
E10-2012-32

A.Yu. Isupov

NEW SOFTWARE OF THE CONTROL
AND DATA ACQUISITION SYSTEM
FOR THE NUCLOTRON INTERNAL TARGET STATION

ˆ¸Ê¶μ¢ �.�. E10-2012-32
�μ¢μ¥ ¶·μ£· ³³´μ¥ μ¡¥¸¶¥Î¥´¨¥ ¸¨¸É¥³Ò Ê¶· ¢²¥´¨Ö ¨ ¸¡μ· ¤ ´´ÒÌ
¤²Ö ¸É ´Í¨¨ ¢´ÊÉ·¥´´¨Ì ³¨Ï¥´¥° ´Ê±²μÉ·μ´

‘μ§¤ ´μ ´μ¢μ¥ ¶·μ£· ³³´μ¥ μ¡¥¸¶¥Î¥´¨¥ ¸¨¸É¥³Ò Ê¶· ¢²¥´¨Ö ¨ ¸¡μ· ¤ ´´ÒÌ ¤²Ö
¸É ´Í¨¨ ¢´ÊÉ·¥´´¨Ì ³¨Ï¥´¥° (ITS) ´Ê±²μÉ·μ´ . ˆ¸¶μ²Ó§μ¢ ´ ¨´Ë· ¸É·Ê±ÉÊ·´ Ö ¸¨¸É¥³
ngdp ¶μ¤ Unix-¶μ¤μ¡´μ° μ¶¥· Í¨μ´´μ° ¸¨¸É¥³μ° FreeBSD, ÎÉμ ¶μ§¢μ²Ö¥É ¶μ Ìμ¤Ê ¸¡μ·
¤ ´´ÒÌ ¸ ITS ¶¥·¥¤ ¢ ÉÓ ¨Ì Î¥·¥§ ±μ³¶ÓÕÉ¥·´ÊÕ ¸¥ÉÓ, É ±¦¥ Ê¤ ²¥´´μ Ê¶· ¢²ÖÉÓ ¢´Ê-
É·¥´´¥° ³¨Ï¥´ÓÕ.

� ¡μÉ ¢Ò¶μ²´¥´ ¢ ‹ ¡μ· Éμ·¨¨ Ë¨§¨±¨ ¢Ò¸μ±¨Ì Ô´¥·£¨° ¨³. ‚. ˆ. ‚¥±¸²¥· ¨
�.Œ. � ²¤¨´ �ˆŸˆ.

‘μμ¡Ð¥´¨¥ �¡Ñ¥¤¨´¥´´μ£μ ¨´¸É¨ÉÊÉ Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°. „Ê¡´ , 2012

Isupov A.Yu. E10-2012-32
New Software of the Control and Data Acquisition System
for the Nuclotron Internal Target Station

The control and data acquisition system for the Internal Target Station (ITS) of the
Nuclotron (LHEP, JINR) is implemented. The new software is based on the ngdp framework
under the Unix-like operating system FreeBSD to allow easy network distribution of the
on-line data collected from ITS, as well as the internal target remote control.

The investigation has been performed at the Veksler and Baldin Laboratory of High
Energy Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2012

Dedicated to the bright memory
of V. A. Krasnov

1. MOTIVATION AND MARKUP

The current version of the Nuclotron Internal Target Station (ITS) is described
in [1]. The stepper motor and microstepper driver are still the same after the
earliest ITS version [2].

During the 2010Ä2011 years the ITS control system was reimplemented to
achieve the following goals:

• replacement of outdated DOS software, which does not support either the
network, or the underlying computer hardware;

• replacement of the speciˇc (almost unique now) CAMAC modules by the
more generic ones with higher availability and repairability;

• integration of the already implemented targinfo(1) server, which as a
workaround was used separately (under the SCAN DAQ [3]) from the internal
target DOS software.

The present paper is focused on the software of the new ITS control and data
acquisition (IntTarg CDAQ) system. The CAMAC hardware being used now by
the IntTarg CDAQ is shown in Fig. 1, where we can see JINR manufactured
generic modules only.

Fig. 1. Functional scheme of the internal target control

1

Through the present text the ˇle and software package names are highlighted
as Italic text, C and other languages constructions and reproduced ®as is¯ liter-
als Å as typewriter text. Reference to the manual page named ®qwerty¯
in the 9th section is printed as qwerty(9). Note also verbal constructions like
®accept(2)ed¯ and ®mkpeering¯, which mean ®accepted by accept(2)¯ and ®peer
making by mkpeer¯. Subjects of substitution by actual values are enclosed in
the angle brackets: <cnts_mask>, while some optional parameters are given in
the square brackets: [-b<#>].

2. IntTarg CDAQ SOFTWARE

2.1. ngdp Based Design. As was noted in [4], the ngdp framework could be
used to organize and manage the data streams originated, in particular, from the
CAMAC hardware. To reach some independence on the CAMAC crate controller
type, we use the current version of the camac package [5]. The ngdp using allows
us to eliminate intermediate data storage on slow media like hard disks (HDD),
as well as to gracefully distribute the data acquisition system between more than
one networked computers if needed [6]. Of course, the ngdp usage essentially
reduces the implementation efforts, as is shown in Subsec. 2.2.

In the presented design of the user context utilities we adhere to the ngdp
and its predecessor qdpb [7] convention when some command-line 	ags have the
same meanings for many utilities, as follows:

-l Write logging information by syslogd(8), facility LOG_LOCAL0 (may be
changed while compiling), levels LOG_ERR and LOG_WARNING instead
of the standard error output.

-v Produce verbose output instead of the short one by default.
-b<#> Deal with the module, attached to the #th branch, instead of the 0th by

default.
-p<pidfile> At startup write the own process identiˇer (PID) in <pidfile>.

-p- means to use a compiled-in default for <pidfile>.
-h Write the utility usage to the standard error output and exit successfully.

So, in the speciˇc utilities description we will not mention these 	ags. Note
also, that each utility exits 0 if it is successful and nonzero Å if an error occurs.

2.2. Ready Modules Used by IntTarg CDAQ. In the IntTarg CDAQ de-
sign we use the following already implemented entities (introduced by the ngdp
framework, if not stated otherwise):

• The ng ksocket(4) and ng socket(4) node types are standard in the
netgraph(4) package.

• The ng camacsrc(4) node type (see [4]) allows us to inject data packets
from a CAMAC interrupt handler (see 2.3.1) into netgraph(4) as data messages.

2

• The ng ˇfos(4) node type (see [4]) implements the ®self	ow¯∗ queue with
First Input First Output (FIFO) discipline and is able to:

† spawn listen()ing ng ksocket(4) at startup;
† spawn accept()ing ng ksocket(4)(s) at each connection request from the

known host(s) / port(s) up to the conˇgured maximum, and/or
† accept hook connection from the local ng socket(4)(s);
† emit each data packet obtained on the input hook as soon as possible

(ASAP) through all accept()ing ng ksocket(4)(s) and local ng socket(4)(s)
currently connected;

† close accept()ing ng ksocket(4) at EOF notiˇcation obtaining or con-
nection loss.

• The ngget(1) (see [4]) is a utility for the packet stream extraction from
netgraph(4) (usually through the ng socket(4) node type).

• The writer(1) is a utility for packet stream writing into regular ˇles on
HDD, and introduced by the qdpb system [7].

2.3. Modules Speciˇc for IntTarg CDAQ. 2.3.1. CAMAC Kernel Module
inttarg(4). The inttarg module is intended to work with the ITS CAMAC
hardware, complies with requirements of the camacmod(9) and ng camacsrc(4),
so, it contains the CAMAC interrupt handler function. This handler recognizes
the following interrupt occurrences (events):

• begin of burst (BoB),
• target arrival to the initial position (InPos), and
• target departure from it.
In total 8 packet types INTTARG_CYC_{BEG,END,END[123]},

INTTARG_INF_0, and INTTARG_RUN_{BEG,END} are produced. Note the
INTTARG_DAT_0 is not produced at all, because trigger events are absent in the
present design. All 4 END packets have a variable length, while all the others Å
the ˇxed one.

At each BoB occurrence the inttarg produces the INTTARG_CYC_BEG
packet, which contains at least the time stamp (struct timeval) of the BoB.

If the target should be active during the current burst, the corresponding
(per-quantum) callout(9) handler is established to be executed once per our time
quantum (compiled-in default is 10 ms, usually it equals to 10 OS ticks). After
each quantum this handler increments the index in the trajectory description array
already supplied by itoper(8), reads the member at this index, resets the effective
microstep frequency and direction according to this member value, collects the
experimental data from the ADC, and reestablishes itself. After the ˇnal quan-
tum the per-quantum handler produces the INTTARG_CYC_END2 packet (ADC
data) and wakes up the kernel thread kthread(9) to read the memory buffer of

∗Without internal bufferization and therefore request-free.

3

the 10MSC multiscaler and produce the INTTARG_CYC_END1 (magnetic ˇeld
from the 9th 10MSC up/down input), INTTARG_CYC_END3 (the 0..7th 10MSC
regular inputs) and INTTARG_CYC_END (target trajectory from the 8th 10MSC
up/down input) packets. Note that INTTARG_CYC_END packet always is the
latest data packet of the current burst, while INTTARG_CYC_END[123] are
optional (depending on the software conˇguration).

The INTTARG_CYC_END packet contains up to 1+arr_size+1 of
int16_t values. The arr_size is a basic size of internal arrays in the
inttarg and conˇgured by itconf(8), valid values are: 100..500, by default 500.
The ˇrst (0th) int16_t value contains the union inttarg_cyc_end_qdt
(see einttarg.h), which has the quaval, dtype and tnum ˇelds. The quaval
is a time quantum duration (10 ms), the dtype is a data type (valid val-
ues are INTTARG_CYC_END_{INACTIVE,MKSTEPS,1_10MM,INVALID}, see
einttarg.h), and the tnum is a current target number (1..6). For our case of the
active target the dtype is equal to INTTARG_CYC_END_MKSTEPS (or 1_10MM,
if the inttarg is compiled without 10MSC support and the reported trajectory
is calculated instead of the really read-out one). Each other int16_t value
is a signed microstep's number of the stepper motor during the corresponding
time quantum. The positive values mean the movement from InPos, the negative
ones Å to InPos.

The INTTARG_CYC_END1 packet contains up to 1+arr_size+1 of
int16_t values. The ˇrst (0th) is the union inttarg_cyc_end1_qf (see
einttarg.h). Each other int16_t value is a signed magnetic ˇeld difference dur-
ing the corresponding time quantum. Naturally, the positive values correspond to
the ˇeld increasing, the negative ones Å decreasing.

The INTTARG_CYC_END2 packet contains up to 1+ADC_CHANS∗
(arr_size+1) of uint16_t values. The ˇrst (0th) equals to ADC_CHANS
constant (= 4, means the number of ADC channels, numbered from the 0th to the
3rd). After the ˇrst uint16_t the ADC_CHANS uint16_t values represent the
1st time quantum, next ADC_CHANS uint16_t values Å the 2nd time quantum,
etc., and ADC_CHANS uint16_t values for the arr_sizeth ˇnal quantum.
The 1st ADC channel is modiˇed to obtain the thermocouple output to control
the stepper motor temperature. The ADC value to temperature conversion is as
follows: T (◦C) = −0.625×ADC+628.75.

The INTTARG_CYC_END3 packet contains up to 1+msc10nch∗
(arr_size+1) of uint32_t values. The ˇrst (0th) is the union
inttarg_cyc_end3_cnt (see einttarg.h), which contains, in particular, the
msc10nch and msc10mask ˇelds. The msc10nch is a number (valid are 0..8)
and the msc10mask is an 8-bit mask (valid are 0..0xff) of the used 10MSC
regular inputs. The mask could be conˇgured by itconf(8). After the ˇrst
uint32_t the msc10nch arrays with the same length (up to arr_size+1
members) contain the uint32_t values of the 10MSC counts.

4

If the target should be inactive during the current burst, the end-of-burst (EoB)
callout(9) handler is established to be executed after arr_size of
10 ms time quanta. The EoB handler produces only the INTTARG_CYC_END
packet with an empty trajectory. This means that the packet contains the union
inttarg_cyc_end_qdt only, where the dtype is equal to
INTTARG_CYC_END_INACTIVE.

The INTTARG_RUN_BEG and INTTARG_RUN_END are produced at start
and stop user requests (see itoper(8)) and contain the time stamps (struct
timeval).

The INTTARG_INF_0 packet is produced to indicate the operation in progress
or some error or warning condition, and it should be interpreted by the re-
ceiver (for example, itGUI(1) utility). The INTTARG_INF_0 packet contains:
int32_t value of the operation code (see toper op.h), int16_t value of the
error or warning code (see inttarg err.h and errno(2)), and int16_t value
of the attribute (for example, the current target number at the WARN_CHTARG
warning).

The inttarg module can be conˇgured by the itconf(8) and controlled by
the itoper(8) / itGUI(1) utilities. The inttarg's oper() call supports at least
the subfunctions enumerated in the itoper(8)'s synopsis (see Subsubsec. 2.3.2).
Generally speaking, the corresponding operations have the essentially asynchro-
nous nature, so, we implement some kind of the ˇnite state machine. This machine
transits between well-deˇned states as a result of these operations execution. First
of all, each operation should be added by the oper() into the FIFO queue (if a
well-deˇned operation order permits it after the last already added operation). The
queue is implemented by the singly-linked tail queue STAILQ (see queue(3)), and
the operation is represented in it by the struct op_entry (see toper.h). Each
successfully added operation will be executed. Note that addition and execution
are performed simultaneously with mutex(9) locking arbitration. Execution is
completed in two phases: execution itself (i.e., some work with CAMAC) and
asynchronous ˇnish. The execution phase is performed by the oper() (if queue
contains this command only), or by the kernel thread (after ˇnishing the previous
operation). The ˇnish phase is made by the kernel thread waked up by IRQ
handler, EoB or per-quantum callout(9) handler, or by own timed-out sleep(9).
Operation can have one or more repetitions. So, cycles # operation has #
repetitions, while the targon one is continuous (up to the targoff operation
appearing in the queue). The operation execution and/or ˇnishing failures lead
to the queue discarding and the ˇnite state machine appearing in the ®unknown¯
(non-initialized) state.

The CAMAC hardware description and handling are separated from the
inttarg module's source and grouped together in the single header inttarg hard-
ware.h . This header uses macro interface kk(9) speciˇc for the KK009 crate con-
troller [8] instead of the crate controller independent interface camac(9), because

5

the former interface allows us to slightly reduce the overhead for each CAMAC
cycle [9].

2.3.2. Conˇguration itconf(8) and Control itoper(8) Utilities

itconf [-l] [-v] [-f<pflag>[,<pflag>...]] [-s{<arr_size>|-}]
[-m<cnts_mask>] [-a] [-d{<driver>|-}] <module>

itconf -t [-l] [-v] <module>

In the ˇrst synopsis form the itconf utility conˇgures the speciˇed module
<module> (in our case usually inttarg, see Subsubsec. 2.3.1 and inttarg(4))
for work with driver kk0 by default and produces packets with F_CRC|F_TIME
(#defined in the packet.h) 	ags by default.

In the second synopsis form the itconf utility tests the conˇguration of the
speciˇed module <module> and writes it to the standard error output.

The default behavior of itconf may be changed by the following options:
-d<driver> Conˇgure module for work with driver <driver> instead of

default kk0. -d- means to use the compiled-in default for the driver. The
default driver name may be changed at itconf compile time.

-f<pflag> Set header.flag ˇeld in the make_pack() produced packets in
accordance to the <pflag> supplied. Valid values are: ®crc¯, ®time¯,
®none¯ (see packet(3) for more details).

-s<arr size> Set the size (number of members) of the arrays, which accu-
mulate some statistics during the burst, to <arr_size>. Valid values
are: 100..500 (corresponds to the burst of 1..5 s). -s- means to use the
compiled-in default for <arr_size> (500), which can be changed at itconf
compile time.

-m<cnts mask> Set the bit mask for the 10MSC counter regular inputs, which
will be read from CAMAC by conˇgured module <module>. The
<cnts_mask> value means as follows: the 0th nonzero bit marks the
0th counter input to be used, the 1st bit Å the 1st input, etc., up to the
7th bit for the 7th input. -m absence in the command string leads to using
the compiled-in default for <cnts_mask> (0xff, means Å to use all 8
inputs), which can be changed at itconf compile time.

-a Request to read ADC0..3 at each time quantum and produce
INTTARG_CYC_END2 data packets with corresponding data. By default
(without -a) the ADC1 is still being read at EoB or Final Quant and
reported at INTTARG_CYC_BEG packets.

itoper [-l] [-v] [-b<#>] init|finish|start|stop|targon|targoff
|status|cntcl|exec|done|clean|print

itoper [-N<#>] [-l] [-v] [-b<#>] targon
itoper -C<#> [-N<#>] [-l] [-v] [-b<#>] cycles
itoper -T<#> [-l] [-v] [-b<#>] chtarg
itoper [-r{<infile>|-}] [-l] [-v] [-b<#>] [-A<amax>] [-V<vmax>]

[-c{-|<limsfile>}] settrj
itoper [-s{<outfile>|-}] [-l] [-v] [-b<#>] gettrj

6

In all the synopsis forms the itoper performs oper() call (see [4] and
camacmod(9)) with subfunction fun (see inttarg.h), deˇned by the ˇrst sup-
plied argument, on the CAMAC module (usually inttarg(4)) attached to the 0th
branch, and writes the report about that action to the standard error output.
The init, finish, start, stop, targon, targoff, cycles, chtarg,
settrj, gettrj, status, and cntcl are funs for production usage and ex-
pected to have self-explained names. Note with -v the itoper also uses oper()
call with status subfunction. The itoper may be used, for example, to imple-
ment some commands in the supervisor conˇguration ˇle sv.conf(5) (see Subsub-
sec. 2.3.3).

The default behavior of itoper may be changed, in particular, by the following
options:

-C<#> This mandatory 	ag supplies the number of cycles <#> to be serviced by
the internal target before the implicit stop (the third synopsis form of the
itoper).

-N<#> If this optional 	ag is supplied, the one (last) of each <#> cycles will not
be serviced by the internal target Å so-called ®drop each Nth cycle¯ mode
(the second and third synopsis forms of the itoper). This allows another
beam activity, for example, slow extraction. At the beginning of each burst
previous to the inactive one the packet of INTTARG_INFO_0 type with
WARN_PREP2DROP value will be generated.

-T<#> This mandatory 	ag supplies the internal target number <#> to be made
active (the fourth synopsis form of the itoper). Valid values are 1..6.

-r<infile> This optional 	ag supplies the <infile> name of the input ˇle
which contains the internal target trajectory to be programmed (the ˇfth
synopsis form of the itoper). -r- means to use the compiled-in default for
input ˇle name ($NGDPHOME/trj/in.trj), which can be changed at itoper
compile time. The same is used if the -r is absent.

-s<outfile> This optional 	ag supplies the <outfile> name of the output
ˇle where the current internal target trajectory should be stored (the sixth
synopsis form of the itoper). -s- means to use the compiled-in default
for output ˇle name ($NGDPHOME/trj/save.trj), which can be changed at
itoper compile time.

-A<amax> Sets the acceleration upper limit (in mksteps/ms2) for the trajectory
calculation to the supplied <amax> value. Default is 0.025.

-V<vmax> Sets the velocity upper limit (in mksteps/ms) for the trajectory cal-
culation to the supplied <vmax> value. Default is 5.0.

7

-c<limsfile> Requires to read at startup the multipliers for the accelera-
tion and velocity limits from <limsfile> (the ˇfth synopsis form of
the itoper). -c- means to use compiled-in default for <limsfile>
($NGDPHOME/etc/itGUI lims.cfg), which can be changed at itoper com-
pile time. The same is used if the -c is absent. If the limits ˇle opening or
reading fails, the multipliers are 1.0 for the whole time range (0..5000 ms).

The <infile> and <outfile> contain the pair of ASCII 	oat numbers
delimited by space and/or tab symbol(s) per each line. (Lines are delimited by
the newline symbol as is usual for UNIX textual ˇles.) The ˇrst number is the
time in ms (abscissa), the second Å a rotating angle in arc degrees (ordinate).
Lines with comment symbol ®#¯ in the ˇrst position are ignored. For example,
the requested trajectory in Fig. 3 is as follows:

#time position (degrees)
0 0
900 33.2
3300 35.0
4300 0

Each line of the <limsfile> contains the four ˇelds delimited by space
and/or tab symbol(s). (Lines are delimited by a newline symbol as is usual
for UNIX textual ˇles.) The ˇrst ˇeld is a keyword, the alim means the line
belongs to the acceleration's limitation, the vlim Å to the velocity's one. The
fourth ˇeld is an ASCII 	oat and represents the multiplier for the limit, which
is deˇned by the -A/-V option or by default. The second and third ˇelds are
ASCII integers from 0 to 499 and represent the lower and upper boundaries of
the trajectory range (in the 10 ms units), where the multiplier will be applied.
Lines with comment symbol ®#¯ in the ˇrst position are ignored. For example,
the requested trajectory in Fig. 3 uses the following limit multipliers:

#type min max mult
alim 0 50 7.0
alim 50 200 0.3
vlim 0 150 1.2

2.3.3. The itGUI(1) User Control Utility

itGUI [-l] [-v] [-b<#>] [-a] [-L] [-M<mask>|-m<mask>] [-A<amax>]
[-V<vmax>] [-r{infile|-}] [-s{outfile|-}] [-p{-|<pidfile>}]
[-c{-|<limsfile>}]

itGUI -o [-l] [-v] [-b<#>] init|finish|start|stop|targon
|targoff|status|cntcl|exec|done|clean|print

itGUI -o [-N<#>] [-l] [-v] [-b<#>] targon
itGUI -o -C<#> [-N<#>] [-l] [-v] [-b<#>] cycles
itGUI -o -T<#> [-l] [-v] [-b<#>] chtarg
itGUI -o [-r{<infile>|-}] [-l] [-v] [-b<#>] [-A<amax>] [-V<vmax>]

[-c{-|<limsfile>}] settrj
itGUI -o [-s{<outfile>|-}] [-l] [-v] [-b<#>] gettrj

8

Fig. 2. The itGUI(1) screenshot. See the text for description

The itGUI provides the graphic user interface (GUI) for conversation with
the IntTarg CDAQ system as well as for the graphic representation of the read
out experimental data using the ROOT framework [10] libraries. In the ˇrst
synopsis form the itGUI draws one main window of buttons (in Fig. 2 Å the
right window ®Internal Target GUI¯) and some additional windows to display
target trajectories (the upper left window) and other acquired data: magnetic
ˇeld (the same window), multiscaler input(s) (the lower left window) and ADC
channels (not shown). After that the itGUI tests the current IntTarg CDAQ state
to highlight buttons, correspondingly, launches the child process to read ngdp
packets from the standard input (usually supplied by the ngget(1)), and goes
into the endless loop (TApplication::Run()) of the graphic events handling.
Note the itGUI could be safely and consistently restarted at any time during the
IntTarg CDAQ working without the latter state changes.

If the itGUI called with the -o 	ag or under the itoper name, it behaves the
same way as∗ itoper(8) utility in the corresponding synopsis forms (without -o,
of course), see Subsubsec. 2.3.2.

∗The itGUI(1) shares the corresponding source with the itoper(8).

9

Fig. 3. The itGUI(1) trajectories window. See the text for description

The default behavior of itGUI may be changed, in particular, by the following
options∗:
-a Handle ADC0..3 histograms instead of ADC1 channel only for the stepper

motor temperature calculation by default.
-L Leave mode Å to survive after the data reading child process termination

(usually after EOF obtaining while the of	ine data ˇle reading). It allows
us to play with the graphic output without future redraws.

-M<mask> Supplies the 8-bit mask <mask>, whose bits correspond to 10MSC
regular inputs. Each nonzero bit means the corresponding counter to be
additive during the current run instead of the counter resetting per each
cycle by default.

-m<mask> The same as -M, however, it normalizes additive counters to the
packet's number.

The itGUI is implemented with having in mind the supervisor utility concept
(see [7]). According to this concept the itGUI has the conˇguration ˇle (named by
default $NGDPHOME/etc/inttargsv.conf) in the sv.conf(5) format (really Make-
ˇle, see also make(1)). This ˇle establishes the correspondence between the
user commands (®targets¯ in make(1) terminology) and actions which should be
performed. This textual ˇle could be revised easily without the itGUI recompile.

The main itGUI(1) window (TGMainFrame) contains (see Fig. 2) the buttons
(TGTextButton), the string (TGTextEntry) and number (TGNumberEntry)

∗Options already described in Subsubsec. 2.3.2 are not mentioned here. For the
<infile>/<outfile> and <limsfile> formats see Subsubsec. 2.3.2.

10

Fig. 4. The itGUI(1) counters window. See the text for description

input ˇelds, the current state and target indication ˇelds (TGLabel), and debug
output viewer (TGTextView). Each button could be pressed by the left mouse
button single-click, as well as the input focus could be placed into the input ˇelds.
The generic system startup direction is from up to down (and system stopping Å
from down to up). The buttons with ®On¯ and ®Off¯ meanings are placed in the
same horizontal ®engraved¯ frame from the left to the right.

Each button could be in the following states:
• active (could be pressed, black foreground);
• pressed (reverse shadow, grey foreground); or
• inactive (could not be pressed, grey foreground).
Each button could display the following operation states:
• the operation could be tried to perform (grey background);
• the operation successfully done (green background);
• the operation in progress or in queue (yellow background);
• the operation failed to be added to the queue or to be done (red background).
The buttons are:

Load loads and conˇgures the inttarg(4) kernel module. The corresponding
number input ˇelds: Counters Mask Å mask of the 10MSC input(s)
to be read (0..0xff), Arrays Size Å base array's size (500 per 5 s
accelerator burst).

Unload (counterpart of previous) unloads the inttarg(4) kernel module.
Exit sends SIGTERM to the itGUI's process group and exits the itGUI. Note the

itGUI's termination does not change the IntTarg CDAQ state in any way.
Status collects the status outputs from the number of system parts and displays

these outputs in the debug output viewer.
Readtrj reads the requested trajectory from the input ˇle under the name given

in the string input ˇeld to the right from the Readtrj button. This reading

11

totally replaces the current requested trajectory, as well as its interactive
modiˇcation, and leads to the calculated trajectory updating.

Savetrj saves the current requested trajectory in the output ˇle under the name
given in the string input ˇeld to the left from the Savetrj button.

Continue starts the data acquisition, i.e., handling of the BoB interrupts. In
this state the system is ready for target walking, and the targinfo(1) server
has the data to be distributed.

Pause (counterpart of previous) stops the BoB interrupts handling. In this state
the ITS hardware could be safely powered off/on.

Settrj supplies the current calculated trajectory for the inttarg(4) kernel
module.

Gettrj gets the calculated trajectory from the inttarg(4) kernel module and
prints it in the debug ˇle under the name given in the string input ˇeld to
the right from the Gettrj button.

Chtarg sets the target with number <#> to be a current (ready to walk) target.
The corresponding number input ˇeld: Target # Å the number of the
target to be the current one (valid numbers are 1..6). The correspondences
between the numbers and materials are displayed to the right from the
Chtarg group frame.

Targon allows the current target to walk during each cycle inˇnitely (up to
explicit denying by the Targoff pressing). The target starts to walk at
the nearest BoB. During the latest of each N bursts the target could be not
inactive, if the N � 2 value is supplied with the corresponding number
input ˇeld Drop each Nth. Valid numbers are 2..3600, and 0, 1, which
mean that the target does not drop the bursts.

Targoff (counterpart of previous) denies the current target to walk. The target
stops to walk after the nearest EoB or before the nearest BoB.

Cycles allows the current target to walk during each cycle of the nearest #
cycles (or up to explicit denying by the Targoff pressing), supplied with
the corresponding number input ˇeld Cycles number (valid numbers are
1..3600). The target starts to walk at the nearest BoB. During the latest of
each N bursts the target could be inactive, if the N � 2 value is supplied
with the corresponding number input ˇeld Drop each Nth. Valid numbers
are 2..3600, and 0, 1, which mean that the target does not drop the bursts.

Init initializes ITS hardware, in particular, CAMAC modules in the read-out
crate, and positions the target into the nearest InPos. Note the Init is also
a part of Load.

Finish (counterpart of previous) de-initializes the internal target hardware. In
the current design it is not needed at all.

LoadW loads the writer(1) Å utility to write the packet stream into ˇles on HDD.
The corresponding input ˇelds:
(string) Å base name of the data ˇles for the current writer(1) run;

12

Max. Size (bytes) (number) Å the recommended size for each ˇle;
Max. Age (seconds) (number) Å the recommended age for each ˇle.

UnloadW (counterpart of previous) unloads the writer(1) utility and consequently
terminates the data writing of the current run.

LoadTI loads the targinfo(1) Å server, which distributes the read out internal
target trajectory to its already registered clients.

UnloadTI (counterpart of previous) unloads the targinfo(1) server.

Each but Exit, Readtrj, Savetrj button corresponds to the command
(target) under the same name (without capitalization) in the supervisor conˇg-
uration ˇle, so the IntTarg CDAQ control has two functionally equivalent in-
terfaces: graphic (by itGUI(1)) and textual (by conˇguration ˇle make(1)ing).
Note, however, that itGUI(1) itself uses the conˇguration ˇle to perform the
complex commands ([un]load, [un]loadw, [un]loadti, status) only.
In contrast, the simple commands (see -o synopsis forms) corresponding directly
to inttarg(4)'s oper() subfunctions, are performed internally using the code
shared with itoper(8).

The indication ˇelds in the main window are:

Curr.State: (under the Status button) displays the current state of the op-
erations queue (see Subsubsec. 2.3.1), one of: ®Unknown¯ (on grey back-
ground Å before Load and after Unload, on red Å otherwise), ®Init¯,
®Start¯, ®Stop¯, ®Cycles¯, ®Target On¯ (all on green).

Curr.Target: (to the right for the Chtarg button) displays the current target
number and material (on the green background Å after successful target
change, on the yellow one Å after startup and while the target changing, on
the red Å after the unexpected target change or after obtaining the invalid
number of the current target), for example: ®#5 Ag108¯.

The string input ˇeld named ®Arbitrary command¯ (just above the debug
output viewer) allows the user to perform any target from the supervisor conˇg-
uration ˇle.

The itGUI(1) data windows are as follow:
trj canvas The internal target trajectories Å requested (in black, with asterisk

points), calculated (in red) and read out (in green, only after cycles with the
active target) from the 8th 10MSC up/down input Å as well as the magnetic
ˇeld (in blue) read out from the 9th 10MSC up/down input are displayed in
the single TCanvas named ®trj canvas¯. On the itGUI screenshot (Fig. 2)
we can see this canvas as the left upper window frame with the ®Target
trajectory / Magnetic ˇeld¯ title. With the higher resolution such canvas
is shown in Fig. 3. The calculated (dotted) and read out (dash-dotted)
trajectories are in some segments below the requested trajectory (the solid
line with two asterisks) and approximately coincide. The last segment of
the read-out curve goes to zero vertically, because the multiscaler is not

13

read after the ˇnal time quantum, however, the target really goes into InPos
with the ˇxed 1 mkstep/ms velocity, as is shown by the calculated curve.
The arbitrary scaled magnetic ˇeld (dashed curve) is above all the others.
The abscissa is the time in milliseconds, the ordinate is a target shift in
arc degrees (InPos at 0◦, beam center approximately at 30◦). Note, the
requested and calculated trajectories could not be very close to each other
(as in Fig. 3), because the trajectory calculation algorithm has the upper
limits for the target velocity (leads to the lower slope angle) and accel-
eration (leads the to angle smoothing). To be more 	exible, these limits
could be varied along the trajectory according to the conˇguration ˇle it-
GUI lims.cfg (format described in Subsubsec. 2.3.2). So, the trajectory in
Fig. 3 is calculated with the following limits:
amax< 0.175 mksteps/ms2 at 0..500 ms;
amax< 0.0075 mksteps/ms2 at 500..2000 ms;
vmax< 6.0 mksteps/ms at 0..1500 ms
(in other time ranges the both limits are default). The requested trajectory
could be read from the input ˇle under the name given in the corresponding
TGTextEntry by pressing the Readtrj (see above). Reading from the
ˇle totally replaces the current requested trajectory. The current requested
trajectory could be interactively modiˇed. The point could be added by the
left mouse button double-click, while the existing point could be removed
by the middle mouse button double-click (see also the hot keys below).
Note, neither the points nor the whole trajectory should be moved. After
each modiˇcation of the requested trajectory the calculated trajectory is
updated. The current requested trajectory could be saved in the output ˇle
under the name given in the corresponding TGTextEntry by pressing the
Savetrj (see above). The following hot keys are supported while mouse
focus is in ®trj canvas¯:
a, A Å add the point under the current mouse position;
d, D Å delete the point under the current mouse position;
i, I Å input the point using the TGInputDialog (the coordinates should
be entered as the time-angle pair of the 	oat numbers delimited by space
and/or comma);
u, U Å remove the last point added by the left double-click or hot keys A,
a, I, i (could be used many times);
p, P Å print the calculated trajectory into the debug ˇle under the name
given in the TGTextEntry to the right from the Gettrj (see above);
r, R Å read out the requested trajectory from the input ˇle under the name
given in the TGTextEntry to the right from the Readtrj (see above);
c, C Å clean out the trajectory (only (0,0) and (5000,0) points are pre-
served);

14

s, S Å save the current requested trajectory in the output ˇle under the name
given in the TGTextEntry to the left from the Savetrj (see above);
T Å supplies the current calculated trajectory for the inttarg(4) kernel
module (the same as Settrj, see above);
t Å gets the calculated trajectory from the inttarg(4) kernel module and
prints it in the debug ˇle under the name given in the TGTextEntry to
the right from the Gettrj (see above);
q, Q Å quit the itGUI (the same as Exit button pressing, see above).

cnts canvas From 0 up to 8 counter values, read out from the 0..7th 10MSC in-
puts, are represented by TH1Ds and displayed in the single TCanvas ®cnts
canvas¯ iconiˇed at startup. In Fig. 2 it is the lower left window frame
with the single curve, which represents the interaction intensity monitor
counts for the last processed cycle. This plot allows the user to tune the
target movement trajectory. Numbers and positions of the inputs to be used
are conˇgured (see itconf(8)) while loading of the inttarg(4) kernel module.
The intensity monitor counts during the single cycle for the C target run is
shown in Fig. 4.

cv adc N Four ADC channel histograms (TH1) are displayed each in its own
window (TCanvas) ®cv adc 0¯..®cv adc 3¯ iconiˇed at startup (in Fig. 2
we cannot see them), if the -a option is speciˇed.

2.3.4. The targinfo(1) Trajectory Server. The targinfo(1) is a server, which
provides its clients with the internal target trajectory data in each accelerator cycle
at the end of this cycle.
targinfo [-l] [-t] [-f<#>] [-p{-|<pidfile>}] [-a<address>[...]]

In this synopsis form the targinfo listens to the TCP/IP socket on the host
he117-90.jinr.ru, port 12345 to get client connection requests, and reads
packets from the standard input. From each of the obtained INTTARG_CYC_BEG
packets the targinfo collects the BoB timestamp, while from each of the
INTTARG_CYC_END ones it collects the microstep number array of the ITS step-
per motor. Once per cycle the targinfo writes the cycle timestamp and some target
trajectory data (format described below) to all the currently connected clients (if
any). Up to CLIENTS_MAX clients (usually 5) can be serviced simultaneously,
connections closed by the peer are recycled.

The default behavior of the targinfo may be changed by the following options:

-t Exits at all negative conditions from packet(3) functions instead of the exit
only at −3 by default.

-f<#> Assigns the supplied <#> number to the pack_flags variable for the
packet(3) read_pack() function. -f absence in the command string leads
to using the compiled-in default for <#> (F_CRC (see packet.h), because
this is the only checkable value for reading).

15

-a<address> Restricts clients to connect from speciˇed <address> only in-
stead of allowing the client to connect from any one by default. <address>
can be an Internet name in domain notation or IP address as four decimals
separated by dots. Note that -a option can be speciˇed with different
<address>es up to CLIENTS_MAX times.

The data format preserved after workaround implementation under the DAQ
system of the SCAN setup [3] is as follows:

• timestamp of the burst begin (8 bytes of the struct timeval);
• signed target shift in 1/10 mm per each 20 ms (the 250 int16_ts allows

us to cover up to 5 s burst).
The format also indicates the following situations:
• A nonactive target. If the target was not injected into the beam during the

current cycle, all the 250 int16_ts are equal to 0.
• Some erroneous target behaviour. If the target was walking incorrectly, all

250 int16_ts are equal to SHRT_MAX (0x7fff).
• The next cycle will be nonactive. The ITS control supports a special

operation mode, in which the target remains inactive each Nth of N cycles to
allow other beam activities. In this mode, if the trajectory data are SHRT_MAX-1
(0x7ffe), the internal target will be inactive during the next cycle. Note, these
data will be written soon after obtaining INTTARG_CYC_BEG packet in contrast
with all the other data types generated at INTTARG_CYC_END arrival. Note also,
that the normal trajectory output will be generated for the current cycle, too, and
during the next (inactive for the internal target) cycle the trajectory data will be
zero (as should be expected).

2.4. Bringing All Things Together. The ngdp graph used by the IntTarg
CDAQ is shown in Fig. 5. It is very much like ngdp's CAMAC Front-End Mod-
ules (FEM) level proposed in [6]. The node named fifo: of type ng_fifos
is instantiated (mkpeered) at the he117-90.jinr.ru host bootstrap time us-
ing the script $NGDPHOME/etc/ˇfo.ngctl processed by the ngctl(1). During
ng_fifos startup it mkpeers the node of type ng_ksocket with automati-
cally chosen name (0x2_listen: in Fig. 5), and connects the remote hook
inet/stream/tcp with its own hook listen. So, the ng_fifos and its
listen()ing ng_ksocket are still ready from OS's boot to shutdown.

The ng_fifos provides identical packet streams through all the currently
connected outputs, both the local and remote ones. Each output could be con-
nected and disconnected without disturbing other outputs, so the packet stream
consumers (writer(1), targinfo(1), and itGUI(1)) could be started and terminated
independently of each other. These utilities are launched by the loadw, loadti
and loadgui commands from the $NGDPHOME/etc/inttargsv.conf to be read-
ers of the pipes, where the writers are the ngget(1)s. Each ngget(1) mkpeers
the ng_socket instance (ngget73583: and ngget73547: in Fig. 5) and

16

Fig. 5. The IntTarg CDAQ core is implemented by the ngdp graph. Rectangles are nodes
with: name (up), type (left), ID (right); octagons are hooks named within. ng fifos has
two local output streams through ng sockets, as well as listen()ing ng ksocket

connects it by hook get with ng_fifos's hook output<N>. The simul-
taneously allowed numbers of both the output<N> hooks and accept()ing
ng_ksockets are the compiled-in parameters of ng_fifos.

The load command of the supervisor conˇguration ˇle, in particular, loads
the inttarg(4) interrupt handler and executes the ngctl(1) utility to proceed the
script $NGDPHOME/etc/camacsrc.ngctl, which mkpeers the node named src:
of type ng_camacsrc. This node communicates (see [4] for details) with
CAMAC kernel module inttarg(4), and connects its own hook output with
the hook input of the ng_fifos. After that the IntTarg CDAQ graph has all
components which are provided by the current design.

The supervisor conˇguration ˇle $NGDPHOME/etc/inttargsv.conf allows the
user to control the IntTarg CDAQ in the command-line mode through a simple
textual terminal (without GUI). Of course, the requested trajectory could not be
corrected interactively in this mode and user cannot see all the read-out data.
However, the trajectory ˇle is textual (see Subsubsec. 2.3.2), so it could be edited
easily.

The overall IntTarg CDAQ layout is pictured in Fig. 6, where we can see
the host he117-90.jinr.ru as the rectangle entitled ®IntTarg CDAQ¯. In the
user context the three processes (itGUI(1), targinfo(1) and writer(1)) obtain three
identical packet streams from three ngget(1)s, which read three ng socket(4)s
connected to ng ˇfos(4). The packet streams with the same contents could be
also transferred remotely through the accept(2)ing ng ksocket(4)s instantiated
after client's connect(2)ion to the listen(2)ing ng ksocket(4). (The netgraph(4)
behaviour mimics the BSD socket handling scheme.) In the present state we
have no remote consumers of the full packet stream, however, they can appear in
future (see Subsec. 2.5).

17

Fig. 6. Overall IntTarg CDAQ layout

The rectangle ®trajectory visualization client¯ in Fig. 6 is another host which
executes one of the possible clients of the targinfo(1) server Å the ROOT script
clnt targ.C . Note the targinfo(1) distributes the read out trajectory only, not the
packet stream (see also Subsubsec. 2.3.4). So, the targinfo(1) is preserved mostly
for the backward compatibility and could be retired in future.

2.5. Nuclotron Run Experience and Future Directions. The IntTarg CDAQ
was used to control the internal target during the March and December 2011
Nuclotron accelerator runs. The total beam time of the ITS operation was ap-
proximately 150 h on the deuteron beam at Tkin = 250−500 MeV/nucleon. In
particular, the ®drop each Nth cycle¯ mode was successfully used in March 2011.

The IntTarg CDAQ usage experience during the March 2011 Nuclotron ac-
celerator run provides some hints to improve the software, ˇrst of all itGUI(1),
in some aspects. So, the ROOT TGraph was replaced by the TH1D to repre-
sent most of the visualized curves with many (some hundreds) points since the
TGraph has shown a dramatically low visualization performance (ROOT 5.16).
Also the ROOT TThread was eliminated in favor of traditional UNIX child
process fork()ing to separate the execution stream for the data packets reading
from the main execution stream for the X11 events handling. This choice has
been justiˇed by the fact, that the BSD scheduling algorithm for processes in-
stead of threads is more mature, reˇned, and featured. The -a option was added
to the itGUI(1) to reduce visualization expenses by default, and visualize ADC

18

histograms with -a. If the same option is not supplied to itconf(1), the inttarg(4)
module will be conˇgured not to collect ADC data for histogramming, because
these data are currently not useful. Only the stepper motor temperature channel
(ADC1) will be read once per cycle (at EoB or ˇnal quantum). The correspond-
ing value could be found at the end of INTTARG_CYC_BEG packet, which was
enlarged by 2 bytes. This feature reduces the CAMAC activity overhead per each
time quantum and allows one to watch the stepper motor temperature also during
the cycles with an inactive target. All the mentioned software improvements were
successfully tested during the December 2011 Nuclotron run.

The full IntTarg CDAQ system data set in the packet stream form could be
provided on-line for clients on the remote hosts. A client could be something like
a (sub)event builder ((Sub)EvB, see [6]) implemented in the kernel context by, for
example, the following ngdp graph: ng_ksocket→ng_defrag→ng_em[s].
In the user context a client could be, for example, a pipe of the hose(1) utility
(writer end) from the netpipes package (see netpipes(1)) and a some read-only
version of the itGUI(1) (reader end), which allows the user to observe but not
to control the internal target. Of course, users are free to implement their own
clients using the BSD socket and ngdp packet(3) program interfaces (APIs).

Some minor updates of the IntTarg CDAQ are also possible in future. A
separate canvas for the trajectory changes and calculations during the target walk-
ing could be added. The magnetic ˇeld reading with the inactive target will be
useful. The target trajectory calculation algorithm has some annoying features,
so it could be revised more or less essentially. The 8th and 9th multiscaler input
readings could be prolonged after the ˇnal quantum.

CONCLUSIONS

The new control and data acquisition system for the Nuclotron ITS has been
implemented using the ngdp, camac, and ROOT packages to allow easy network
distribution and integration. The outdated both DOS software and underlying CA-
MAC and computer hardware have been replaced. The previously implemented
targinfo(1) server has been integrated into the IntTarg CDAQ now. During
150 h of the 2 Nuclotron runs the IntTarg CDAQ has demonstrated the operation
stability and target manipulation convenience.

Acknowledgements. The author has a pleasure to thank S.G. Reznikov,
who has designed and implemented the hardware upgrade of the ITS control
scheme on the generic CAMAC hardware, V. P. Ladygin Å for initiation of the

presented developments, V.A.Krasnov Å for useful discussions, S. M. Piyadin,
A.N. Livanov and A.N.Khrenov Å for support during the run. The present work
was supported in part by the RFBR grant 10-02-00087a.

19

REFERENCES

1. Anisimov Yu. S. et al. A new construction of Nuclotron internal target station and its
control system // Proc. of the International Workshop Å Relativistic Nuclear Physics:
from Hundreds of MeV to TeV, Stara Lesna, Slovakia, 2003. JINR, 2003. P. 117.

2. Malakhov A. I. et al. // NIM A. 2000. V. 440. P. 320.

3. Afanasiev S. V. et al. The data acquisition and trigger of the SCAN setup // Instr. and
Experim. Techn. 2008. V. 1. P. 34Ä39 (in Russian).

4. Isupov A. Yu. CAMAC subsystem and user context utilities in ngdp framework. JINR
Commun. E10Ä2010Ä35. Dubna, 2010. 20 p.

5. Gritsaj K. I., Olshevsky V. G. Software package for work with CAMAC in Operating
system FreeBSD. JINR Commun. P10Ä98Ä163. Dubna, 1998. 16 p. (in Russian).

6. Isupov A. Yu. The ngdp framework for data acquisition systems. JINR Commun.
E10Ä2010Ä34. Dubna, 2010. 20 p.

7. Gritsaj K. I., Isupov A. Yu. A trial of distributed portable data acquisition and process-
ing system implementation: the qdpb Å data processing with branchpoints. JINR
Commun. E10-2001-116. Dubna, 2001. 19 p.

8. Churin I., Georgiev A. // Microprocessing and Microprogramming. 1988. V. 23.
P. 153.

9. Isupov A. Yu. SPHERE DAQ and off-line systems: implementation based on the qdpb
system. JINR Commun. E10-2003-187. Dubna, 2003. 17 p.

10. Brun R., Rademakers F. ROOT Å an object oriented data analysis framework // Proc.
of the AIHENP'96 Workshop, Lausanne, Switzerland, 1996. NIM A. 1997. V. 389.

P. 81Ä86.

Received on March 21, 2012.

Šμ··¥±Éμ· ’. …. �μ¶¥±μ

μ¤¶¨¸ ´μ ¢ ¶¥Î ÉÓ 14.06.2012.
”μ·³ É 60× 90/16. �Ê³ £ μË¸¥É´ Ö.
¥Î ÉÓ μË¸¥É´ Ö.

“¸². ¶¥Î. ². 1,43. “Î.-¨§¤. ². 1,93. ’¨· ¦ 250 Ô±§. ‡ ± § º 57665.

ˆ§¤ É¥²Ó¸±¨° μÉ¤¥² �¡Ñ¥¤¨´¥´´μ£μ ¨´¸É¨ÉÊÉ Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°
141980, £. „Ê¡´ , Œμ¸±μ¢¸± Ö μ¡²., Ê².†μ²¨μ-ŠÕ·¨, 6.

E-mail: publish@jinr.ru
www.jinr.ru/publish/

