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1. INTRODUCTION

Consider the ˇrst order differential equation

f(u, x) =
du

dx
. (1.1)

If we approximate f(u, x), while x is kept constant, we will get

Q0(x) + Q1(x)u + Q2(x)u2 + Q3(x)u3 + . . . =
du

dx
. (1.2)

When the series in the left-hand side is restricted with the second order polyno-
mial, the equation is the Riccati equation [1].

The Riccati equation is one of the widely used equations of mathematical
physics. The ordinary Riccati equations are closely related to the second order
linear differential equations. For the solutions of the ordinary Riccati equations
with constant coefˇcients, a summation formula can be derived. These solutions
are presented by trigonometric functions induced by general complex algebra.

In particular, if f(u, x) is a cubic polynomial, then the equation is called
RiccatiÄAbel equation. Abel's original equation was written in the form

(y + s)
dy

dx
+ p + qy + ry2 = 0. (1.3)

This equation is converted into RiccatiÄAbel equation by transformation y + s =
1/z, which yields

dz

dx
= rz + (q − s′ − 2rs)z2 + (p − qs + rs2)z3. (1.4)

It is seen that the case Q0(u, φ) = 0 was actually considered by Abel [2].
When the series in the left-hand side of equation (1.2) is given by the n-order

polynomial, we deal with the generalized Riccati equations. The solution of the
generalized Riccati equation with constant coefˇcients can be denominated as a
generalized tangent function. The generalized Riccati equations are used, for
example, in various problems of renorm-group theory [3]. The mean ˇeld free
energy concept and the perturbation renormalization group theory deal with the
ˇrst order differential equations with polynomial nonlinearity.

The aim of this paper is to explore solutions of the RiccatiÄAbel equation
with constant coefˇcients and to derive some kind of summation formula for
them. Summation (addition) formulae for solutions of linear differential equa-
tions are considered as important features of these functions. Let us mention,
for example, a summation formulae for the trigonometric sineÄcosine functions,
the Bessel functions, the hypergeometric functions and their various general-
izations. Whereas solutions of the linear differential equations with constant
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coefˇcients admit universal methods of obtaining summation formulas (see, for
instance, [4,5]), the solutions of nonlinear equations require special investigations.
In this context, let us mention the addition formulae for Jacobi and Weierstrass
elliptic functions [6].

In general, the solutions of the generalized Riccati equations with cubic
and higher polynomials do not admit any summation formula. Nevertheless, by
careful analysis we found a new summation law according to which in order to
obtain a summation formula for the solutions of the third order Riccati equation
two independent variables should be used. In this way we will establish an
interconnection between solutions of RiccatiÄAbel equation and the characteristic
functions of generalized complex algebra of the third order.

The paper is presented by the following sections. Section 2 deals with solu-
tion of ordinary Riccati equation with constant coefˇcients. Summation formula
for the solutions is derived and interrelation with solutions of the linear differen-
tial equations is underlined. In Sec. 3, the RiccatiÄAbel equation is integrated, a
corresponding algebraic equation for solutions is derived, a summation formula
for solutions is established. In Sec. 4, the solutions of RiccatiÄAbel equation are
constructed within generalized complex algebra of the third order. In Sec. 5, it is
shown that the RiccatiÄAbel equation is an evolution equation of the generalized
classical dynamics.

2. ORDINARY RICCATI EQUATION, SUMMATION FORMULA
AND GENERAL COMPLEX ALGEBRA

2.1. The Ordinary Riccati Equation. Consider the Riccati equation with
constant coefˇcients

u2 − a1u + a0 =
du

dφ
. (2.1)

If coefˇcients a0, a1 are constants then a great simpliˇcation results because
it is possible to obtain the complete solution by means of quadratures. Thus,
equation (2.1) admits direct integration

∫
dx

x2 − a1x + a0
=

∫
dφ. (2.2)

Let x1, x2 ∈ C be roots of the polynomial equation

x2 − a1x + a0 = 0. (2.3)

In order to calculate the integral (2.2), the following formula expansion is used:

1
x2 − a1x + a0

=
1

2x1 − a1

1
x − x1

+
1

2x2 − a1

1
x − x2

, (2.4)
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where,
2x1 − a1 = (x1 − x2), 2x2 − a1 = (x2 − x1).

Then the integral (2.2) is easily calculated and the result is given by the logarith-
mic functions

u∫
w

dx

x2 − a1x + a0
=

1
m12

(
log

u − x1

u − x2
− log

w − x1

w − x2

)
= φ(u) − φ(w), (2.5)

where m12 = x1 − x2. Now, let us keep the ˇrst logarithm of (2.5) depending on
the initial limit of the integral, that is

1
m12

log
[
u − x1

u − x2

]
= φ(u).

By inverting the logarithm function, we come to the algebraic equation for solu-
tion of (2.1),

exp (m12φ) =
u − x1

u − x2
. (2.6)

Let u(φ0) = 0, then

exp (m12φ0) =
x1

x2
. (2.7)

As soon as the point φ = φ0 is determined, one may calculate the function u(φ)
by making use of algebraic equation (2.6). Since a1 = x1 + x2, from (2.7) it
follows that

a1 = m12 coth (m12φ0/2).

Consequently, from (2.6) we obtain

u(φ, φ0) =
1
2
m12 coth (m12φ0/2)− 1

2
m12 coth (m12φ/2).

2.2. Summation (Addition) Formula for Function u = u(φ, φ0). Consider
the following integral equation:

u∫
dx

x2 − a1x + a0
+

v∫
dx

x2 − a1x + a0
=

w∫
dx

x2 − a1x + a0
. (2.8)

The quantity w is a function of u and v. If the function w = f(u, v) is an algebraic
function then this function can be considered as a summation formula. Write (2.8)
in the following notations φu + φv = φw. Then, w(φw) = w(φu + φv) =
f(u(φu), v(φv)).
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Calculating the integrals in (2.8), we come to the following algebraic equa-
tion:

1
2m

log
u − x1

u − x2

v − x1

v − x2
=

1
2m

log
w − x1

w − x2
. (2.9)

Thus, the function w(u, v) has to satisfy the equation

u − x1

u − x2

v − x1

v − x2
=

w − x1

w − x2
. (2.10)

Multiplying fractions and taking into account the fact that x1, x2 obey (2.3),
we get

uv − x1(u + v) + a1x1 − a0

uv − x2(u + v) + a1x2 − a0
=

uv − a0

u + v − a1
− x1

uv − a0

u + v − a1
− x2

=
w − x1

w − x2
,

(2.11)
w =

uv − a0

u + v − a1
.

This is a summation formula for solutions of the Riccati equation (2.1).

2.3. Relationship with General Complex Algebra. Like the cotangent
function can be deˇned as a ratio of cosine and sine functions, the solution of the
Riccati equation u(φ, φ0) can also be represented as a ratio of modiˇed cosine
and sine functions. Firstly, let us construct these functions.

Consider general complex algebra generated by the (2 × 2) matrix [7]

E =
(

0 −a0

1 a1

)
(2.12)

obeying the quadratic equation (2.3):

E2 − a1E + a0I = 0, (2.13)

with I-unit matrix. Expansion with respect to E of the exponential function exp (Eφ)
leads to the Euler formula [8]

exp (Eφ) = g1(φ; a0, a1)E + g0(φ; a0, a1). (2.14)

In terms of the roots x1, x2 this matrix equation is separated into two equations

exp (x2φ) = x2 g1(φ; a0, a1) + g0(φ; a0, a1),
exp (x1φ) = x1 g1(φ; a0, a1) + g0(φ; a0, a1),

(2.15)
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from which an explicit form of g-functions can be obtained. Apparently, g0 and g1

are modiˇed (generalized) cosineÄsine functions with the following formulas of
differentiation:

d

dφ
g1(φ; a0, a1) = g0(φ; a0, a1) + a1 g1(φ; a0, a1),

d

dφ
g0(φ; a0, a1) = −a0 g1(φ; a0, a1).

(2.16)

Form a ratio of two equations of (2.15) as follows:

exp (m21φ) =
x2 g1(φ; a0, a1) + g0(φ; a0, a1)
x1 g1(φ; a0, a1) + g0(φ; a0, a1)

. (2.17)

Let g1(φ; a0, a1) �= 0. Then,

exp (m21φ) =
x2 + D

x1 + D
, (2.18)

where

D =
g0(φ; a0, a1)
g1(φ; a0, a1)

.

Differential equation for function D(φ) is obtained by using (2.16):

D2 + a1D + a0 = −dD

dφ
. (2.19)

Thus, we have proved that the function

u(φ; a0, a1) = −D = −g0(φ; a0, a1)
g1(φ; a0, a1)

(2.20)

obeys the Riccati equation.
Summation formulae for g-functions are well-deˇned (see, for example, [7]).

They are

g0(a + b) = g0(a)g0(b) − a0g1(a)g1(b),
g1(a + b) = g1(a)g0(b) + g0(a)g1(b) + a1g1(a)g1(b),
g0(a + b)
g1(a + b)

=
g0(a)g0(b) − a0g1(a)g1(b)

g1(a)g0(b) + g0(a)g1(b) + a1g1(a)g1(b)
.

(2.21)

By taking into account (2.20), we get

u(a + b) = −g0(a + b)
g1(a + b)

=
u(a)u(b) − a0

u(a) + u(b) − a1
, (2.22)

which coincides with (2.11).
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3. GENERALIZED RICCATI EQUATION
WITH CUBIC ORDER POLYNOMIAL

3.1. The RiccatiÄAbel Equation. Consider the following nonlinear differ-
ential equation with constant coefˇcients:

u3 − a2u
2 + a1u − a0 =

du

dφ
, (3.1)

which admits direct integration by

u∫
w

dx

x3 − a2x2 + a1x − a0
= φ(w) − φ(u). (3.2)

This integral is calculated by making use of the well-known method of the partial
fractional decomposition [9]

1
x3 − a2x2 + a1x − a0

=
1

(x − x3)(x − x2)(x − x1)
=

=
(x3 − x2)

V

1
x − x1

+
(x1 − x3)

V

1
x − x2

+
(x2 − x1)

V

1
x − x3

, (3.3)

where V is the Vandermonde determinant [10]

V = (x1 − x2)(x2 − x3)(x3 − x1), (3.4)

and the distinct constants x1, x2, x3 ∈ C are roots of the cubic polynomial

f(x) = x3 − a2x
2 + a1x − a0 = 0. (3.5)

By using expansion (3.3) the integral (3.2) is easily calculated:

u∫
w

dx

x3 − a2x2 + a1x − a0
=

(x3 − x2)
V

log
u − x1

w − x1
+

+
(x1 − x3)

V
log

u − x2

w − x2
+

(x2 − x1)
V

log
u − x3

w − x3
= φ(u) − φ(w). (3.6)

Let us introduce the following notations:

mij = (xi − xj), i, j = 1, 2, 3, with m21 + m32 + m13 = 0, (3.7)

and write equation (3.6) as follows:

u∫
dx

x3 − a2x2 + a1x − a0
= log (u − x1)m32(u − x2)m13(u − x3)m21 = V φ(u),

(3.8)
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and invert the logarithm. This leads to the following algebraic equation:

[u − x1]m32 [u − x2]m13 [u − x3]m21 = exp (V φ). (3.9)

This equation can also be written in the fractional form

[
u − x1

u − x3

]m32 [
u − x2

u − x3

]m13

= exp (V φ). (3.10)

Thus, the problem of solution of differential equation (3.1) is reduced to the
problem of solution of the algebraic equation (3.10). Notice, if the roots of cubic
equation and function u are deˇned in the ˇeld of real numbers, then this equation
is meaningful only for a certain domain of deˇnition of u(φ).

3.2. Semigroup Property of Fractions of n-Order Monic Polynomials on
the Set of Roots of n + 1-Order Polynomial. In this section, let us recall a
semigroup property of the fractions of n-order polynomials deˇned on the set of
roots of n+1-order polynomial. Let F (x, n+1) be (n+1)-order polynomial with
(n+1) distinct roots xi, i = 1, . . . , n+1. Denote this set of roots by FX(n+1).

Lemma 3.1. Let Pa(xi, n) be the n-order polynomial on xi ∈ FX(n + 1).
The product of two n-order polynomials

Pa(xi, n)Pb(xi, n)

is also an n-order polynomial Pc(xi, n).
Proof. The product Pab(xi, 2n) := Pa(xi, n)Pb(xi, n) is a polynomial of 2n-

degree with respect to variable xi. Since xi obeys n + 1-order polynomial equa-
tion, all monomials with degrees higher than n can be expressed via polynomials
of n-degree. Consequently, the polynomial Pab(xi, 2n) with xi ∈ FX(n + 1) is
reduced into n-degree polynomial.

End of proof.

Consider two monic polynomials of n-degree Pa(xi, n), Pb(xk, n) with xi �=
xk ∈ FX(n + 1). Form a rational algebraic fraction

Pa(xi, n)
Pa(xk, n)

.

The following Corollary 3.2 holds true:
The product of two fractions formed by two n-order monic polynomials on

the roots of (n + 1)-order polynomial is a fraction of the same order monic
polynomials on the variables,

Pa(xi, n)
Pa(xk, n)

Pb(xi, n)
Pb(xk, n)

=
Pc(xi, n)
Pc(xk, n)

.
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3.3. Addition Formula for u(φ). Let φ = φ0 be a point where u(φ0) = 0.
Then, (3.10) is reduced to[

x1

x3

]m32 [
x2

x3

]m13

= exp (V φ0). (3.11)

Now, let us make simultaneous translations of the roots xk, k = 1, 2, 3 by some
value u. Since the Vandermonde determinant remains invariant under these
translations, the parameter φ0 will undergo some translation by φ = φ0 + δ. In
this way one may construct the solution of RiccatiÄAbel equation (3.1) with initial
condition u(φ0) = 0.

Let the triple u, v, w form a set of solutions of equation (3.1) calculated for
three variables φu, φv, φw = φu + φv , correspondilngly. Then, in accordance
with (3.10) we write:

exp (V φu) exp (V φv) =
{[

u − x1

u − x3

v − x1

v − x3

]m32 [
u − x2

u − x3

v − x2

v − x3

]m21}
=

=
{(

w − x1

w − x3

)m32 [
w − x2

w − x3

]m21}
= exp (V (φu + φv). (3.12)

The problem is to ˇnd some rational function expressing w via the pair (u, v),
i.e., the function w = w(u, v) has to be a rational function.

Evidently, the method used in the previous section for the ordinary Riccati
equation now is not applicable. According to Lemma 3.1, we are able to transform
a product of ratios of n-order polynomials into the ratio of n-order polynomials
if these polynomials are deˇned on roots of n + 1-order polynomial. Thus, we
have to seek another way of construction of a summation formula.

Let us present the integral (3.8) as a sum of two integrals by

w∫
dx

x3 − a2x2 + a1x − a0
=

u∫
dx

x3 − a2x2 + a1x − a0
+

+

v∫
dx

x3 − a2x2 + a1x − a0
=

= φ = V log
((

u − x1

u − x3

v − x1

v − x3

)m32 (
u − x2

u − x3

v − x2

v − x3

)m13)
. (3.13)

In this way we arrive to the following algebraic equation:

(
u − x1

u − x3

v − x1

v − x3

)m32 (
u − x2

u − x3

v − x2

v − x3

)m13)
=

= exp (V φ(u, v)) = exp (V φu) exp (V φv). (3.14)
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Let u, v be solutions of the quadratic equation

x2 + tx + s = 0, t = −(u + v), s = uv. (3.15)

Then, equation (3.14) is written as

[
x2

1 + tx1 + s

x2
3 + tx3 + s

]m32 [
x2

2 + tx2 + s

x2
3 + tx3 + s

]m13

= exp (V φ(t, s)). (3.16)

Thus, from the pair of functions (u, v), we come to another pair (t, s). This pair
of functions, in fact, admits a summation rule because the problem is reduced
to the task of transformation four-degree polynomial into quadratic polynomial
at the solutions of the cubic equation (3.5). Evidently, this task can be easily
performed by simple algebraic operations.

Theorem 3.3. The following summation formula for solutions of RiccatiÄAbel
equation holds true:

(t, s)
⊕

(v, u) = (r, w),

where

r =
(a0 − 2a2a1) − a1(v + t) + (tu + sv)
(3a2

2 − a1) + a2(v + t) + (s + u + tv)
,

w =
a2a0 + (v + t)a0 + su

(3a2
2 − a1) + a2(v + t) + (s + u + tv)

.

(3.17)

Proof. Consider product of two monic polynomials

(x2 + tx+ s)(x2 + vx+ u) = x4 + x3(v + t)+ x2(s +u + tv) + x(tu + vs) + su,

where x is one of the roots of cubic equation

x3 − a2x
2 + a1x − a0 = 0. (3.18)

From the cubic equation (3.18), we are able to express x3 and x4 as polynomials
of the second order as follows:

x3 = a2x
2 − a1x + a0, x4 = (3a2

2 − a1)x2 + (a0 − a1a2)x + a2a0.

Then, the four-degree polynomial on roots of the cubic polynomial is reduced
into a polynomial of the second order

x4 + x3(v + t) + x2(s + u + tv) + x(tu + vs) + su = Ax2 + Bx + C, (3.19)

where A, B, C do not depend of x.
Since we deal with the ratios of polynomials the coefˇcients of the quadratic

polynomial in (3.19) and polynomials in denominator and in numerator have the
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same leading coefˇcient, we are able to return to the ratio of monic polynomials.
In this way we come to the relations

r =
B

A
, w =

C

A
, (3.20)

where
A = (3a2

2 − a1) + a2(v + t) + (s + u + tv),
B = (a0 − 2a2a1) − a1(v + t) + (tu + sv),
C = a2a0 + (v + t)a0 + su.

(3.21)

End of proof.

4. GENERALIZED COMPLEX ALGEBRA OF THE THIRD ORDER
AND SOLUTIONS OF RICCATIÄABEL EQUATION

In this section, we will establish a relationship between characteristic func-
tions of general complex algebra of the third order and solutions of RiccatiÄAbel
equation.

The unique generator E of general complex algebra of the third order, CG3,
is deˇned by cubic equation [11]

E3 − a2E
2 + a1E − a0 = 0. (4.1)

The companion matrix E of the cubic equation (4.1) is given by (3 × 3) matrix

E :=

⎛
⎝ 0 0 a0

1 0 −a1

0 1 a2

⎞
⎠ . (4.2)

Consider the expansion

exp (Eφ1 + E2φ2) = g0(φ1, φ2) + E g1(φ1, φ2) + E2 g2(φ1, φ2). (4.3)

This is an analogue of the Euler formula for exponential function, the function
g0(φ1, φ2) is an analogue of cosine function, and gk(φ1, φ2), k = 1, 2 are exten-
sions of the sine function. It is seen, the characteristic functions of GC3 algebra
depend on the pair of ®angles¯. Correspondingly, for each of them we have the
formulae of differentiation:

∂

∂φ1

⎛
⎝ g0

g1

g2

⎞
⎠ =

⎛
⎝ 0 0 a0

1 0 −a1

0 1 a1

⎞
⎠

⎛
⎝ g0

g1

g2

⎞
⎠ , (4.4)

∂

∂φ2

⎛
⎝ g0

g1

g2

⎞
⎠ =

⎛
⎝ 0 a0 a0a2

0 −a1 a0 − a1a2

1 a2 −a1 + a2
2

⎞
⎠

⎛
⎝ g0

g1

g2

⎞
⎠ . (4.5)
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The semigroup of multiplications of the exponential functions leads to the
following addition formulae for g-functions [12]:

⎛
⎝ g0

g1

g2

⎞
⎠

(ψc=ψa+ψb)

=

=

⎛
⎝ g0 g2a0 g1a0 + g2a0a2

g1 g0 − g2a1 −g1a1 + g2(a0 − a1a2)
g2 g1 + g2a2 g0 + g1a2 + g2(−a1 + a2

2)

⎞
⎠

ψa

⎛
⎝ g0

g1

g2

⎞
⎠

ψb

, (4.6)

where the sub-indices of the brackets indicate dependence of the g-functions of
the pair of variables ψi = (φ1i, φ2i), i = a, b, c.

Introduce two fractions of g-functions by

tg =
g1

g2
, sg =

g0

g2
. (4.7)

It is seen, these functions are analogues of tangentÄcotangent functions. From
the addition formulae for g-functions (4.6), the following summation formulae
for the general tangent functions are derived:

T0 =
t0r0 + a0(r1 + t1) + a0a2

r0 + (t1 + a2)r1 + t0 + t1a2 + (−a1 + a2
2)

, (4.8)

T1 =
t1r0 + t0r1 − a1(r1 + t1) + (a0 − a1a2))
r0 + t0 + a2(t1 + r1) + t1r1 + (−a1 + a2

2)
. (4.9)

Here the following notations are used:

T0(ψc) =
g0(ψc)
g2(ψc)

, T1(ψc) =
g1(ψc)
g2(ψc)

,

t0(ψa) =
g0(ψa)
g2(ψa)

, r0(ψb) =
g0(ψb)
g2(ψb)

,

t1(ψa) =
g1(ψa)
g2(ψa)

, r1(ψb) =
g1(ψb)
g2(ψb)

,

(4.10)

and ψi = (φ1i, φ2i), i = a, b, ψc = (φ1c = φ1a + φ1b, φ2c = φ2a + φ2b).
Let x1, x2, x3 ∈ C be eigenvalues of E given by distinct values. Then, the

matrix equation (4.3) is represented by three separated series (k = 1, 2, 3):

exp(xkφ1 + x2
kφ2) = g0(φ1, φ2) + xk g1(φ1, φ2) + x2

k g2(φ1, φ2), (4.11)

Form the following ratios for i �= k:

exp ((xi − xk)φ1 + (x2
i − x2

k)φ2) =
g0(φ1, φ2) + xi g1(φ1, φ2) + x2

i g2(φ1, φ2)
g0(φ1, φ2) + xk g1(φ1, φ2) + x2

k g2(φ1, φ2)
.

(4.12)
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Consider two of these ratios, namely,

exp (m13φ1 + (x2
1 − x2

3)φ2) =
g2x

2
1 + g1x1 + g0

g2x2
3 + g1x3 + g0

, (4.13a)

exp (m23φ1 + (x2
2 − x2

3)φ2) =
g2x

2
2 + g1x2 + g0

g2x2
3 + g1x3 + g0

, (4.13b)

where mij = xi − xj . Both sides of equation (4.13a) raise to power m32 and
both sides of equation (4.13b) raise to power m13 and multiply left and right
sides of the obtained equations, correspondingly. And, by taking into account
that m13m32 + m23m13 = 0, we arrive to the following equation:

exp (m13m32φ1 +(x1 +x3)m13m32φ2) exp (m23m13φ1 +(x2 +x3)m13φ2) =

=
[
g2x

2
2 + g1x2 + g0

g2x2
3 + g1x3 + g0

]m13 [
g2x

2
1 + g1x1 + g0

g2x2
3 + g1x3 + g0

]m32

. (4.14)

The left-hand side of this equation is equal to exp (V φ2), that is,

exp (V φ2) =
[
g2x

2
2 + g1x2 + g0

g2x2
3 + g1x3 + g0

]m13 [
g2x

2
1 + g1x1 + g0

g2x2
3 + g1x3 + g0

]m32

. (4.15)

Let g2 �= 0, then by dividing numerator and denominator by g2, we obtain

exp (V φ2) =
[
x2

2 + tg x2 + sg

x2
3 + tg x3 + sg

]m13 [
x2

1 + tg x1 + sg

x2
3 + tg x3 + sg

]m32

, (4.16)

where
tg =

g1

g2
, sg =

g0

g2
.

Let u, v be roots of the quadratic equation

g0(φ1, φ2) + y g1(φ1, φ2) + y2 g2(φ1, φ2) = 0. (4.17)

Then the ratios (4.13a,b) can be rewritten as follows:

exp ((xk − xl)φ1 + (x2
k − x2

l )φ2) =
(u − xk)
(u − xl)

(v − xk)
(v − xl)

. (4.18)

This equation is true for any k, l = 1, 2, 3, k �= l. This is to say, for any
index we have the same φ1, φ2 and the same u, v. Here u, v depend on two
parameters φ1, φ2.

Inversely, if functions u = u(ϕu), v = v(ϕv) are known, then we can ˇnd
corresponding g by

g0

g2
= uv,

g1

g2
= u + v.

12



From these two equations we ˇnd φ1 and φ2. We expect that

exp (V (ϕu + ϕv)) = exp (V φ2),

or
ϕu + ϕv = φ2.

In this way we have established connection between the characteristics of general
complex algebra CG3 and solutions of the RiccatiÄAbel equation.

The next task is to prove that the ratio u = −g0/g1|g2=0, in fact, satisˇes the
RiccatiÄAbel equation.

With this purpose, let us calculate derivatives of g1, g0 under the condition

g2(φ1, φ2) = 0. (4.19)

From this equation, it follows that φ1 is an implicit function of φ2, viz., φ1 =
φ1(φ2). Thus, we have to prove that the function

u(φ2) = −g0(φ1(φ2), φ2)
g1(φ1(φ2), φ2)

(4.20)

obeys the RiccatiÄAbel equation (3.1) with φ = φ2.
Differentiating equation (4.19), we obtain

dg2

dφ2
+

dg2

dφ1

dφ1

dφ2
= 0,

dφ1

dφ2
= −

dg2

dφ2

∣∣∣∣
g2=0

dg2

dφ1

∣∣∣∣
g2=0

. (4.21)

The derivatives of g2 with respect to φ1, φ2 under the constraint (4.19) we calcu-
late by using (4.4), (4.5):

dg2

dφ1

∣∣∣∣
g2=0

= (g1 + a1g2)|g2=0 = g1,

dg2

dφ2

∣∣∣∣
g2=0

= (g0 + a1g1 + (a2
2 − a1)g2)|g2=0 = g0 + a1g1.

(4.22)

By substituting this result into (4.21), we get

dφ1

dφ2
= − 1

g1
(g0 + a2g1). (4.23)

Next, we have to calculate derivatives of g0, g1 with respect to φ2 under the
constraint (4.19). According to formulae (4.4), (4.5) and (4.23) we write:

dg0

dφ2
=

∂g0

∂φ2
|g2=0 +

dg0

dφ1
|g2=0

dφ1

dφ2
= a0g1, (4.24)

dg1

dφ2
=

∂g1

∂φ2
|g2=0 +

dg1

dφ1
|g2=0

dφ1

dφ2
= −a1g1 −

g0

g1
(g0 + a2g1). (4.25)
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Now we are able to calculate the derivative of the function u(φ2), which is
deˇned by the fraction (4.20). Firstly, calculate derivative of the fraction:

d

dφ2

g0

g1
=

1
g2
1

(
g1

dg0

dφ2
− g0

dg1

dφ2

)
=

1
g3
1

(a0g
3
1 + a1g

2
1g0 + g3

0 + a2g1g
2
0). (4.26)

Now, rewrite this equation by taking into account the deˇnition (4.20), where

u(φ2) = −g0(φ1(φ2), φ2)
g1(φ1(φ2), φ2)

.

In this way we arrive to the RiccatiÄAbel equation:

du

dφ2
= −a0 + a1u

2 + u3 − a2u
2. (4.27)

5. THE RICCATIÄABEL EQUATION AS AN EVOLUTION EQUATION
OF THE GENERALIZED DYNAMICS

In the relativistic mechanics the evolution of the energy p0 and the mo-
mentum p are performed in such a way that the mass-shell equation remains
invariant:

p2
0 − p2 = m2, (c = 1). (5.1)

Let us consider a one-parametrical evolution of energy-momentum remaining
invariant the (proper)mass m. Introduce a new variable X by X = p0 +m which
obeys the following quadratic equation:

X2 − 2p0X + p2 = 0. (5.2)

Let x1, x2 be two roots of this equation, that is to say

x1 + x2 = 2p0, x1x2 = p2, x1 − x2 = 2m. (5.3)

Now consider the evolution generated by the matrix solution of equation (5.2).
The matrix obeying (5.2) is deˇned by (2.12):

E =
(

0 −p2

1 2p0

)
. (5.4)

Thus the desired evolution equation is the Riccati equation

u2 − 2p0u + p2 =
du

dφ
. (5.5)

14



Consequently, from (2.6) we obtain

u(φ, φ0) = m coth (mφ0) − m coth (mφ) = p0(φ0) − p0(φ). (5.6)

In the papers [13,14] (see, also, [15Ä17] and references therein), the classical
dynamics of the third order has been suggested. The evolution in this dynamics
is generated by the three order polynomial of the form

x3 − 3P1x
2 + 2P2x − P 2 = 0. (5.7)

From this equation, it follows two algebraic equations connecting invariants with
momentum P and energy P1:

R0 = P 3
1 − R1P1 − P 2, R1 = −2P2 + 3P 2

1 . (5.8)

The ˇrst of these equations is an analogue of the mass-shell equation (5.1).
The evolution generated by the polynomial (5.7) is the RiccatiÄAbel equation

du

dφ
= u3 − 3P1u

2 + 2P2u − P 2. (5.9)

The solution of the RiccatiÄAbel equation is related with the evolution of en-
ergy P1 as follows:

u(φ, φ0) = P1(φ0) − P1(φ). (5.10)

Concluding Remarks. As the ordinary Riccati equation, also the RiccatiÄ
Abel equation has a relationship with a linear differential equation. Seeking
a summation formula for solutions of RiccatiÄAbel equation, we established a
certain relationship of these solutions with multi-trigonometric functions of the
third order. We have elaborated some rule according to which in order to build
a summation formula for solutions of RiccatiÄAbel equations, it is necessary
to consider a pair of solutions, which can be achieved by using an auxiliary
variable. This idea can be successfully used for the solutions of generalized
Riccati equations of any order with constant coefˇcients. By increasing the order
of the nonlinearity, the number of auxiliary variables also will increase. For
example, from solutions of generalized Riccati equations of the fourth order,
we have to compose the triplet of solutions with two auxiliary variables, and
for n-order generalized Riccati equations, it is necessary to compose a set of
(n − 1) solutions with (n − 2) auxiliary variables.
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