whereas the nondiagonal elements (m(ν)

eμ ≡ m
(ν)
μe , m

(ν)
eτ ≡ m

(ν)
τe ,

m
(ν)
μτ ≡ m

(ν)
τμ ) characterize the degree of lepton charge nonconservation∗. In

doing so, the states with the deˇnite lepton charge (®�avor¯) |νe〉, |νμ〉, |ντ 〉 are
connected with the stationary states |ν1〉, |ν2〉, |ν3〉, being related with the deˇnite
masses m1, m2, m3, by the following unitary transformation:⎛

⎝ |νe〉
|νμ〉
|ντ 〉

⎞
⎠ = Û

⎛
⎝ |ν1〉

|ν2〉
|ν3〉

⎞
⎠ . (2)

Let us note that, due to T invariance, the unitary matrix Û is real. This
means that the inverse matrix (Û)−1 coincides with the transposed primary one
((Û)−1

ie = Ûei). Thus, the states with the deˇnite lepton charge represent the
coherent superpositions of stationary states, and the stationary states represent the
superpositions of states with the deˇnite lepton charge, having the same coefˇ-
cients:

|νe〉 =
3∑

i=1

Uei|νi〉, |νμ〉 =
3∑

i=1

Uμi|νi〉, |ντ 〉 =
3∑

i=1

Uτi|νi〉, (3)

|νi〉 = Uei|νe〉 + Uμi|νμ〉 + Uτi|ντ 〉 . (4)

The elements of the unitary matrix Û in Eqs. (3) and (4) are scalar products of
the neutrino states with the deˇnite lepton charge and neutrino stationary states:

Uei = 〈νe|νi〉, Uμi = 〈νμ|νi〉, Uτi = 〈ντ |νi〉. (5)

It is obvious that the neutrino stationary states Å as the eigenstates of the mass
matrix, corresponding to the different masses m1, m2, and m3 Å are mutually
orthogonal:

〈ν1|ν2〉 = 〈ν2|ν3〉 = 〈ν1|ν3〉 = 0, (6)

in accordance with the unitarity condition, due to which the following equality
holds:

〈νi|νk〉 = UeiUek + UμiUμk + UτiUτk = δik, i, k = 1, 2, 3. (7)

∗Due to the CPT invariance, the mass matrices for neutrinos and antineutrinos should coincide
(m̂(ν̄) = m̂(ν)).
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3. NEUTRINO OSCILLATIONS

Just the difference of masses of neutrino stationary states is the cause of
neutrino oscillations.

If a neutrino is generated, at a ˇxed energy E, in the state |νl〉 with the
deˇnite lepton charge (®�avor¯) (|νl〉 Å electron, muon, or tau neutrino), then, at
the ˇnite distance L from the point of generation, it turns into the superposition
of the form (see Eqs. (3), (4)):

|νl〉L =
3∑

i=1

(UliUei|νe〉 + UliUμi|νμ〉 + UliUτi|ντ 〉) exp
(

i
piL

�

)
, (8)

where pi is the momentum of the stationary neutrino |νi〉 with the mass mi at the
energy E. Since neutrinos are in fact ultrarelativistic particles, we may write:

pi =
E

c
− m2

i c
3

2E
. (9)

(In relations (8) and (9), c is the velocity of light in vacuum and � is the Planck
constant).

Then the amplitude of transition of the electron neutrino into the muon one
at the distance L from the generation point will have the form:

A(|νe〉 → |νμ〉)L = exp
(

i
EL

�c

) [
Ue1Uμ1 exp

(
−i

m2
1c

3L

2�E

)
+

+ Ue2Uμ2 exp
(
−i

m2
2c

3L

2�E

)
+ Ue3Uμ3 exp

(
−i

m2
3c

3L

2�E

)]
. (10)

Taking into account the unitarity condition, which implies the equality:

(∑
i

UeiUμi

)2

=
∑

i

U2
eiU

2
μi + 2

∑
i<k

∑
k

UeiUμiUekUμk = 0, (11)

the probability of transition of the electron neutrino into the muon one at the
distance L from the generation point is as follows:

W (|νe〉 → |νμ〉)L = |A(|νe〉 → |νμ〉)L|2 =

=
∑

i

U2
eiU

2
μi + 2

∑
i<k

∑
k

UeiUμiUekUμk cos
(

(m2
i − m2

k)c3L

2�E

)
=
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= −4Ue1Uμ1Ue2Uμ2 sin2

(
(m2

1 − m2
2)c3L

4�E

)
−

− 4Ue1Uμ1Ue3Uμ3 sin2

(
(m2

1 − m2
3)c

3L

4�E

)
−

− 4Ue2Uμ2Ue3Uμ3 sin2

(
(m2

2 − m2
3)c3L

4�E

)
. (12)

In doing so, the arguments of oscillating terms in Eq. (12) may be presented
in the form:

1.27(m2
i − m2

k)
E

L,

where the masses are given in eV/c2, the energy Å in GeV, and the distance
L Å in kilometers. The respective periods of spatial oscillations are equal to

L
(i,k)
0 =

2πE

1.27(m2
i − m2

k)
= 4.94

E

m2
i − m2

k

km.

Analogously, the probability of transition of the electron neutrino into the tau
neutrino at the distance L from the point of generation is described by Eq. (12)
with the replacements:

Uμ1 → Uτ1, Uμ2 → Uτ2, Uμ3 → Uτ3.

Meantime, the probability of the event that the electron neutrino does not change
its ®�avor¯ at the distance L from the point of generation amounts to:

W (|νe〉 → |νe〉)L =
∑

i

U4
ei + 2

∑
i<k

∑
k

U2
eiU

2
ek cos

(
(m2

i − m2
k)c3L

2�E

)
=

= 1 − 4U2
e1U

2
e2 sin2

(
(m2

1 − m2
2)c

3L

4�E

)
− 4U2

e1U
2
e3 sin2

(
(m2

1 − m2
3)c

3L

4�E

)
−

− 4U2
e2U

2
e3 sin2

(
(m2

2 − m2
3)c

3L

4�E

)
. (13)

Here, we have taken into account that, in accordance with the unitarity condition,(∑
i

U2
ei

)2

= 1.

Just as one should expect, the unitarity relation

UeiUek + UμiUμk + UτiUτk = δik
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ensures the equality

W (|νe〉 → |νe〉)L + W (|νe〉 → |νμ〉)L + W (|νe〉 → |ντ 〉)L = 1.

According to the relations (11), (12), and (13), the admixtures of muon and
tau neutrinos, averaged over the spatial oscillations (over the energy spectrum at
a given distance L), are, respectively, as follows:

W (|νe〉 → |νμ〉) = U2
e1U

2
μ1 + U2

e2U
2
μ2 + U2

e3U
2
μ3, (14)

W (|νe〉 → |ντ 〉) = U2
e1U

2
τ1 + U2

e2U
2
τ2 + U2

e3U
2
τ3, (15)

and the average intensity of the beam of electron neutrinos, attenuated as a result
of spatial oscillations, is proportional to:

W (|νe〉 → |νe〉) = U4
e1 + U4

e2 + U4
e3. (16)

It can be shown that the absolute minimum of the quantity W (|νe〉 → |νe〉) is
equal to 1/3 Å in accordance with the number of stationary neutrinos n = 3.

If the neutrino oscillations were conditioned Å as it was assumed before Å
by the existence of only two stationary states, then one would need to take, in
Eq. (12),

Ue3 = Uμ3 = 0.

Then, in accordance with the unitarity condition,

U2
e1 + U2

e2 = U2
μ1 + U2

μ2 = 1,

Ue1Uμ2 = −Uμ1Ue3.

Introducing the mixing angle θ, one may write:

Ue1 = Uμ2 = cos θ, Ue2 = −Uμ1 = sin θ.

In this case, the probability of transition of the electron neutrino into the
muon one at the distance L from the generation point, calculated according to
Eq. (12), equals

W (|νe〉 → |νμ〉)L = 4U2
e1U

2
μ1 sin2

(
(m2

1 − m2
2)c3L

4�E

)
=

= sin2 2θ sin2

(
(m2

1 − m2
2)c

3L

4�E

)
. (17)

The expression being analogous in structure is still valid with the presence
of three stationary neutrinos as well, if at a given distance L the condition

|m2
1 − m2

2|c3L

4�E
� 1
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is satisˇed and, meanwhile, we have

|m2
1 − m2

3|c3L

4�E
≈ |m2

2 − m2
3|c3L

4�E
∼ 1.

Then formula (12) is simpliˇed:

W (|νe〉 → |νμ〉)L = −4(Ue1Uμ1 + Ue2Uμ2)Ue3Uμ3 sin2

(
(m2

1 − m2
3)c

3L

4�E

)
=

= 4U2
e3U

2
μ3 sin2

(
(m2

1 − m2
3)c3L

4�E

)
, (18)

since, owing to the unitarity condition for the matrix Û ,

Ue1Uμ1 + Ue2Uμ2 = −Ue3Uμ3.

In doing so,

W (|νe〉 → |νe〉)L = 1 − 4U2
e3U

2
μ3 sin2

(
(m2

1 − m2
3)c

3L

4�E

)
. (19)

Formula (19) describes, in particular, the decrease of intensity of the beam of
reactor antineutrino with energy around several MeV at comparatively small dis-
tances from the reactor on account of the transition of the electron antineutrino
into the muon one, which is ®sterile¯ below the threshold of meson production.

4. NONDIAGONAL ELEMENTS OF THE MASS MATRIX AND THEIR
CONNECTION WITH THE DIFFERENCES OF NEUTRINO MASSES

By applying relations (3), the nondiagonal elements of the mass matrix can
be expressed through the differences of masses of neutrino stationary states and
the elements of the unitary matrix Û . Indeed, it is easy to see that:

m(ν)
eμ = 〈νe|m̂(ν)|νμ〉 =

3∑
i=1

UeiUμimi, m(ν)
eτ = 〈νe|m̂(ν)|ντ 〉 =

3∑
i=1

UeiUτimi,

(20)

m(ν)
μτ = 〈νμ|m̂(ν)|ντ 〉 =

3∑
i=1

UμiUτimi,

where mi is the neutrino mass in the stationary state |νi〉, as before.
Taking into account the unitarity condition:

3∑
i=1

UeiUμi = 0,
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we obtain the following expressions for the mass matrix element:

m(ν)
eμ = Ue1Uμ1(m1 − m2) + Ue3Uμ3(m3 − m2), (21)

or

m(ν)
eμ = Ue2Uμ2(m2 − m1) + Ue3Uμ3(m3 − m1). (22)

Analogous expressions may be obviously written for the mass matrix elements

m
(ν)
eτ and m

(ν)
τμ .

In terms of the mixing angles for the neutrino stationary states, which are
formally analogous to the Maiani angles introduced for the description of mixing
of ®lower¯ quarks d, s, and b [1Ä4], the matrix Û can be presented in the form:

Û =

⎛
⎝ 1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23

⎞
⎠

⎛
⎝ cos θ13 0 sin θ13

0 1 0
− sin θ13 0 cos θ13

⎞
⎠×

×

⎛
⎝ cos θ12 sin θ12 0

− sin θ12 cos θ12 0
0 0 1

⎞
⎠ . (23)

According to (23), we have:

Ue1 = cos θ12 cos θ13,

Uμ1 = − sin θ12 cos θ23 − cos θ12 sin θ12 sin θ23 sin θ13, (24)

Ue3 = sin θ13, Uμ3 = sin θ23 cos θ13.

As a result, Eq (21) gives:

m(ν)
eμ =

1
2
[(sin 2θ12 cos θ23 cos θ13 + cos2 θ12 sin θ23 sin 2θ13)(m2 − m1)+

+ sin 2θ13 sin θ23(m3 − m2)]. (25)

Formula (25), determining the matrix element m
(ν)
eμ , incorporates the values

of differences of stationary neutrino masses. Meantime, the experimental data on
neutrino oscillations contain the information only on the differences of squares of
masses.

If the moduli of differences of mass squares are very small as compared with
the square of each of the masses ( which seems to be plausible ), then the masses
of all the three stationary neutrinos may be assumed to be approximately equal
to each other:

m
(ν)
1 ≈ m

(ν)
2 ≈ m

(ν)
3 ≈ m(ν). (26)
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In this situation, the moduli of all the differences of masses are very small as
compared with the common neutrino mass m(ν):

|m1 − m2| � m(ν), |m3 − m2| � m(ν). (27)

Within this approximation, the differences of stationary neutrino masses are
determined according to the formulas∗:

m1 − m2 =
m2

1 − m2
2

2m(ν)
, m3 − m2 =

m2
3 − m2

2

2m(ν)
. (28)

Taking into account relations (28), we may rewrite Eq. (25) in the form:

m(ν)
eμ =

1
4m(ν)

[(sin 2θ12 cos θ23 cos θ13+cos2 θ12 sin θ23 sin 2θ13)(m2
2−m2

1)+

+ sin 2θ13 sin θ23(m2
3 − m2

2)]. (29)

5. STATES OF CHARGED LEPTONS WITH THE DEFINITE MASSES

Taking into account the lepton-charge non-conserving interaction, the mass
matrix for the family of leptons, including the electron, the negative muon and
the τ− lepton, has the form being analogous to the mass matrix for the neutrino
family:

M̂ =

⎛
⎝ Mee Meμ Meτ

Mμe Mμμ Mμτ

Mτe Mτμ Mττ

⎞
⎠ . (30)

The diagonal elements of the mass matrix M̂ are equal to the masses of electron
(Mee ≡ Me, Le = +1, Lμ = 0, Lτ = 0), negative muon (Mμμ ≡ Mμ, Le = 0,
Lμ = +1, Lτ = 0) and τ− lepton (Mττ ≡ Mτ , Le = 0, Lμ = 0, Lτ =
+1), whereas the nondiagonal elements, being responsible for the lepton charge
nonconservation, are negligibly small as compared with the electron mass Me

and, all the more, as compared with all the differences of masses (Mμ − Me),
(Mτ − Me), (Mτ − Mμ). Just the same mass matrix corresponds to the family
of antileptons, incorporating the positron (Le = −1, Lμ = 0, Lτ = 0), the
positive muon (Le = 0, Lμ = −1, Lτ = 0), and the τ+ lepton (Le = 0, Lμ = 0,
Lτ = −1).

∗The experimental data on oscillations [1] testify to the fact that |m2
2 − m2

1| � |m2
3 − m2

2|.
This means that the difference of masses of the ˇrst and second stationary neutrinos is very small
as ¸ompared with their distinction from the mass of the third stationary neutrino, which is itself also
relatively small.
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Due to T invariance, the Hermitian matrix M̂ should be symmetric and,
hence, real:

Meμ = Mμe, Im Meμ = 0; Meτ = Mτe, Im Meτ = 0;

Mμτ = Mτμ, Im Mμτ = 0.
(31)

Within the perturbation theory ˇrst-order approximation, the stationary states
of leptons represent the superpositions of states with different lepton charges:

|e′〉 = |e〉 + εμe|μ〉e + ετe|τ〉e,

|μ′〉 = |μ〉 + εeμ|e〉μ + ετμ|τ〉μ, (32)

|τ ′〉 = |τ〉 + εeτ |e〉τ + εμτ |μ〉τ .

The stationary states, denoted by prime, are related with different masses. In
doing so, these masses practically coincide with the masses of leptons:

Me′ ≈ Me, Mμ′ ≈ Mμ, Mτ ′ ≈ Mτ , (33)

and the coefˇcients of mixing of states with different lepton charges are expressed
through the ratios of nondiagonal elements of the mass matrix to the differences
of masses of respective leptons. Indeed, neglecting the second-order terms over
the lepton-charge non-conserving interaction, we ˇnd:

εeμ = −εμe =
Meμ

Mμ − Me
, |εeμ| � 1;

εeτ = −ετe =
Meτ

Mτ − Me
, |εeτ | � 1; (34)

εμτ = −ετμ =
Mμτ

Mτ − Mμ
, |εμτ | � 1.

Let us note that, taking into account the small values of mixing coefˇcients,
relations (34) follow also from the expressions being analogous to Eqs. (21)
and (22) for neutrinos.

In Eqs. (32), the symbols |μ〉e and |τ〉e denote the ®muonic¯ (Lμ = 1) and
®tau-leptonic¯ (Lτ = 1) states included into the stationary superposition with the
electron mass Me; the symbols |e〉μ and |τ〉μ denote the ®electronic¯ (Le = 1) and
®tau-leptonic¯ (Lτ = 1) states included into the stationary superposition with the
muon mass Mμ; and the symbols |e〉τ and |μ〉τ denote the ®electronic¯ (Le = 1)
and ®muonic¯ (Lμ = 1) states included into the stationary superposition with the
τ -lepton mass Mτ .
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6. COEFFICIENT OF MIXING OF THE STATES
WITH THE LEPTON CHARGES Le = 1 AND Lμ = 1
AND PROBABILITY OF THE DECAY μ− → e− + γ

Let us estimate the probability of the radiative decay μ− → e− + γ, being
forbidden under the lepton-charge conservation, assuming that this decay occurs
on account of ®admixture¯ of the state |e〉μ with the electronic lepton number
Le = 1 to the state of negative muon. Then the probability of decay μ− → e−+γ
per unit time will be as follows:

W (μ− → e− + γ) = |εeμ|2W (|e〉μ → e− + γ), (35)

where εeμ is the mixing coefˇcient included in the second formula in Eqs. (32).
Meantime, the differential probability of decay of the ®heavy electron¯ with

mass Mμ into the ordinary electron with momentum

p =
M2

μ − M2
e

2Mμ
cn (36)

(n is the unit vector along the momentum) and the γ quantum with energy

Eγ =
M2

μ − M2
e

2Mμ
c2 (37)

per unit time can be calculated according to the standard formula of quantum
electrodynamics [5]:

dW (|e〉μ → e− + γ) =
e2

�c

ω

2π
K|χψ+

p αϕ0|2 dΩn, (38)

where e2/�c = 1/137 is the ˇne structure constant, ω = Eγ/� is the frequency of
γ quantum, K = 1 − (Eγ/Mμc2), χ is the vector of polarization of γ quantum,
ψp is the Dirac bispinor describing the ordinary electron with mass Me and

momentum p, α is the four-row Dirac matrix (α̂ =
(

0 σ̂
σ̂ 0

)
[5]), ϕ0 is

the Dirac bispinor corresponding to the resting ®heavy electron¯ with mass Mμ.
Passing to the two-row Pauli matrices σ̂, we may write:

ψp =

⎛
⎜⎝

u0

(σp)u0

Ee + Mec2

⎞
⎟⎠ (

Ee + Mec
2

2Ee

)1/2

, ϕ0 =
(

v0

0

)
, (39)

where u0 and v0 are the two-row spinors, normalized by unity, and

Ee = (|p|2c2 + M2
e c4)1/2 = Mμc2 − Eγ =

M2
μ + M2

e

2Mμ
c2. (40)
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In doing so, we have:

χψ+
p αϕ0 =

(
u+

0

(χσ̂)(σ̂p)c
Ee + Mec2

v0

) (
Ee + Mec

2

2Ee

)1/2

. (41)

Taking into account that the ˇnal electron is ultrarelativistic (Eγ ≈ Ee ≈
(Mμc2)/2, K ≈ 1/2), we obtain the following expression Ä after averaging the
differential probability of emission over the polarizations of the ®heavy electron¯
and summing over the polarizations of the γ quantum and ˇnal ordinary electron:

dW (|e〉μ → e− + γ) =
e2

�c

ω

4π

[
1
2

tr
∑

χ

(σ̂χ)(σ̂n)(σ̂n)(σ̂χ)

]
1
2

dΩn =

=
1
8π

e2

�c

Mμc2

�
dΩn. (42)

The total probability of radiative decay of the ®heavy electron¯ per unit time
amounts to:

W (|e〉μ → e− + γ) =
e2

2�c

Mμc2

�
. (43)

Taking into account the numerical values (Mμc2 = 105.6 MeV, e2/�c =
1/137), the probability of radiative decay of the electronic state with mass Mμ

(per 1 sec.) equals

W (|e〉μ → e− + γ) =
105.6 · 106 · 1.6 · 10−12

2 · 1.054 · 10−27 · 137
= 0.583 · 1021 s−1. (44)

According to relations (35) and (38),

W (μ− → e− + γ) = W (μ+ → e+ + γ) =

=
(

Meμ

Mμ − Me

)2
e2

2�c

Mμc2

�
≈

M2
eμ

2Mμ

e2

�c

c2

�
. (45)

As follows from the experimental data [6],

W (μ− → e− + γ) < 1.2 · 10−11W (μ− → e− + ν̄e + νμ), (46)

where W (μ− → e− + ν̄e + νμ) is the probability of decay of the negative muon
into the electron, electron antineutrino and muon neutrino per unit time, coinciding
practically with the inverse lifetime of the muon:

W (μ− → e− + ν̄e + νμ) =
1
τμ

= 0.455 · 106 s−1.

11



Thus, in accordance with the experimental restriction (46), we obtain:

W (μ− → e− + γ) < 0.546 · 10−5 s−1. (47)

Taking into account Eqs. (35), (43), and (45), this means that:

|εeμ|2 < 0.936 · 10−26, |Meμ|2 < 1.032 · 10−10 eV2/c4,
(48)

|Meμ| < 1.016 · 10−5 eV2/c2.

7. HYPOTHESIS ON THE EQUALITY OF NONDIAGONAL ELEMENTS
OF THE MASS MATRICES FOR NEUTRINOS AND CHARGED

LEPTONS AND THE ESTIMATE OF THE LOWER BOUND
OF NEUTRINO MASS

Let us suppose that the mixing of ordinary leptons (e, μ, τ ) and the mixing of
neutrinos (νe, νμ, ντ ) are conditioned by the same lepton-charge nonconserving
interaction. Under this natural assumption, the nondiagonal elements of the three-
row mass matrix for the lepton family should coincide with those of the three-row
mass matrix for neutrinos:

Meμ = m(ν)
eμ , Meτ = m(ν)

eτ , Mμτ = m(ν)
μτ . (49)

Thus, we will assume that the matrix element Meμ, included into formula (45),

may be replaced by the matrix element m
(ν)
eμ corresponding to the neutrino family.

Then, taking into account Eq. (29) and inequalities (48), we obtain the following
inequality for the neutrino mass m(ν):

|Meμ| = |m(ν)
eμ | =

=
1

4m(ν)
|(sin 2θ12 cos θ23 cos θ13 + cos2 θ12 sin θ23 sin 2θ13)(m2

2 − m2
1)+

+ sin 2θ13 sin θ23(m2
3 − m2

2)| < 1.016 · 10−5 eV/c2. (50)

According to the experimental data on neutrino oscillations [6],

sin2 2θ12 = 0.86+0.08
−0.04, sin2 2θ23 > 0.92, sin2 2θ13 < 0.19;

|m2
2 − m2

1| = (8.0 ± 0.3) · 10−5 eV2/c4, |m2
3 − m2

2| = (1.9 ÷ 3) · 10−3 eV2/c4.

Assuming, respectively, that

sin2 2θ12 = 0.86 (θ12 = 34◦), sin2 2θ23 = 0.92 (θ23 = 36.8◦), θ13 = 0◦,

|m2
2 − m2

1| = 8 · 10−5 eV2/c4,

12



we ˇnd:

m(ν) >
0.927 · 0.8 · 8

4 · 1.016
= 1.46 eV2/c2. (51)

This value for the lower bound of neutrino mass is in accordance with the
upper limit of antineutrino mass determined in the works by Lobashev et al. [7]
(m(ν) < 2.3 eV/c2) and Kraus et al. [8] (m(ν) < 2.5 eV/c2) within the study of
electron spectrum in the tritium β decay (see also [6]).

8. CONCLUDING REMARKS

Let us emphasize that our estimate for the lower bound of neutrino mass m(ν)

is based on the experimental data on neutrino oscillations, on the experimental
restriction for the probability of decay μ− → e− + γ per unit time, and on

the assumption that the nondiagonal element of the neutrino mass matrix m
(ν)
eμ ,

characterizing the mixing of muon and electron neutrinos on account of the
lepton charge nonconservation, coincides with the nondiagonal element of the
mass matrix for ordinary leptons Meμ, characterizing the mixing of negative
muon and electron Å which seems natural from our point of view.

Meantime, if |Meμ| 	= |m(ν)
eμ |, then the value for the lower bound of neutrino

mass will change as compared with the magnitude obtained above. In this case,

m(ν) > 1.46|η| eV/c2,

where η = Meμ/m
(ν)
eμ is the ratio of nondiagonal elements of the mass matrices

for leptons and neutrinos.
If, in further experiments, the probability of the decay μ− → e−+γ per 1 sec.

will be determined or the upper limit of this probability will be reduced, this will
testify to the fact that the parameter |η| < 1 Å since, otherwise, we would get a
contradiction with the experimental data on the upper bound of neutrino mass.

Under the choice of another set of parameters (being also compatible with
the modern data on neutrino oscillations), for example, at the values

|m2
3 − m2

2| = 3 · 10−3 eV2/c4, sin2 2θ13 = 0.19 (θ13 = 13◦),

sin2 2θ23 = 0.92 (θ23 = 36.8◦),

we would obtain the estimate

m(ν) > 19.2|η| eV/c2,

which may be in accordance with the presently known upper limits for the prob-
ability of the decay μ− → e− + γ per 1 sec. and neutrino mass only at the ratios

of moduli of matrix elements
∣∣∣Meμ/m

(ν)
eμ

∣∣∣ = |η| <∼ 10−1.
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Let us note also that, if the condition

m1 � m2 ≈
√

m2
2 − m2

1 � m3 ≈
√

m2
3 − m2

2, (52)

were satisˇed, then the masses of all the three types of neutrino Å at the values
of differences of mass squares for the stationary states presented above Å would
differ substantially from each other but would be small themselves (< 0.1 eV/c2).

In doing so, the nondiagonal matrix element m
(ν)
eμ would have the absolute value

of ∼ 10−2 eV/c2, which strongly exceeds the estimate ∼ 10−5 eV/c2 for the
matrix element |Meμ|. Such a situation is surely incompatible with the hypoth-

esis for the equality of matrix elements Meμ and m
(ν)
eμ and corresponds to the

inequality |η| � 1.
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