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XKunkos IT. E. E5-2012-38
O cxn 6]>IX peuieHudax 3 4 44 € H 4 JIbHbBIMU I HHBIMU V11 YP BHCHUA
Uty = Cl(.f, t)uTT + f(t7 Ty Uy Uty uI)

Jlns yp BHeHHS BUI , yK 3 HHOIO B 3 FOJIOBKE, IIPEAIION I' ercsi, rpybo roBops,
uto a(-,t) € C(R; W) N Loo(R; WL) N CYR; Lo) u ay(+,t) € Loo(R; Loo) 1 utO
cymectByoT 0 < a1 < ag u ag > 0 T xue, 4ro a1 < a(z,t) < az u |Va(z,t)| < as
st mobbIx 2, t € R. @yHKuys f npearnon r ercs HelnpepsiBHO auddepeHImpyeMoii
u yposnersopsroweii yciaosuio f(t,z,0,7,s) = 0. IIpeanon r ercs, 4To H 4 JIbHbIC
n nnbte npun aex T (W3 MWL) x (LaN La). I0K 3 HbI CYIIECTBOB HUE U €JIUH-
CTBEHHOCTB JIOK JIbHOTO ¢l 6oro (W3 NW L )-pemenus. Kpome Toro, B crienu JipHOM
cyd e f(t, z,u, up, uy) = —|u|?"tu, ¢ > 1 10K 3 HO CyIIECTBOB HHe 1106 JILHOTO
¢l 60ro pemeHus.

P 6or Bemonnen B JI 6op Topuu Teopernyeckoil ¢uzuku uM. H. H. Boromio-
6o OWSIH.
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On Weak Solutions of the Initial Value Problem for the Equation
Uty = Cl(.f, t)uTT + f(t7 Ty Uy Uty uI)

For the equation of the kind indicated in the title, it is assumed roughly speaking
that a(-,t) € C(R;W3) N Loo(R;WL) N CYR; Ly) and a¢(-,t) € Loo(R;Loo)
and that there exist 0 < a; < ag and ag > 0 such that a1 < a(z,t) < a2 and
|[Va(z,t)| < as for any z,t € R. The function f is assumed to be continuously
differentiable and satisfying f(¢,x,0,7,s) = 0. The initial data are assumed to be in
(WinWL) x (LaNLs). The existence and uniqueness of a local weak (W3 NWL )-
solution is proved. In addition, in the special case f(t,z,u,us, uy) = —|u|? 1u,
q > 1 the existence of a global weak solution is proved.
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1. INTRODUCTION. STATEMENTS OF THE MAIN RESULTS

In several last decades, a large number of publications was devoted to studies
of the existence and uniqueness of solutions for semilinear wave equations in the
case when these equations are autonomous (i.e., when their coefficients do not de-
pend on time t). For an information on this subject, see, for example, monograph
[6] and the references therein. Another classical field of investigations consists of
the same questions for quasilinear hyperbolic equations. It is known that in this
case, generally speaking, an initial value problem has a local sufficiently smooth
solution which is not global (that is, it cannot be continued onto the entire real
line ¢ € R). There is a number of basis results on this subject (see, for exam-
ple, [1-4] and the references therein). A general theory of hyperbolic equations,
mainly of linear ones, is presented, for example, in the recent book [5].

In the present paper, we consider the problem

uge = a(x, t)ugy + bz, t)u + c(z, t)ur + d(z, t)uy+
+ f(t,zu, u, ug), w=u(zt), (z,t) €R? (1)

u(-,0) = up(-) € WH(R)NWL(R), us(-,0) = u1(-) € La(R) N Loo(R).  (2)

Hereafter, all the quantities we deal with are real, a(-,t) is, speaking not quite
precisely, in C(R; W3 (R)) N Loo(R; WL (R)) N CL(R; Lo(R)) and a.(-,t) €
Lo (R; L) and, for simplicity, f is assumed to be smooth and, in addition,
ft,z,0,us,u,) = 0 (we shall give precise definitions in the following). We
assume that equation (1) is uniformly hyperbolic, that is, that for any bounded
interval I C R there exist 0 < a; < ag such that

a1 < a(z,t) < as (3)

for any t € I fixed for almost all x € R. It is known that the methods used
usually for autonomous semilinear hyperbolic problems of this type in our case do
not apply (on the theory of autonomous problems of this type, see, for example,
[6]). One of the reasons of this is that the Strichartz-type estimates exploiting
often in the autonomous case are not known for problem (1)—(2). Our results for
this problem may be considered as a step in the way of proving the existence and



uniqueness of a weak solution for a quasilinear second-order hyperbolic problem
(for example, when we have a coefficient a1 = a1 (u(x,t)) in place of a(z,t)),
if such a solution exists at all. For this aim, we shall consider lower regularity
coefficients in equation (1), though if one assumes that these coefficients are
sufficiently smooth and bounded with their derivatives, then our proofs become
essentially simpler. The quasilinear equations have a lot of applications in physics,
in particular, in the theory of nonlinear waves, in the elasticity theory, etc. We
have to note in addition that with lemmas 10 and 11 we establish the existence
and uniqueness of a local smooth solution of problem (1)—(2) when the initial data
(up,u1) and the coefficients in the equation are sufficiently smooth and bounded.
However, in the present paper, our aim is to prove the existence and uniqueness
just of a weak solution of this problem which we shall establish with theorems
1 and 2. The author of this work believes that the existence and uniqueness of
a local smooth solution of equations (1) and (2) is a technical result that can be
easily obtained by the methods developed earlier for quasilinear equations (on
this subject, see, for example, [1,2,4]). It seems to be essential to note that the
maximal intervals on which smooth and weak solutions can be continued (in the
case of smooth initial data) simply coincide with each other (see lemmas 10 and
11 in the following).

Now, we introduce some notation. For p € [1,00), by L, = L,(R) and
W, = W} (R) we denote the standard Lebesgue and Sobolev spaces taken re-

spectively with the norms |||z, = { /g |g(x)\p}1/p, if p < 400, |9llz.. =
esssup,eg |9(2)], and [lgllwa = |lgllz, + [|¢'llz,. For p € (1,00), we denote

1 1
by p’ the positive number such that — + — = 1. Let A be the closure of
p P

2

d
the operator (—@ , taken first with the domain C§°(R) of infinitely dif-

ferentiable finite functions in R, in Lo. It is well known that A is a self-
adjoint positive operator in Ly. For p € (1,00), by W, ! = W, 1(R) we
denote the Banach space being the completion of C§°(R) taken with the norm

gl = (A + Id)~/2g||,, where Id denotes the identity. It is known that
the space Wp71 is dual to Wp1 in the sense that for any linear bounded functional
@ in W there exists a unique ¢’ € Wp_,1 such that p(g) = (¢’,9)r, for any
g € W, where (-,-)r, denotes the standard scalar product in Ly correspond-
ing to the norm that we took in this space (carefully, one should define the
expression (¢’, g)r, by a limit procedure; this procedure is known now). Con-
versely, the space V[/p1 is dual to Wp_,1 in a similar sense. For a set A C R,
d > 1 is integer, by C(A) we denote the space of continuous bounded func-
tions in A, taken with the uniform norm. For an open set A C R d > 1
is integer, C*°(A) denotes the linear space of functions infinitely differentiable
in A. Let also Q ¢ R%, where d > 1 is integer, be an open set. We shall



write g € Ly 100(Q2), g € W;)IOC(Q), etc., if for any x €  there exists its open
bounded neighborhood O = O(x) C Q such that g € L,(0), g € W} (0), etc.
We shall write g, — ¢ in Ly 10c(Q), WI}JOC(Q), etc., if for any x € ) there
exists its neighborhood O = O(z) C Q such that g, — ¢ in L,(O) (resp. in
W3 (0), etc.).

For an interval I € R and a Banach space B with the norm denoted by
|- |z, by C*(I; B), where k = 0, 1,2, we denote the Banach spaces of functions
from I into B continuous, continuously differentiable and twice continuously
differentiable, respectively, and bounded, bounded with their first derivatives
and bounded with their first and second derivatives, respectively, taken with
the norms |g(")llcx ;) = Zf:o sup,er gV (V)| 5, k = 0,1,2, respectively.
In addition, we introduce the Banach space L;(I; B) that consists of bounded
functions g : I — B such that the function ||g(¢)||s of the argument ¢ is
measurable and that equipped with the norm ||g(-||z,(1;8) = sug) llg(®)|l 5.

te

Let I C R be an interval. For the simplicity of our notation, we denote
X = X(I) = C(LWH NLy(I;WL) and Z := Z(I) = C(I; Wy '). We
also denote by Y = Y (I) the space of continuously differentiable functions
u(-) : I — Lo bounded together with their derivatives u}(¢) and such that u and
uy(t) belong in addition to Ly(I; Lo ); the space Y (I) is equipped with the norm
1) vy = NuOllerrsnn + 1) ogrinn + [0() 1 (ri5.ry. Sometimes we
shall denote by C,Cy,Cy,C’,C"”, - - positive constants not speaking especially
what they are do not depend on if it is clear from the context.

Our main assumptions are as follows.

(A1) Let for any bounded interval I C R and xo € R the function a(-,t) be
in C(I; Wi (zo — 1,20 + 1)) N CY(I; La(xo — 1,20 + 1)), estimates (3) hold for
any t € I fixed for almost all x € R and a}(-,t),al(-,t) € Ly(I; Loo).

(A2) Let for any bounded interval I C R the coefficients b,c and d be in
Ly(I; L) and let for any x¢ € R each of them belong to C(I; La(xg—1,z0+1)).

(A3) Let the function [ be continuously differentiable and for any R > 0
there exist C' > 0 such that

|f(21,,22,23,24,2?5)| < C‘ZS|
and
‘f;3(21722723,24725)‘ + ‘f;4(21,22723,24725)‘ + ‘f;5(21az2723az4725)| < c

for any z = (21, 22, 23, 24, 25) € R® satisfying |(23,24,25)| < R and |z1| < R.
We accept the following definition of a weak solution of problem (1)—(2).
Definition 1. Ler the above assumptions (Al)—(A3) be valid and let I € R be

an interval that contains 0. Suppose that a function u(-,t) belongs to X NY N Z.

Observe that the operator in the right-hand side of (1) maps this function u



into a function that belongs to C(I; W2_1) (see lemma 1 in what follows for a
justification). We say that this function u(-,t) is a weak solution (or a (W}NWL )-
solution) of problem (1)—(2) if u(-,0) = uo(-), ut(-,0) = ui(-) in the senses of
W4 and Lo, respectively, and if equality (1) is valid in the sense of the space Z.

Now we can establish our main results. They are as follows.

Theorem 1. Under the assumptions (Al), (A2) and (A3) for any D > 0 and
ug, ur satisfying ||uollwinws, < D and |[u1 ponr., < D there exist T > 0 that
depends only on D and a unique weak solution u(-,t) of problem (1)—(2) in the
interval of time I := [—T,T). This weak solution can be uniquely continued on a
maximal interval (—=T1,Ts) of time t (here Ty, To > 0) such that either Ty = —o0

(resp. To = +o0) or limsup [[lu(-,t)|[winwe + [ue( D)llLnL.] = +oo (resp.
t——T1+0

limsupl[lu(-, t)[lwiaws, + |l t)l[Lanp.] = +00). A weak solution depends

t—Ty—

continuously on the initial data (ug,wy) in the sense that for any compact interval
I on which a given weak solution can be continued for any initial data sufficiently
close to (ug,u1) in (Ws NWL) x (Ly N Le) the corresponding solution of
equations (1) and (2) can be continued on the interval I and the correspondence
(up,u1) — u(-,t) as a map from (Wi NWL) x (La N Ly) into X NY s
continuous. If in addition the initial data (ug,u1) are compactly supported, then
the support of our weak solution u(x,t), which is regarded here as a function of
the argument x, is bounded uniformly with respect to t in any compact interval
on which this solution u(zx,t) can be continued.

In the next Sec.2, we shall describe more precisely the behavior of the
support in time ¢ of a weak solution of problem (1)—(2) in the case when this
weak solution is finite.

Theorem 2. Let assumption (Al) be valid, b = ¢ = d = 0 for simplicity
and f(t,x,u,us, uy) = —|u|9"‘u, where ¢ > 1 is a constant. Then, an arbitrary
weak solution of problem (1)—(2) given by theorem 1 is global, that is, it can be
uniquely continued on the entire real line t € R.

The function f in theorem 2 above is a standard model nonlinearity used in
the literature for many times.

In the next Sec.2 we shall prove theorem 1 and in Sec.3 — theorem 2.

Using this occasion, the author wants to thank his colleagues for their support
without which this paper cannot appear.

2. LOCAL WELL-POSEDNESS. PROOF OF THEOREM 1

In this Section, we accept that Iy > 0 is a bounded open interval and I = To
is its closure. We divide our proof of theorem 1 in several lemmas.

Lemma 1. Lg := —a(-,t)g., is a bounded linear operator from C(I; W4 ) N
Ly(L; W) in C(L;Wy ).



Proof. Since as is known, A is a bounded linear operator from V[/p1 in
I/V];1 for any p € (1,00) and ¢ € R fixed, the proof easily follows from our
assumptions.O

Consider the equations for the characteristics of equation (1):

IX0(1) = JaKae).0), i<, 4)

9Xo(t) = —fa(Kalt), 1), 1€l 5)

We supply equations (4) and (5) with the following initial data:
X (0)=deR, i=1,2, (6)

where d is a parameter. Since the right-hand sides in (4) and (5) are continuous,
for any d € R each of the sets of equations (4), (5) and (4), (6) has a local
solution X (¢;d) and X(t;d), respectively, where we indicate explicitly that
these solutions depend on d. A simple corollary of assumption (Al) is that each
of these two solutions is unique. Since the function a is bounded, each of these
two solutions is global, that is, it can be uniquely continued on the entire real
line t € R.

Now, we introduce the functions x(x,t) and n(z,t) by setting x (X1 (t;d),t) =
d and (X2 (t;d),t) = d, where t and d run over the entire real line. Clearly, for
any (z,t) € R, the quantities x(z,t) and n(z,t) are well defined.

Lemma 2. Let I be a compact interval. There exist the derivatives Yiy(t; Y),
Yity(t; y) and X ;4 (t;y) and they belong to Ly(I; Ls). In addition, there exist
0 < ¢1 < C4 such that

a < Xiy(ty) <Cv foranyt el fized for almost all x € R,

and for any xo € R one has: Xiy(t;-), Xity(t; ), Xiwe(t;-) € C(I; La(zo — 1,
xTo + 1))

Proof. We shall prove this claim only for X (¢;d) because for X5 (;d) it
can be made by complete analogy. We have formally

d— _ _
X w(ty) = al(X1(t,y), ) X1y (t;y), (7)

X14(0;y) = 1. (8)

The unique solution of equations (7) and (8) can be represented as follows:

X, (ty) = elo cealoa s, ©)



therefore

E(t;y)z/ drelo @-(Xa(sm9)ds LXK (1:0). (10)
0

It is easily seen that one has for the function X1 (t;%) in (10):
2 2
X1(t; 1(¢;

for any ¢ € I fixed for almost all x € R. Therefore, the formal differentiation
above is correct and indeed, the derivative Yly satisfies equations (7) and (8) and
is given by (9). The other part of lemma 2 can be proved by complete analogy.O)

Lemma 3. The derivatives x;(z,t), niy(x,t), xo(z,t), n(z,t), xi(z,t),
et (2, ), Xi (2, 1), ni(2,t), X2 (t;x) and 0. (t;x) are well-defined, each of
them belongs to Ly(I; L) and for any xg € R each of these functions belongs
to C(I, LQ(.’EQ —1,z9 + 1))

Proof. We establish our proof only for the function x because for 7 it can
be made by complete analogy. Consider the following two Cauchy problems:

=\ a(X1(t),1),

Xor = —y/a(Xa(t);t), Xa(to) =y

and
and denote by X;(to,t;5), i = 1,2, their solutions, respectively. By analogy
with the proof of lemma 2, we have

Ay.t) —
X, (y,t) = lim Xy + Ay, t) = x(,t) _

Ay—0 Ay
=1 =X : Ly(I; Ls).
A, vy 19(t,0;y) € Ly(I; Loo)

By analogy,

X;(yv t) = 7lt(tv 07 y) =

2a(Xs (trs),r) = 2al, (Ko (t,739),r)dr

= —\/a(y,t)e_0 ’ € Ly(I; L)

and

ni(y,t) = Xoe(t,059) =

j 2a(X2(t,r51),r)) " 20l (Xa (t,r5y),r)dr

a(y,t)e € Ly(I; Loo).



From this, x(-,t) and x},(-,t) are in Ly(I; Loo). In addition, each of the latter
two quantities for any z¢ € R belongs to C(I; La(zo — 1,29 + 1)).

Now, we have
\/ a’(yl (ta d)7 t)

d Ox(z,t)
=X 1(t;d)
Take formally one more derivative over ¢ in this relation. We obtain formally:

ot

n ox(z,t)

0= —x(X1(t;d),t) =
=X 1 (t;d) Ox

dt

4 i) + Val@ DX (@ 1)

OEE

x=X1(t;d)
= X1 (X1(t;d), 1) + a(X1 (¢, d), )Xo, (X1 (t:d), t)+

+2 a(yl (tv d)v t)X;c/t(yl (t; d)v t) + X; (71 (t; d)v t) X

. al (X1(t,d),t)\/a(X1(t;d),t) + a}(X1(t;d), t)
2¢/a(X1(t;d), )

Therefore, since according to the arguments above, all the terms in the right-hand
side of this relation, except maybe the second one, are well-defined and are in
Ly(I; L), the second term is still well-defined and x”.(-,t) € Ly(I; Loo). In
addition, we derive from the latter relations:

X;(J?,t) TV a(ﬂfat)X;(mat) =0, 772(95775) Y a(l‘at)nlx(%t) =0,

) + e XL 0) + e {ﬁf’tt)) ~ e } -

and

aje,t) | dy(,1) }

—ee(w, 1) + al, )i, (2, 1) + %ng(%t) { a(z, ) a(z, )

for any ¢ € I fixed for almost all x € R. The other part of the lemma can be
proved by similar arguments.O]

Now, make in problem (1)—(2) the change of independent variables by passing
from the variables (z,t) to the variables (x,7). According to the results above,
this is a oneE—to-(ine correspondence of I X R onto its image and its Jacobian

o0
J(x,t) = 2.)
problem (1)—(2) takes the following form (see Subsec. 3.1 in [7]):

is in Ly(I;R) with its inverse one. Then, according to [7],

/U;én = bl(Xﬂ?)U + Cl(Xvn)UX + dl(Xﬂ?)vn + fl(Xvnavvvxv’Uﬂ)? v = U(Xvn)v
(11)



v, =0, (vyxe+vgme)|, =u1, (12)

where L = {(x,n) € R?: x = n} and, in view of the relations

X:&(xvt) +v a(xvt)X.;(xvt) =0, 772(%15) -V a(xvt)n;(xvt) =0,

1 Lz, t ! t
Xl ) + al DX (@, 8) 4 + i) {‘;f(j’t) - ] } =0

and

1 ay(z,t)  al(x,t)
— et + al, ) (2, 8) + S, 1) { e y* 710

obtained in the proof of lemma 3, we have

— b — 1 a’i a(IE / /
by = o T ((C—§ (E_%>>Xt+d><z /a1,

1 (a;  a , ,
di=({c—s|—+—=%]))m+dn)/a, fi =f/a1 and a1(x,n) = dx"m:-

2\a Va
(13)
In view of the proof of lemma 3, there exist 0 < co < C5 such that
C2 < —a1 < CQ (14)
for an arbitrary ¢ € I fixed for almost all z € R.
0
Lemma 4. There exist 0 < c3 < C3 such that the Jacobian J := det 3((? :Z))

satisfies
c3 < J <03

for any t € I fixed for almost all x € R. In addition, for any xo € R one has:
J(,t) S C(I,LQ(J?O —1,z9 + 1))

Proof follows from lemma 3.0

Let A>0, P={(t,x): t € [-A, A], z € R} and P, be its image under the
transformation (x,t) — (x,n). Then, there exists A; > 0 such that P; contains
the domain G := {(x,n) € R?: |x —n| < A1}

According to lemmas 2 and 3, the coefficients b1, ¢; and d;, regarded as func-
tions of = and ¢, belong to L, ([; Lo,). We define weak solutions of equation (11)
as follows.

Definition 2. Ler G C R? be an open set. We say that a function

v = 0v(X,n) € Looioc(G) is a weak solution of equation (11) in G if it has
2

that

ov 0
the derivatives %, a—z that belong to Lo 10c(G) and the derivative axan



belongs to Lj 10c(G) (these derivatives are understood in the sense of distribu-
2
tions so that in particular i <@> = 2 <@>) and if v is equal to the
Ox \on/) On \0x dxon
expression in the right-hand side of (11) in the sense of L1 10c(G).

Let v(x,n) be a weak solution of equation (11) and O C G, where O =
{06Gm) : xo—01 < x < Xxo+01, Xo—0d2 <1< Xxo+d2}and xo €R, 1 >0
and d2 > 0 are arbitrary constants. Then, by the Fubini theorem and Sobolev
embedding, v(x,7) is continuous in G and v} (x,7) is continuous as a function of
1 € (xo — 02, X0 + d2), for almost all fixed x € (xo — J1, xo + d1). Therefore, for
almost all (x, x) € LNO (in the sense of the Lebesgue measure on L) there exists
a limit 7}13%( vy (X, m). In addition, the initial conditions (2) determine uniquely

/ ( ) . ul('r)
va(z,0)
x = z on L). These arguments allow us to accept the following definition.
Definition 3. We say that a function v(x,n) is a weak solution of problem
(11)-(12) if it is a weak solution of equation (11), it satisfies the condition v|L =
ug, the limit of v;( (x,n) exists as ) goes to x € R and x is fixed for almost all
u ()
a(z,0)

the derivative v} (X, 77)|n:x (in fact, v} (x, 77)| because

n=x 0z

X € R and if this limit coincides with v;((x,n)’nzx = ug,(z) —

almost all x = x € R (note that x = x on L).
This definition looks clumsy, but it is sufficient for our goals.
Now, we can rewrite equations (11) and (12) in the following form:

n n
U(X7T}) = _/ d’l"/ dS[bl(’l",S)U+C1(T,S)U;+d1(r,S)U;+f1(T,S,U,U;,U;)]—
X r

n
—/ drv,.(rys)|,_, +v(n,n). (15)
X

By complete analogy, one may interchange x and 7 in this representation. In
addition, observe that when we pass from the variables (z,t) to (x,n), the half-
plane {(x,t) € R: ¢ > 0} transforms in the half-plane {(x,n) € R: x < n}.

Make in (15) the inverse change of variables passing from the variables (x, 7)
to (z,t). Then, we obtain

o, t) = — /S drds.T by (x, M0 1) + €106 1) (00 + Ve )+

+ di(x, n)(vrry + vsSy) + f1(t, @, 0, Up7y + UsSy, Upy + VsSy)] +

x=x(r,s)
n=n(r,s)

1 za(x,t) 1 1
T2 /ml(m,n Taroy a0+ 3lu(@ (@ h) +uolas(@ )], (16)



where S is the curvilinear triangle bounded by the segments of the X axis and
of two characteristics X; and Xo each of which contains the point (z,t), and
z1(z,t) and zo(z,t) are the points of intersection of these two characteristics

with the X axis, respectively.
Lemma 5. Let I be a compact interval. Then, there exists Cy > 0 such that

Hbl('?tHLb(I;Loc) + Hcl('vt”Lb(l;Loo) + ||d1('7t)||Lb(I;Loo) < Cy

and for any xo € R one has: bi(t,-),c1(t,-),d1(t,-) € C(I; La(xo — 1,20 + 1)).
Proof follows from (13), (14) and lemmas 2 and 3.0
Denote

(S(t,w))(x,t) = =J (2, 1)[b1 (x, Mw(x, n) + e1(x; M (W Ty + wity)+

+ di (X M) (Wa Ty + wity) + f1(t, T, 0, W Ty + Wity WeTy + wttn)}‘ )

x=x(x,t)
n=n(z,t)
Yz(t,s;z)
R = [ g
X1 (t,s;x)

and
(Pw)(z,t) = Of{R(S)[(S(S,w))(-» s)1}H(z, t)ds.
Then, equation (16) reads

z2(x,t)

oz, 1) = (Pv)(x,t)+% mul(r)dr+%[uo(m(m,t))+uo(x2(3:,t))].
z1(z,t) (17)

Lemma 6. Let [-T,T] =1 > 0 be a compact interval. Then
1) For any t € I S is a continuous operator from X NY in C(I; L2) N
Ly(I; L) and for any ball B C X NY there exists C > 0 such that

IS¢, w1) = SCywa)lerryynmy (i) < Cllwr — wa| xny
for any wi,ws € By
2) P is a continuous operator from C(I; La) N Ly(I; L) in X NY and for
any ball B C C(I; L2) N Ly(I; L) there exists a constant C = C(T') > 0 such
that C(T) — +0 as T — 40 and that

[(Pw1) — (Pw2)llxny < C(T)|lwi — wallo(rLa)ny (10w)

for any w1, ws € B.
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Proof is a simple corollary of assumptions (A1)—(A3) and lemmas 2 and 3.0
Lemma 7. Under the assumptions of theorem 1 for any R > 0 there ex-
ists T > 0 such that for any initial data (uo,u1) satisfying ||uollwiaws +
luillzonr.. < R equation (16) has a unique solution v € X NY in the interval

of time I = [=T,T]. Denote also by Ko C R the support supp(uo,u1) of the
initial data (ug,u1) and by K (t) the set |J [X2(t;x), X1(t;x)]. Then, for any
zeKy

t € I, where I is the just taken interval, one has: supp(u(-,t)) C K(t).
Proof is usual, and it is based on the contraction mapping principle. So, we
only sketch it, quite briefly. Observe first that the expression in (16)

Bz, ) = _ 1 )+ %[uo(ajl(m, £)) + uo (s (2, )]

isin X NY. Let us set
M:{weXﬂY: ||’LU—hHme<1}.

Then M, taken with the distance p(wi,ws) = ||w1 — wa||xny, is a nonempty
complete metric space. In addition, it easily follows from lemma 6 that there exists
T > 0 depending only on [|uo|[w2nwa and [|u1][z,nr.. such that the operator in
the right-hand side of (17) maps M into M and is a contraction. Therefore, for
this 7' > 0 this map has a unique fixed point in M. Thus, equation (17) has a
unique local solution.

To prove the last claim of lemma 7 about the support of a solution u(z,t),
it suffices to take in place of the set M above the set

My ={weXnY: |lw—h|xny <1and w(z,t) =0

for any t € I and © € R\ K(t)}.

It is easily seen that the operator in the right-hand side of (17) still maps M into
itself and is a contraction for 7" > 0 sufficiently small. This completes our sketch
of the proof of lemma 7.0

Lemma 8. Let I = (—T1,T5), where T1,T> > 0. Under the assumptions of
theorem 1 a function v(z,t) € X NY is a weak solution of problem (1)—(2) if
and only if it is a solution of equation (16).

Proof. Let a function v(-,t) € X NY satisfies equation (16). Then, after
some calculations, (v(-,0),v;(+,0)) = (ug,u1) in the sense of the space X NY.
Take an interval I} = (—=T1+0,T2—0), where 6 € (0, min{7T};T»}) is sufficiently
small, and C'*°-approximations v., where ¢ > 0 is sufficiently small, of v(z,t)
such that the families {v.} and {v.;} are bounded, respectively, in Ly(I1; WL)
and in Ly(I;; L) and that v, — v in C(I;;W4) N C(Iy; Ly). Then, by
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lemma 6 v, satisfies a slightly perturbed equation (16), with an additional term
f.(, ) in the right-hand side such that || fo(-, ||, yow ) £ (o Dll (st <
< C uniformly in € > 0 and that || fe(, )l o1, ;wp)ner (10, — 0 as e — +0.
Correspondingly, the function v¢(x,7n) := ve(x(x,n), t(x,n)) satisfies a slightly
perturbed equation (15), with an additional term f¢(x,7n) in the right-hand side
that belongs to Wy 1,.((x,)(I1 x R)) and goes to 0 in this space as ¢ — +0.
Therefore, this function v¢ is a solution of a slightly perturbed equation (11).
This perturbed equation (11) contains an additional term g¢¢(x,7n) in the right-
hand side where, in view of lemmas 2 and 3 and the implicit function theorem,

2 fe
9°(x,m) = W belongs in particular to L1 10c((x,7) (1 X R)).
Xon
Set ge(z,t) = g°(x(x,t),n(x,t)). Then, in particular g¢ € L1 10c(I1 x R).

Take an arbitrary finite ¢ (x,1) € W4 ((x,n)(I1 x R)) and observe that

/ J(z, t)o(x(x,t), n(z,t))ge (z, t)dzdt = / (X, Mg (x,n)dxdn =
I xR (X)")(IlXR)
_ 006 OF 06y 4 0 as e — 40, (18)
an ox

(x,m)(I1 xR)

In addition, observe that the function J(z, t)p(x(z, ), n(z,t)) runs over the whole
space W3, (I1 x R) when ¢(x,7) runs over the whole Wy .((x,n)(I1 x R)).

To express these two facts, we shall write formally g — 0 in W (I; x R) as
€ — +0. 7

Let us now make in equation (11), written for v¢, the change of variables
passing from the variables (x,7) to (x,t). Then,

Vett = a(xvt)vezz + f2(tvxvvevvetvvez) + ge(xvt)a (19)

where fa(t, z,v,1,8) = b(z, t)v+c(z, t)r+d(z, t)s+ f (¢, z,v,7,8), g(-,t) — 0in
Wi o and Veg — Ugq in C(I1; W5 '), Take an arbitrary finite ¢ € W3 (I x R),
multiply equation (19) by ¢ and integrate the result over I; x R. Then,

/ dl’dt(p(l’, t)[vett - a(x, t)vea:a: - f2(t7 Ty Ve, Vet 'Uea:)] + (‘p»ge)Lg(Il xR) = 0.
Il xR
From this, applying lemma 1 and (18), we obtain that vy € C(I1; W2_1) and
/ dxdtg@(x, t)[’l)tt — a(l', t)'Uzz - f2(t7 €T, V, Vg, ’Uw)} =0.
11 xR

Thus, v(x,t) is a weak solution of problem (1)—(2). Converse is still valid.O
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Let us prove the uniqueness of a weak solution of problem (1)—(2). On the
contrary, suppose that this problem has two different weak solutions u; and us.
According to lemma 8, u; and wuy are also solutions of equation (16) (or (17))
in an interval of time I = [-T,T], T > 0. Without loss of the generality,
we may accept that uy(-,t) # ua(-,t) as elements of W3 N WL in an arbitrary
small right half-neighborhood of the point ¢ = 0. But according to lemma 7, an
X NY-solution of equation (17) is unique in a sufficiently small interval of time
[0,%0). Thus, ui(-,t) = ua(-,t) in a right half-neighborhood of the point ¢ = 0.
This contradiction proves that a weak solution of problem (1)—(2) is unique.

As is well known, a fixed point of a contraction mapping, which is the map
in right-hand side of (17) in our case, depends on wuy and w; continuously, in
the same sense as the local continuous dependence on (ug,u;1) in theorem 1.
So, locally, in a small neighborhood of the point ¢ = 0 we have the continuous
dependence of a weak solution of problem (1)—(2) on (ug,u1). Now, the con-
tinuous dependence for an arbitrary compact interval I of time ¢ on which our
weak solution of problem (1)-(2) can be continued the result can be obtained by
standard methods by extending it, step by step, for all values of ¢.

By the standard procedure, our weak solution of problem (1)—(2) can be
uniquely continued on a maximal interval (—T7,7%) such that either

limsup [[lu(- t)lwiawy +[we(, )| LnL.] = 400 or T1 = —oo and by analogy
t——T1+0
for T5. Our proof of theorem 1 is complete.

3. GLOBAL EXISTENCE. PROOF OF THEOREM 2

Everywhere in this Section, unless otherwise is stated, we accept that the
assumptions of theorem 2 are valid. Everywhere in the following: b =c=d =0,
f = f(u) in equation (1) (that is, f does not depend on ¢,z,u; and w,) and
f(0) = 0. We shall prove this result. In view of theorem 1, for this aim, it
suffices to show that for any bounded interval I > 0 on which our weak solution
u(z,t) can be continued there exists C' > 0 such that ||u(-,?)||xuy < C for
this interval I. First, we shall establish the following three technical results
(lemmas 9-11).

Lemma 9. Let for some coefficient a = a(x,t) and a function f = f(u)
that satisfy assumptions (Al)—(A3) problem (1)—(2) have a solution u(z,t) in
an interval of time I and this solution belongs to C(I;W3) N C*(I;W3) N
C?(I;W3) for any compact interval I C Iy. Let in addition uf(u) < 0 for any
u € R. Then, for any bounded interval I C I there exists C > 0 such that
lulleswiyner aiL,) < C.
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Proof. Denote F'(u) = Ofuf(s)ds and E(u) = H{{%[uf(w,t)+a(x,t)u§(x,t)]—

F(u(x,t)}dz. We have after an integration by parts:

%E(u(,t)) = /[I/Qat(aj,t)ui(m,t) — ag(z, t)ue(x, t)uy (z, t)]de <
R

< (14 2a; YHazE(u(- 1)),

therefore 1
E(u(-,1)) < E(u(-,0))et*2a1 Jast,

where a; = a1(I) > 0 is the constant in (3) and as = as(I) > 0 is a constant
such that (|Va(-,t)||L,7;0..) < as. Now

¢ 2

nwﬂmz/ /@mﬂmwmm dr <
R 0
t

<2\mﬂg+g//wﬁLMMdr.m
0 R

Lemma 10. Let s > 3 be integer, f(-) € C¢ ' (R), f(0) = 0 and let a
coefficient a(x,t) that satisfies assumption (Al) obey in addition the following
two hypotheses.

1) For any xo € R and a bounded interval I a(-,t) € C(I; W§(xg — 1,20 +
D) NCYL; W™ (g — 1,20 + 1)).

2) Let for any bounded interval I one has: agk)(-,t) € Ly(I;WsF) for
k=0,1.

Then, for any (ug,u1) € Wy x Wi~ there exists T > 0 that depends only
on |luollw;s + ||“1||W;—1 and a unique solution of problem (1)-(2) of the class
C(L;Ws)NCYI; Ws™t), where T = [T, T).

Proof in fact repeats our proof of theorem 1. So, we establish only the main
idea of this proof. Since it is clear that a W3 -solution in this lemma is also a
weak solution of this problem, in view of lemma 8, we have to prove only that
equation (16) has a unique local W3-solution the life time of which is bounded
from below by a positive constant that depends only on |[uo||w; + [|u1 HW;—l.

For a bounded interval I 3 0 denote X* = C(I; W$) N CY(I; W;~'). Ob-
serve that, as in lemmas 2 and 3, there exist 0 < ¢ < C such that

c< Y;t(t,s;x),Y;I(t,s;x) <C, i=1,2,
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for any t € I,s € [0,¢] and = € R and that for any such ¢, s and z there exist
partial derivatives in z of the functions X;(t, 5;7), Xy (t,s;2) and X, (¢, s;2),
where 7 = 1,2, of the orders 0,1,...,s — 1 and that each of these derivatives
belongs to Ly(I; L) and, for any zg € R, to C(I;La(xo — 1,20 + 1)). By
analogy, there exist partial derivatives in x of the orders 0,1,...,s — 1 of the
coefficients b1,c; and d; and of the Jacobian J and each of these derivatives
belongs to the same spaces.

By this observation, S is a continuous operator from X* in X*~! and for
any ball B C X* there exists C' = C(B) > 0 such that

[S(w1) — S(wa)| xs—1 < Cllwy — wal|xs

for any wy,w, € B. By this, P is a continuous operator from X*~! in X* and
for any ball B C X*~! there exists C; = C1(B,T) > 0 with C;(B,T) — +0 as
T — +0 such that

[P(w1) = P(wz)|[xs < Cillwr — w2 xs-1

for any w;,ws € B.

Now, one can prove our lemma completely as the first part of lemma 7, the
existence and uniqueness of a local solution of equation (16).0

Lemma 11. Let the assumptions of lemma 10 be valid with s = 3, (ug,u1) €
W3 x W2 and (=T, T4) be the maximal interval of time t on which the corre-
sponding W3-solution can be continued (here Ty, T4 > 0). Clearly, for our initial
data we have in addition the existence and uniqueness of a weak solution u(zx,t)
of problem (1)—(2) in an interval of time I 5 0 and clearly, (—=T4,T§) C I and
this weak solution u(x,t) coincides with the W -solution in the whole interval
(=T4%,T%). Then, we have the following.

1) In fact, (=T3,T%) = I.

2) Let we have initial data (ull,u?) € W3 x W2, a coefficient a" and a
function " = f"(u) in (1) that depend on a parameter h € (0,1]. Suppose that
for any h € (0,1] this coefficient a" satisfies assumption (Al) and assumptions
1) and 2) in lemma 10 with s = 3. Let for any bounded interval I the constants
ai,as in (3) do not depend on h € (0,1] and the norms of a”(x,t) in the
spaces of functions indicated in (Al) are bounded uniformly in h. Let in addition
for any bounded open interval I C R the norm of f* in C* (f ) is bounded
uniformly with respect to h € (0,1] and f"(0) = 0 for any h € (0,1]. Now,
suppose that (ull,ul') — (uo,u1) in Wi x Ly as h — +0, that the quantity
lugllws + llutllz.. is bounded uniformly with respect to h € (0,1] and that
for any bounded interval I and xy € R the coefficients a” and their gradients
Va"(x,t) converge, respectively, to a and Va(x,t) in C(I; Ly(zo—1,70+1)) as
h — +0 and for any bounded interval J C R the functions f"(-) converge to f(-)
in C1(J). Denote by u"(z,t) the corresponding W3-solution of problem (1)~(2)
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taken with a = a", f = f" and with the initial data (ug,u;) = (ul,u’) and by
u(x,t) the weak solution of this problem taken with the limit coefficient a, with
the limit function f and with the initial data (ug,u1). Then, for any compact
interval I on which our weak solution u(zx,t) can be continued for any h > 0
sufficiently small, the W3-solution u"(z,t) can be continued on this interval I
and one has that

[u” (-, t) — u( )l ewhnerqiny) — 0
as h — +0 and that there exists C > 0 such that
a0 Ly owny + Il (o) L) < C

for any h > 0 sufficiently small.

Proof. As for claim 1), we shall prove only that [0,7%) = I; N [0, +00)
because the relation (—7%,0] = I; N (—o00,0] can be proved by complete analogy.
Let Iy > 0 be an arbitrary bounded interval on which our weak solution can
be continued and I = I> N [0,+00). We need to prove only that there exists a
constant C' = C(I) > 0 such that |lu(-t)|lwg + lue(-t)[lwz < C(I) for any
t € I for which our W3-solution u(z,t) is determined. From (16), we obtain

Ju( Dllwg + llus (- D)llwz <

t Yg(t,s;~)
< C/ds dyJ (y, s)[br(x, mulx, n) + c1(x, ) (uyyy + ussy)+
0 X1(t,s;7)
i) gy + uesy) + Filuben))l]
n;z(i;:a‘) w3

+Z/d8{ X (L 5)T (Xi(t, 53-), 8) b1 O Ml m)+er (x, m) (uyyx +uasy)+

=17

;» (20)

x=x(X; (t,s;-),s)
w3

n=n(X;(t,s,),s)

-y () gy + te3n) + (i, n))]]

where the constant C' > 0 does not depend on ¢t € I, s € [0,t] and x. Observe
that, as in lemmas 2 and 3 and in the proof of the previous lemma 10, there exist
0 < ¢ < C such that

c < th(t,s;x),Xgm(t,s;x) <C, i=1,2,

for any t € I,s € [0,¢] and = € R and that for any such ¢, s and z there exist
partial derivatives in z of the functions X; (£, s;x), Xy (t,s;2) and X, (t, s;2),
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where ¢ = 1,2, of orders 1 and 2 and that each of these derivatives belongs to
Ly(I; L) and, for any xo € R, to C(I; La(zo — 1,29 + 1)). By analogy, there
exist partial derivatives in x of orders 0,1 and 2 of the coefficients by, c; and d;
and of the Jacobian J and each of these derivatives belongs to the same spaces.

The expression in the right-hand side of (20) contains the norms of the kind

Xoa(t,s5°)

dyJ (y, s)[b1(x, Mu(x, n) + c1(x, n) (Uy Yy + wssy )+

X1(t,s5°)
+ d1(x, n) (uyyn + ussy) + fi(ulx,n))]
x=x(y,s)
n=n(y,s) |W3
and
— J—
HXit(ta s53-)J(Xa(t, s3-), 8)[01 O mulx, n) + c1(x, n) (Uyyy + ussy )+
+ di(x, ) (uyyn + ussy) +f1(U(x,n))]‘ i=1,2.

x=x(X;(t,s5-),8)

n=n(X;(t,s5),8) | W32

All these expressions can be estimated in the same way, therefore we shall do
this below only for the terms of the second kind. The observation is that each of
these latter terms can be estimated from above by a sum of Ly-norms of

uly; s) |y:Yi(t78;r)’ uy (Y, 5) ’y:z‘(t,sm)’ us (Y, 5) ’yzfi(m;r)’
sy (U 9|y, rsiay Uw W 9]y, (10 (21)
Usyy(ya S)|y:Yi(t,s;x)’ and Uyyy(ya S)|y:Yi(t,s;z)’ i=1,2,

multiplied by some coefficients, denoted by k(t, s, z). These coefficients k, being
regarded as functions of the arguments s and = with a fixed ¢, are bounded in
Ly([0,t]; L) uniformly with respect to ¢ € I. Therefore, we need to obtain only
upper bounds for the Ly-norms of the expressions in (21). We have

/[Uwy(y, 2 |y:Y1 (tVS;r)]2dx -
R

=/dy{ylu(t,S;x(y))]_lﬁyy(y,S) < Cafuyyy (5 9)|17,,
R

where the constant C> > 0 does not depend on u, ¢, s and = above. The Lo-norms
of all other expressions in (21) can be estimated by complete analogy.
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Summarizing the arguments above, we obtain finally from (20) for any ¢ € I:

t

luC Dllwg + llues Dllwz < Co /dSHIU(-,S)Ilwg + llus (5 9)llwz] + Cs, (22)
0

where positive constants Co and Cs do not depend on ¢ € I. Now, claim 1) of
our lemma for ¢ > 0 follows by applying the Gronwell lemma. The case ¢ < 0
can be treated by complete analogy. So, claim 1) is proved.

Let us prove claim 2). Let I > 0 be a compact interval on which our
weak solution wu(z,t) can be continued and let I, = I N [0,+00) and I_ =
I N (—00,0]. Observe that, due to the results above, the coefficients b}, c and
d”, that correspond to a = a"(x,t), are bounded in Ly(I;; Loo) uniformly with
respect to h € (0,1] and that these coefficients converge, respectively, to by, ¢y
and d; at least in the sense that, for any zg € R,

Sup 116% = b1l 2o (zo—1,20+1) + €} = €1l a(wo—1,20+1)
i

+||d} = dill Ly(zo—1,2041)] — O

as h — +0.
Denote

gz, t) = [b1(x, mulx, n)+c1(x, 1) (ue Ty Fusty ) +di (X, 1) (Uaty+uty)]

x=x(z,t)
n=n(=,t)
and
g" (2, t) = B} Oc mu” (6 m) + ¢ (o m) (ulay, + ufty )+
+ d}ll(Xa U)(Ugmn + “?tn)} ‘ e
n=n(w:t)

Let us consider the difference between two samples of equation (16) written,
respectively, for u"(z,t) and for our weak solution u(xz,t). Then, in view of
lemmas 2 and 3, it follows as when deriving (20) and (22) that

(o t) = O)llwg + lluf (- 8) = e, )|z, <
t

2
< y(h) —|—Cl/ {ZsupX tsx)\+sup|X (t,s;x)\]x

t,s,x t,s,x
0
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Xh(t,s:7)
g™ (Xt 53, 8) — 9(Kit5:), ) s + / dy(d"(.5) — 9w, )|| +

h
1 (¢,85°) Lo

!
+Zt51:1:)v\X (t s;x) — X (t,8;0)|+
i=1

t,s,x

—h ' - !/
+sup [ X, (E,572) — Xig (t»5;$)|]|g('»5)|Lz} <

h) + Cs /dS[Iluh(w 8) = ul, 8wy + lus (- 8) = us(, 5)|lz.),

where positive constants C; and C do notdepend ont € I and h, y(h),v1(h) —
+0 as h — 40, all the supremums are taken over ¢t € I, s € [0,¢] and z € R
and where we applied the mean continuity of the Lebesgue integral.

Now, the first relation in claim 2) of our lemma for ¢ > 0 follows by applying
the Gronwell lemma. The case ¢ < 0 can be treated by complete analogy. The
second estimate in claim 2) of our lemma can now be obtained from an estimate
derived from (16) for ||u”(-,t)[[w1 + |lus(-,¢)||z,. by analogy with (22). Our
proof of lemma 11 is complete.O

Lemma 12. Let a(z,t) and f = f(u) be as in lemma 10. Then, for a
W3-solution u(x,t) of problem (1)~(2) and integer n > 2 one has

33 | {0+ a2 (o )P+

R
+(fura,t)] = a2, ) us (@, } =

iﬁ (%_1)/dmwxwﬂ<xw>%2kwxw o, 1)

n

<2k—1>/dm (@, t)ag (2, tuy "~ (@, )u2E (2, 1)+

=1

( ) /dxa (z,t)as(x, t)uf” 2k(g; t)u? k(z,1), (23)

where () = #Lm), (n = m).
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d
Proof. Consider the expression pn / dzu?™(x,t). We have

& [dwn oty =2 [ oo, (e 0) + fula )] =

R R

= 2n/dx{u2" Y, t) fu(z, t) — w2z, t)ug (z, t)ag (z, 1)} —
R

—2n(2n — 1)/dxa(x w2 (2, t)ug (z, t)ug (2, 1) =

~on / do{u?m Y 2.1)) — (2, )2 (2, Oy (2, £) ) —

( ) /dmxtu?2 w2 (o, t)+
(%)/ﬁx e, 1", ] (2, 1) =
—2n/¢ﬂﬁ”1 2,1)) = s (o, Oud" (@, s (@, 6)}
( ) /¢mxtu?2 w2 (o, t)+
( )/@uuxtﬁn2 0 (i, 1) +

+(2n—2) ( )/dxa 2, ) u2" 3 (2, ) ud (z, ) [a(z, e (2, 1) + f(u(z, )] =

~on / da{u2n( 2.1)) — au (2, )2 (2, Oy (2, £) ) —

2n ne
( )dt/dxaxtuf 2(z, )ul (z, t)+

2” 2n—2(
dzay(z, t)u; x, t)u? (x, t)+
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+(2n —2) (2;> /dxa(:v,t)uf”f?’(:ﬂ,t)ui(x,t)f(u(x,t))_
R
)/dwaQ(x,t)uf”4(x,t)ui(x,t)um(x,t)—
R
YR za(z, t)ay (z, t)u?" 3 (x, t)ud (z,t) =
2<3>R/d (B, 103 0, 002 2,0
= 2n/dm{u?"_l(m,t)f(u(m,t)) — ap(z, )ul" (2, t)ug (2, 1)} —

2n\ d 2n—2 2

R

+ (22” ) R/ dwag (z, )u2 2 (z, )l (z, )+
+(2n —2) (2”) R/dxa(:c,t)uf”S(x,t)ui(x,t)f(u(x,t))_
-2 (ij) R/dxa(x,t)am(x,t)uf"_g(x,t)ui(x,t)—

_(2n i 2 2n—4 4
(4 ) dt/dxa (z, t)u; (z, t)uy(z, t)+
R

(%) [ a0 2160 0240,
R

Continue this process. Then, finally we obtain relation (23).0

Lemma 13. Let assumption (Al) be valid, b=c=d =0, f = f(u) €
CL.(R), f(0) =0, uf(u) <0 for any u € R and let u(z,t) be a weak solution
of equations (1) and (2) that can be continued on an interval I > 0. Then, for
any bounded interval Iy = (=T1,To) C I (T1,T> > 0) there exists C > 0 such
that [Ju(-, t)||wy + [Jue(- )L, < C foranyt e I.

Proof. We shall establish our proof only for ¢ € [0,7%) because for ¢ €
(=T1,0] it can be made by complete analogy. First, let f = f(u), the coefficient
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a(x,t) and the initial data (ug,u;) be smooth as in lemma 10 and let u(x,t) be
the corresponding W3-solution of problem (1)~(2). Then, we have from (23):

%% / der|(Jus (2, )] + a2 (2, 1) |uq (2, 1)) "+

R
(e, )] = 0 (1) (2, D] 6 <

L
2n

1
(e, 8)] + a2 ug (2, )17, + |[[ue(z,0)] - a2 |ua (@, t)IIIL%) x

<!

2
iy on —1

{ /dm\f (z,t)) ( ok )ut(aj,t)%%lak(m,t)|uz(x,t)2k+
0R

(T, 1 ne(2k—1) k1 _
" / Ll(m )|IUt(m,t)|2 @616k~ (@, 1) ug (2, 1)1+
s 2]€ -1 a?(x t)

k=1 ’

+i/ ( ) Fren t>|2”2’“a’“<w,t>u1<x,t>|2k} )

k=1p

= 2 (el )] + 0 ) g (o D) 22, +

1

L1
et (2, t)] —a2(x t)|ug(x, t)H|L2n) x (I +1T+1III) (24)

(note that the divisor in the right-hand side of (24) does not vanish by the proved
uniqueness of a solution). In (24), we shall estimate the terms I,I] and II]
separately. We have by the Sobolev embedding and lemma 9:

N |

1) < %C’l(Tg)/dx[(\ut(m,tﬂ + ad (2, ) |ua (z, 1)) 271+
+ (e, 0)] — a2 (2, 8) ug (2, 8)]) 21,

where the constant C; > 0 does not depend on n > 0 integer sufficiently large.
Applying the Holder inequality for sums, we obtain from this estimate:

10) < 2% 3 [ del(uate, 0] + 0o D, 0+

R

(e, t)| — a (2, t)ug (2, 1)])?"] .5
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For I1(t), we have by analogy:

TI(t) < (e (2, )] + @2 (x, £)]ua (x, £)])*"—

— (Jug(a, )] = a2 (2, O)|ug (z,1)])*"]. (26)

Finally, for I11(t), by analogy:

as

ITI(t da{(|ue(z, )| + aZ (2, ) |Jug (z, 1)) >+

2&1
R

+ (Jue(z,t)| — a2 (2, 8)Jug (2, 1)) *"]. (27)
Thus, from (24)—(27), for ¢ € [0, T3],

/ dz[(Jug(z, t)| + a2 (2, ) |ug (z, £)])*"+
+(lue(z, )] - a? (@, O)ug (2, 1)) p - <

/dﬂc[(\m(w,o)l +a% (2,0)|uq (x, 0))*"+

L
2n

+(lu(w, 0)] — a2 (z,0)ug (,0))*] b +

¢
+2C1T5 + C’g/ds /dm[(\us(x, s)| + a%(x, 8)|ug(z, 8)|) 2"+
0 R

+(lus (@, )| — a® (z, 8)ua (@, )" ¢, (28)

where the constant C3 > 0 does not depend on t € [0,7%) and on n > 0
integer sufficiently large. Now, under the assumptions of our lemma, in view
of lemma 11, for a weak solution estimate (28) can be obtained by taking the
limit over sequences of smooth (ug,u1), coefficients a(z,t) and functions f(u)
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and the corresponding W3-solutions of problem (1)—(2) converging, respectively,
to nonsmooth (ug,wu1), a(x,t), f(u) and a weak solution u(zx,t) in the sense
indicated in lemma 11.

From (28), we have for a weak solution u(z, t) of problem (1)—(2) by apply-
ing the Gronwell lemma:

(@, t)] + a2 (2, 8)|ug (2, 8)]|| £, < Cas (29)

where the constant Cy > 0 does not depend on t € [0,7%) and on n > 0
integer sufficiently large. For ¢ € (—T1, 0], estimate (29) still holds by analogous
arguments. From (29), by taking the limit n — oo,

1
(e, t)| + a2 (z,t)|ue (2, )| L, (-1 /1);000) < Cas

and lemma 13 is proved.O
Now, the result in theorem 2 follows from theorem 1 and lemmas 9 and 13.0
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