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Pion Dissociation and Levinson's Theorem
in Hot PNJL Quark Matter

Pion dissociation by the Mott effect in quark plasma is described within the
generalized BethÄUhlenbeck approach on the basis of the PNJL model, which allows
for a uniˇed description of bound, resonant and scattering states. As a ˇrst approx-
imation, we utilize the BreitÄWigner ansatz for the spectral function and clarify its
relation to the complex mass pole solution of the pion BetheÄSalpeter equation. Ap-
plication of the Levinson theorem proves that describing the pion Mott dissociation
solely by means of spectral broadening of the pion bound state beyond TMott leaves
out a signiˇcant aspect. Thus, we acknowledge the importance of the continuum of
scattering states and show its role for the thermodynamics of pion dissociation.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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1. INTRODUCTION

We investigate the thermodynamics of mesonic bound states in hot medium
consisting of a nonideal quark plasma with correlations in the pion and sigma
meson interaction channels. A special emphasis is put on a correct description of
the bound states' dissociation in the vicinity of and beyond the Mott temperature.
To this end, we utilize the Polyakov-loop-extended NambuÄJona-Lasinio model
at ˇnite temperature.

The model has two order parameters: the chiral condensate, determining
the value of the dynamically generated quark mass m(T ) related to the chiral
symmetry breaking/restoration transition, and the Polyakov loop variable Φ(T )
which is an order parameter for deconˇnement. Their values are obtained from
self-consistent solutions of the coupled gap equations for these parameters which
correspond to the location of the minimum of the thermodynamical potential
Ω(m, Φ; T ) in the mean-ˇeld approximation (MFA). Going beyond the MFA,
we evaluate the contributions from pion and sigma meson 	uctuations within the
Gaussian approximation to the path-integral representation of the thermodynamic
potential. Above the Mott temperature, one observes the spectral broadening of
bound states leading to the appearance of complex mass poles in the mesonic
propagators. A proper analysis leads to coupled BetheÄSalpeter equations from
which meson masses and corresponding spectral widths are obtained. Next,
the equation of state for the quarkÄmeson system is obtained in the form of a
generalized BethÄUhlenbeck equation [1] which describes the effects that chiral
symmetry restoration and deconˇnement have on the contributions from pions
and sigma mesons and allows for an adequate description of bound, resonant
and scattering states on equal footing. The spectral functions in the mesonic
channels are evaluated from the complex-valued polarization loop integrals. An
examination of the Levinson theorem [2] proves that in order to correctly describe
the Mott effect, the continnum of mesonic correlations (scattering states) has to be
taken into the account. As a result of this analysis, we obtain a description of pion
dissociation where the effect of the vanishing bound state is exactly compensated
by the occurrence of a resonance in the continuum of scattering states.

The present work improves on previous works within the NJL model [3, 4],
where unphysical quark degrees of freedom appeared in the hadronic phase due
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to the lack of the coupling to the Polyakov loop and the StefanÄBoltzmann
limit was not obtained due to a misplaced momentum cutoff. We also improve
the recent work [5] by properly discussing the role of Levinson's theorem in
the PNJL model approach to the generalized BethÄUhlenbeck equation of state
for the quarkÄmeson plasma. The model presented joins both exact limits of
ˇnite-temperature QCD Å the pion gas at low temperatures and the quarkÄgluon
StefanÄBoltzmann limit at high temperatures Å within a microscopic chiral quark
model approach.

2. QUARKS AND LIGHT MESONS IN THE PNJL MODEL

The deˇnition of the NambuÄJona-Lasinio model [6Ä12] with Polyakov
loop [13Ä17] is given in the Appendix A. Here we start from the expansion
of the thermodynamic potential

Ω (T, μ) = −T

V
lnZ [T, V, μ] (1)

around homogeneous mean ˇeld values, which leads to the decomposition of the
auxiliary ˇelds σ′ and �π′ into their mean ˇeld and 	uctuation parts:

σ′ = σMF + σ, �π′ = �π (�πMF = 0). (2)

Utilizing the decomposed ˇelds results in the factorization of the partition function
into the respective parts describing mean-ˇeld and 	uctuation contributions:

ZMF[T, V, μ] = exp
{
−V

T

(
σ2

MF

4GS
+ U(Φ, Φ; T )

)
+ Tr ln

[
βS−1

MF[m]
]}

, (3)

ZFL[T, V, μ] =
∫

DσD�π exp

{
−
[ β∫

0

dτ

∫
V

d3x
2σσMF + σ2 + �π2

4GS

]
+

+ Tr ln
[
1 − SMF[m] (σ + iγ5�τ�π)

]}
. (4)

Here the mean-ˇeld inverse propagator is

S−1
MF = γ0(iωn − μ + A0) − �γ · �p − m0 − σMF =

= γ0(iωn − μ + A0) − �γ · �p − m. (5)
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The thermodynamic potential in the mean-ˇeld approximation of the PNJL model
is evaluated to be given by the following expression [17]:

ΩMF =
σ2

MF

4GS
+ U(Φ, Φ; T )−

− 2Nf

∫
d3p

(2π)3
{
NcEp + T

[
ln N−

Φ (Ep) + lnN+
Φ (Ep)

]}
, (6)

where factors Nf , Nc originate from performing the trace operation and are
a consequence of isospin and color symmetry. The quark energy is given by
Ep =

√
p2 + m2, E∓

p are deˇned as E∓
p = Ep ∓ μ, and

N−
Φ (Ep) =

[
1 + 3

(
Φ + Φe−βE−

p

)
e−βE−

p + e−3βE−
p

]
, (7)

N+
Φ (Ep) =

[
1 + 3

(
Φ + Φe−βE+

p

)
e−βE+

p + e−3βE+
p

]
. (8)

In the mean-ˇeld approximation of the PNJL model, the values of the con-
stituent quark mass m and the Polyakov-loop variable Φ, along with its complex
conjugate Φ, are obtained from the condition that the thermodynamic potential
should be minimized with respect to these parameters, which is augmented by
the stability conditions. For μ = 0, we have Φ = Φ and thus the minimizing
conditions are given by

∂ΩMF

∂σMF
= 0,

∂ΩMF

∂Φ
= 0. (9)

These conditions are equivalent to a set of coupled gap equations [15, 17]. For
the mass gap equation we get

m = m0 + 4NfNcGS

Λ∫
d3p

(2π)3
m

Ep

[
1 − f−

Φ (Ep) − f+
Φ (Ep)

]
, (10)

where

f∓
Φ (Ep) =

[
Φ e−β(Ep∓μ) + 2Φ e−2β(Ep∓μ) + e−3β(Ep∓μ)

]
/N∓

Φ (Ep) (11)

are the so-called generalized Fermi functions, characteristic for the PNJL model.
One should note that if Φ → 1, the expression (11) reduces to the standard NJL-
model Fermi functions. For PNJL calculations we should additionally ˇnd the
values of Φ from corresponding gap equation [17] at given T and μ.

In order to solve (10), a set of model parameters has to be determined: the
cutoff parameter Λ, the current quark mass m0 (in the chiral limit m0 = 0), and
the coupling constant GS . These parameters are ˇtted at T = 0 to reproduce
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physical quantities: the pion mass Mπ = 135 MeV, the pion decay constant
Fπ = 92.4 MeV, and the quark condensate 〈qq〉1/3 = −240.772 MeV. The used
parameters [18] are shown in Table 1.

Table 1. The set of model parameters reproducing observable quantities (in brackets)
and 〈qq〉1/3 = −240.772 MeV [18]

m0, MeV Λ, MeV GSΛ2 Fπ , MeV Mπ , MeV

5.495 602.472 2.318 (92.4) (135)

Since NJL-type models are non-renormalizable, it is necessary to introduce a
regularization, e.g., by a cutoff Λ in the momentum integration. Following [17],
in this study, in case of thermodynamic quantities, we use the three-dimensional
momentum cutoff for vacuum terms and extend the integration till inˇnity for
ˇnite temperatures. A comprehensive study of the differences between the two
regularization procedures (with and without cutoff on the quark momentum states
at ˇnite temperature) has been performed in [19].

Solutions of the gap equation (10) and the corresponding gap equation for the
Polyakov-loop variable Φ at zero chemical potential and nonzero T are presented
in Fig. 1. Above the critical temperature, which is equal to Tc = 237 MeV in the
chiral limit and Tc = 251 MeV for a ˇnite current quark mass, one observes chiral
symmetry restoration indicated by the rapid decrease of the constituent quark mass
and the Polyakov-loop variable becoming close to 1. The corresponding mean-
ˇeld contribution to the pressure, given by P = −ΩMF, is shown in Fig. 6 (scaled

Fig. 1. Temperature dependence of the quark masses m(T ) and Polyakov-loop variable
Φ(T ) at μ = 0. Results for quark mass are scaled by m(0) = 367.5 MeV
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by a factor T 4) in Section 5. One observes that, in opposition to classical NJL
models (e.g., [3, 4]), quark degrees of freedom are suppressed below the critical
temperature in the PNJL model. Moreover, above the critical temperature, the
gluonic degrees of freedom are accounted for correctly.

The contribution to the thermodynamics stemming from the 	uctuations de-
scribed by (4) is evaluated in a scheme where we expand the logarithm up to the
second (Gaussian) order according to

ln (1 − x) = −
∞∑

k=1

xk

k
= −x − 1

2
x2 + . . . , |x| < 1, (12)

to get

Z(2)
FL [T, V, μ] =

∫
DσD�π exp

{
−
[ β∫

0

dτ

∫
V

d3x
σ2 + �π2

4GS

]
−

− 1
2
Tr (SMF[m]Σ[σ, �π]SMF[m]Σ[σ, �π])

}
, (13)

where we have introduced Σ[σ, �π] = σ + iγ5�τ�π.
Performing the calculation leads to the subsequent factorization of the thermo-

dynamic potential into parts describing the contribution from mesonic correlations
corresponding to σ and �π channels of interaction

Z(2)
FL [T, V, μ] =

[
det

(
1

2GS
− Πσ(q0, �q)

)]−1/2

×

×
[
det

(
1

2GS
− Π�π(q0, �q)

)]−3/2

(14)

with the polarization loop ΠM (q0, �q) given explicitly by

ΠM (q0, �q) = −NcNf

∑
s,s′=±1

∫
d3p

(2π)3
1 − f−

Φ (−s′Ek) − f+
Φ (sEp)

q0 + s′Ek − sEp
×

×
(

1 − ss′
p · (p − q) ∓ m2

EpEp−q

)
. (15)

One easily obtains the thermodynamic potential corresponding to the chosen me-
son part of the partition function up to the Gaussian order given by

Ω(2)
M (T, μ) =

dM

2
T

V
Tr ln S−1

M , (16)

where the degeneracy factor dM equals 1 for sigma mesons and 2 for pions.
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Fig. 2. Temperature dependence of the meson masses MM (left panel) and meson pressure
for �π (solid lines) and σ (dotted lines)

From the point of view of the polarization operators, the pseudoscalar and
scalar meson masses can be deˇned by the condition that for q2 = M2

M the
corresponding polarization operator ΠM (M2

M ) leads to a bound-state pole in the
meson correlation function [17]. For mesons at rest (q = 0) these conditions
correspond to the BetheÄSalpeter equations

1 + 4GNcNf

∫
d3p

(2π)3
4Ep

M2
π − 4E2

p

(1 − f−
Φ − f+

Φ ) = 0, (17)

1 + 4GNcNf

∫
d3p

(2π)3
p2

E2
p

4Ep

M2
σ − 4E2

p

(1 − f−
Φ − f+

Φ ) = 0. (18)

Solutions of the two BetheÄSalpeter equations (17) and (18) constitute the
set of meson masses and are presented in Fig. 2 (left panel). The Mott tempera-
ture, which is deˇned by the condition Mπ(TMott) = 2mq(TMott), is for given
parameters TMott � 231 MeV in the chiral limit and TMott � 256 MeV away
from it. The modiˇcation of quasiparticle properties is clearly visible: up to the
Mott temperature TMott, the σ mass practically follows the behaviour of 2mq(T ),
with a drop towards the pion mass, signalling chiral symmetry restoration (in the
chiral limit the σ mass exactly coincides with twice the quark mass up to TMott).
In the same region, the pion mass remains practically constant (and equals zero in
the chiral limit). At T � TMott, however, the masses of chiral partners become
approximately degenerate, Mσ ≈ Mπ, and then both masses increase linearly
with temperature.

The corresponding meson pressure is shown in Fig. 2 (right panel).

3. GENERALIZED BETHÄUHLENBECK APPROACH
TO THE QUARKÄMESON PLASMA

Deriving the thermodynamic equation of state for a quarkÄmeson system in
the Beth and Uhlenbeck form reduces to the introduction of scattering phase

6



shifts into the formula for the thermodynamic potential. This requires that we
analytically continue the propagator into the complex plane.

In a ˇrst step, we introduce meson spectral functions Ag
M (ω, �q) by utiliz-

ing the integral representation of the logarithm in (16), followed by the usual
expression of the propagator by means of Ag

M (ω, �q) [20], i.e.,

ln S−1
M = −

GS∫
0

dg
1

2g2

1
1
2g − ΠM (q0, �q)

= −
+∞∫

−∞

dω

2π

1
q0 − ω

GS∫
0

dg

2g2
Ag

M (ω, �q).

(19)
Using the fact that the spectral density is given by the discontinuity of the prop-
agator at the real axis, we arrive at

GS∫
0

dg

2g2
Ag

M (ω, �q) = −i

GS∫
0

dg

2g2

(
Sg

M (ω + iη, �q) − Sg
M (ω − iη, �q)

)
=

= −i ln
(

1 − 2GSΠM (ω − iη, �q)
1 − 2GSΠM (ω + iη, �q)

)
, (20)

where the argument of the logarithm is by deˇnition the scattering matrix �M (ω, �q)
in the Jost representation [3]. This normalized complex function can also be rep-
resented by means of a scattering phase shift �M (ω, �q) = exp[2iΦM(ω, �q)], which
allows us to identify

GS∫
0

dg

2g2
Ag

M (ω, �q) = −i ln �M (ω, �q) = 2ΦM (ω, �q). (21)

Utilizing the above identity leads, after performing the trace operation, to the
following result:

Ω(2)
M (T, μ) = −NM

2

∫
d3q

(2π)3

( +∞∫
0

dω

π

[
ω + 2T ln

(
1− e−βω

)]dΦM (ω, �q)
dω

)
=

= −NM

2

∫
d3q

(2π)3

( +∞∫
−q2

ds

π

[√
q2 + s + 2T ln

(
1 − e−β

√
q2+s

)]dΦM (s)
ds

)
=

= −NM

2

∫
d3q

(2π)3

( +∞∫
−q2

ds

[√
q2 + s + 2T ln

(
1 − e−β

√
q2+s

)]
DM (s)

)
, (22)
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where DM (s) is a generalized mass distribution (density of states) containing all
the dynamics of the system. The above expression is the so-called generalized
BethÄUhlenbeck form of the thermodynamic potential. The connection to the
original BethÄUhlenbeck expression for the second virial coefˇcient can be found
in [3] in detail.

For an analysis of meson masses and corresponding widths, necessary to ob-
tain a description of mesonic correlations as bound states dissolving into resonant
states above the Mott temperature, one splits the polarization function ΠM (q0, �q)
according to

ΠM

(
q0,�0

)
= 4NcNf I1 − 2NcNfPM I2(q0) = Ĩ1 − PM Ĩ2(q0), (23)

where, in the limit �q = 0 that we utilize, the integrals I1 and I2 are given by

I1 =
∫

d3p

(2π)3

[
1

2Ep

(
1 − f−

Φ (Ep) − f+
Φ (Ep)

)]
, (24)

I2(q0) =
∫

d3p

(2π)3
1

4E2
p

[
1 − f−

Φ (Ep) − f+
Φ (Ep)

2Ep − q0
+

1 − f−
Φ (Ep) − f+

Φ (Ep)
2Ep + q0

]
, (25)

with PM = −q2
0 for pions and PM = −q2

0 + 4m2 for sigma mesons. By
identifying q0 = MM − i 1

2ΓM , one can perform the complex mass pole analysis
leading to

PM = −

1
4NcNfGS

− 2I1∣∣∣∣I2

(
q0 = MM − i

1
2
ΓM

)∣∣∣∣2
(Re I2(MM ) − i Im I2(MM )), (26)

which decomposes into coupled BetheÄSalpeter equations for meson mass and
meson spectral width.

In the ˇrst departure beyond the pole approximation (Appendix B), it is
justiˇed above TMott to consider DM (s) to be described by a BreitÄWigner type
function

AR(s, T ) = aR
MMΓM(

s − M2
M

)2 + (MMΓM )2
, (27)

where MM is the meson pole mass, ΓM is the corresponding meson width, and
aR is a normalization factor. Below TMott, where the spectral broadening Γ(T )
of the states vanishes, the above expression becomes the delta function typical
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for the spectral function of a mesonic bound state. The meson phase shift ΦM

corresponding to (27) should be of the form

ΦM (s) ≈ φR(s) =
π

π

2
− arctan

(
4m2 − M2

M

MMΓM

)×

×
(

arctan
[
s − M2

M

MMΓM

]
− arctan

[
4m2 − M2

M

MMΓM

])
, (28)

where, by introducing the notation φR(s), we acknowledge the fact that the above
phase shift is connected with resonant properties of the mesonic correlations.

4. LEVINSON'S THEOREM FOR QUARKÄMESON THERMODYNAMICS

In order to inspect the validity of the approach so far presented, in our
analysis we consider the Levinson theorem

+∞∫
4m2

ds
dΦM

ds
= nπ, (29)

where n denotes the number of bound states below the threshold 4m2. Indeed,
it is easy to check that the resonant phase shift φR(s) alone does not fulˇll (29).
This implies that the scattering phase shift should be composed of at least two
parts. In fact, as was demonstrated in [4], it is appropriate to decompose the
scattering phase shift ΦM into a part corresponding to the mesonic correlation
and a part describing quarkÄantiquark scattering,

ΦM = φR + φsc. (30)

Namely, using (21), we can represent the total scattering phase shift ΦM as

ΦM =
i

2
ln

1 − 2GSΠM (ω + iη, �q)
1 − 2GSΠM (ω − iη, �q)

. (31)

Then it is straightforward, using (23) and the relation between logarithm and
arctan functions, to show that

ΦM = − arctan
[

2GSPM Im Ĩ2

1 − 2GS Ĩ1 + 2GSPM Re Ĩ2

]
(32)
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and, by several more consecutive steps, to obtain

ΦM = − arctan

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Im Ĩ2

Re Ĩ2

− 1 − 2GS Ĩ1

2GS |Ĩ2|2
· Im Ĩ2

PM +
1 − 2GS Ĩ1

2GS |Ĩ2|2
Re Ĩ2

1 +
1 − 2GS Ĩ1

2GS |Ĩ2|2
· Im Ĩ2

2

PM Re Ĩ2 +
1 − 2GS Ĩ1

2GS |Ĩ2|2
Re Ĩ2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (33)

At this point it is enough to recognize the above expression as the sum of arctans
to ˇnally obtain

ΦM = − arctan

(
Im Ĩ2

Re Ĩ2

)
+

+ arctan

⎛⎜⎜⎜⎝1 − 2GS Ĩ1

2GS |Ĩ2|2
· Im Ĩ2

PM +
1 − 2GS Ĩ1

2GS |Ĩ2|2
Re Ĩ2

⎞⎟⎟⎟⎠ , (34)

which proves the formula (30), where

φsc = − arctan

(
Im Ĩ2

Re Ĩ2

)
(35)

and

φR = arctan

⎛⎜⎜⎜⎝1 − 2GS Ĩ1

2GS |Ĩ2|2
Im Ĩ2

PM +
1 − 2GS Ĩ1

2GS |Ĩ2|2
Re Ĩ2

⎞⎟⎟⎟⎠ . (36)

Using the conditions (26), in the above equation the masses and widths could be
identiˇed in accordance with (28).

As the ˇrst part of this decomposition is independent of mesonic properties,
we presume that it is connected with the scattering states' input to the thermody-
namics. On the other hand, the second part of (34) describes solely the behavior of
dissolving mesons. Thus, we are assured that the correct description of mesonic
correlations accounts not only for bound and resonant states' contribution, but
also for the input from the scattering states.

In our analysis we will use a combined approach, where the scattering part
of the phase shift ΦM is deˇned according to (34) and the resonant part is given
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by a delta function below TMott and by the BreitÄWigner ansatz (27) beyond it.
Explicitly, we take

DM (s) =
1
π

dφM (s)
ds

=

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ(s − M2

M ) +
1
π

d

ds
φsc(s), T < TMott,

aR

π

ΓMMM

(s − M2
M )2 + Γ2

MM2
M

+
1
π

d

ds
φsc(s), T > TMott.

(37)

We will in the following regard the states for positive real s � 4m2 only.
Finally, the scattering states' contribution to the density of states is normalized

and exactly compensates the contribution from the resonance (or the bound state,
resp.). This accordance with the Levinson theorem conˇrms the validity of the
presented approach.

5. RESULTS AND DISCUSSION

The above-described complex mass pole analysis leads to the results for the
meson masses MM and widths ΓM as presented in Fig. 3. We observe that
the sigma-meson width is non-zero for all the temperatures considered, although
below TMott it is not signiˇcant and therefore allows us to consider sigma to be a
quasi-bound state. Above the Mott temperature, pion and sigma masses quickly
become equal and so do their spectral widths. This is the imprint of the chiral

Fig. 3. Temperature dependence of meson masses MM and corresponding spectral
widths ΓM
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symmetry restoration where the σ and π meson, being chiral partners, become
degenerate.

In what follows we will concentrate on the discussion of the π meson, because
it undergoes the Mott transition from the bound state to the resonant correlation in
the continuum, accompanied by a jump of the scattering phase shift at threshold
from π to 0 in accordance with the Levinson theorem.

In Fig. 4 we show the phase shift ΦM (lower panel) in the decomposition (30)
into its resonant (upper panel) and scattering continuum (middle panel) parts,
obtained from the solution of Eqs. (35) and (36).

Fig. 4. Dependence of phase shift Φ = φR + φsc and its components φR and φsc in the
pion channel on the center-of-mass energy

The pion pressure resulting from utilizing the BreitÄWigner spectral function
alone and together with the input from the scattering states is shown in Fig. 5 along
with the pressure of the massive pion gas. Figure 6 shows the pion pressure as
compared with the quark pressure obtained from the mean-ˇeld approximation of

12



Fig. 5. Temperature dependence of the pion pressure in the approximated GBU approach

Fig. 6. Comparison of the pion pressure obtained with the input from the MFA approxi-
mation to thermodynamic potential

the PNJL thermodynamic potential. We notice that including the description of
the scattering states results in a correct description of pion thermodynamics in the
vicinity of and beyond the Mott temperature.

6. CONCLUSIONS

Pion dissociation by the Mott effect in quark plasma was described within
the generalized BethÄUhlenbeck approach on the basis of a PNJL model whereby
a uniˇed description of bound, resonant and scattering states was given. As a
ˇrst approximation, we utilized the BreitÄWigner ansatz for the spectral function
and clariˇed its relation to the complex mass-pole solution of the pion BetheÄ
Salpeter equation. It has been demonstrated that a description of the pion Mott
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dissociation solely by a spectral broadening of the pion bound state when it
enters the continuum of unbound states for temperatures beyond TMott necessarily
entails a violation of Levinson's theorem. In order to solve this problem, we have
extended the approach beyond the complex mass pole approximation and solved
the scattering phases in the pion channel of quarkÄantiquark interaction. The
account for the scattering continuum in accordance with the Levinson theorem
leads to a strong reduction of the pion pressure above the Mott dissociation
temperature. We suggest that the behavior of the scatterinng phase shift in
the pion channel and its temperature dependence across the Mott transition, as
obtained in the present work, can be used to develop a generic ansatz for the
behavior of hadronic densities of states to be used in a generalized PNJL-hadron
resonance gas model [21] that embodies the Mott dissociation of hadrons.
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APPENDIX A
NAMBUÄJONA-LASINIO MODEL WITH POLYAKOV LOOP

Conˇnement in pure SU(Nc) gauge theory can be simulated by introduc-
ing an effective potential for a complex Polyakov-loop ˇeld. The PNJL La-
grangian [13Ä17] is

LPNJL = q
(
iγμDμ − m0 − γ0μ

)
q+

+
∑

M=σ′,�π′

GM (qΓMq)2 − U(Φ[A], Φ[A]; T ). (A1)

The quark ˇelds are coupled to the gauge ˇeld Aμ through the covariant derivative
Dμ = ∂μ − iAμ. The gauge ˇeld is Aμ = δμ

0 A0 = iδμ
4 A4 (the Polyakov gauge).

The ˇeld Φ is determined by the trace of the Polyakov loop L(�x) [15]:

Φ[A] =
1

Nc
Trc L(�x), (A2)

where L(�x) = P exp

[
−i

β∫
0

dτA4(�x, τ)
]
. ΓM are the vertices for the scalar (σ′)

and pseudoscalar (�π′) four-fermion interaction channels. The gauge sector of the
Lagrangian density (A1) is described by an effective potential U(Φ[A], Φ[A]; T )
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ˇtted to the lattice QCD simulation results in pure SU(3) gauge theory at ˇnite
T [15,16] with

U(Φ, Φ; T )
T 4

= −b2(T )
2

ΦΦ − b3

6
(Φ3 + Φ

3
) +

b4

4
(ΦΦ)2, (A3)

b2 (T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

. (A4)

The parameters of the effective potential (A3) and (A4) are summarized
in Table 2.

Table 2. Parameters of the effective potential U [A]

a0 a1 a2 a3 b3 b4

6.75 Ä1.95 2.625 Ä7.44 0.75 7.5

In general, the parameter T0 depends on the number of active 	avors and
the chemical potential. In the present work we use T0 = 208 MeV, as has been
proposed in [22].

The partition function in the path-integral representation is then given by

ZPNJL[T, V, μ] =

=
∫

DqDq exp

{ β∫
0

dτ

∫
V

d3x
[
q(iγμ(∂μ − iAμ) − m0 − γ0μ)q+

+ GS(qΓσ′q)2 + GS(q�Γπ′q)2 − U(Φ[A], Φ[A]; T )
]}

, (A5)

where the interaction vertices are written explicitly. By means of the HubbardÄ
Stratonovich transformation, we are able to integrate out the quark degrees of
freedom to arrive at the partition function written solely in terms of collective
ˇelds

ZPNJL[T, V, μ] =
∫

Dσ′D�π′×

×exp

{
−
[ β∫

0

dτ

∫
V

d3x

(
σ′2 + �π′2

4GS
+U(Φ[A]; T )

)]
+Tr ln

[
βS−1[σ′, �π′]

]}
,

(A6)

where S−1[σ′, �π′] is the inverse propagator given explicitly as

S−1[σ′, �π′] = γ0(iωn − μ + A0) − �γ · �p − m0 − σ′Γσ′ − �π′�Γπ′ (A7)

and the operation Tr is taken over color, 	avor, Dirac and momentum indices of
quark ˇelds.
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APPENDIX B
THE BREITÄWIGNER ANSATZ

We introduce the following pion propagator:

SM (p2) =
1

1 − 2GΠ(p2)
. (B1)

In the ˇrst step we expand the polarization function around the mass pole:

Π(p2) = Π(p2 = M2) + (p2 − M2)
dΠ(p2)

dp2

∣∣∣∣
(p2=M2)

+ . . . (B2)

and we insert this expansion into the deˇned propagator

SM (p2) =
1

1 − 2GΠ(p2 = M2)︸ ︷︷ ︸
=0 (by definition)

−2G(p2 − M2)
dΠ
dp2

∣∣∣∣
p2=M2

=

= − 1

2G(p2 − M2)
dΠ
dp2

∣∣∣∣
p2=M2

=
g2

Mqq

p2 − M2
, (B3)

where in the last step we simply deˇned g2
Mqq . By means of the wave function

renormalization, we deˇne a normalized propagator in the following way:

SM (p2) = g2
MqqS̃M (p2). (B4)

Now S̃M (p2) is a propagator for renormalized mass ˇelds φ̃ = gMqqφ. At this
point we consider a complex mass pole solution

p2 =
(

M ± i
Γ
2

)2

, (B5)

where for small Γ we get p2 ≈ M2 ± iMΓ and the corresponding propagator, in
a similar way,

S̃M (p2) =
1

p2 − M2 ∓ iMΓ
=

p2 − M2 ± iMΓ
(p2 − M2)2 + (MΓ)2

. (B6)

We introduce the spectral function by its deˇnition to get

A(s = p2) = 2i Im S̃M ∼ ± MΓ
(s − M2)2 + (MΓ)2

. (B7)

16



REFERENCES

1. E. Beth and G. E. Uhlenbeck, Physica 3, 728 (1936); 4, 915 (1937). Annals Phys.
234, 225 (1994).

2. R. Dashen, S.-K. Ma and H. J. Bernstein, Phys. Rev. 187, 345 (1969).

3. J. Hufner, S. P. Klevansky, P. Zhuang and H. Voss, Annals Phys. 234, 225 (1994).

4. P. Zhuang, J. Hufner and S. P. Klevansky, Nucl. Phys. A 576, 525 (1994).

5. S. Roessner, T. Hell, C. Ratti and W. Weise, Nucl. Phys. A 814, 118 (2008).

6. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).

7. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246 (1961).

8. M. K. Volkov, Annals Phys. 157, 282 (1984).

9. U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991).

10. S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).

11. T. Hatsuda and T. Kunihiro, Phys. Rept. 247, 221 (1994).

12. M. Buballa, Phys. Rept. 407, 205 (2005).

13. P. N. Meisinger, T. R. Miller and M. C. Ogilvie, Phys. Rev. D 65, 034009 (2002).

14. K. Fukushima, Phys. Lett. B 591, 277 (2004).

15. C. Ratti, M. A. Thaler and W. Weise, Phys. Rev. D 73, 014019 (2006).

16. S. Roessner, C. Ratti and W. Weise, Phys. Rev. D 75, 034007 (2007).

17. H. Hansen, W. M. Alberico, A. Beraudo, A. Molinari, M. Nardi and C. Ratti, Phys.
Rev. D 75, 065004 (2007).

18. H. Grigorian, Phys. Part. Nucl. Lett. 4, 223 (2007).

19. P. Costa, H. Hansen, M. C. Ruivo and C. A. de Sousa, Phys. Rev. D 81, 016007
(2010).

20. H. Abuki, Nucl. Phys. A 791, 117 (2007).

21. L. Turko, D. Blaschke, D. Prorok and J. Berdermann, Acta Phys. Polon. Supp. 5, 485
(2012) [arXiv:1112.6408 [nucl-th]].

22. B. -J. Schaefer, J. M. Pawlowski and J. Wambach, Phys. Rev. D 76, 074023 (2007).

Received on February 27, 2013.

17



�¥¤ ±Éμ· E. ˆ.Š· ¢Î¥´±μ

�μ¤¶¨¸ ´μ ¢ ¶¥Î ÉÓ 16.04.2013.
”μ·³ É 60× 90/16. �Ê³ £  μË¸¥É´ Ö. �¥Î ÉÓ μË¸¥É´ Ö.

“¸². ¶¥Î. ². 1,25. “Î.-¨§¤. ². 1,61. ’¨· ¦ 325 Ô±§. ‡ ± § º 57962.

ˆ§¤ É¥²Ó¸±¨° μÉ¤¥² �¡Ñ¥¤¨´¥´´μ£μ ¨´¸É¨ÉÊÉ  Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°
141980, £. „Ê¡´ , Œμ¸±μ¢¸± Ö μ¡²., Ê².†μ²¨μ-ŠÕ·¨, 6.

E-mail: publish@jinr.ru
www.jinr.ru/publish/


