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Pion Dissociation and Levinson’s Theorem
in Hot PNJL Quark Matter

Pion dissociation by the Mott effect in quark plasma is described within the
generalized Beth—Uhlenbeck approach on the basis of the PNJL model, which allows
for a unified description of bound, resonant and scattering states. As a first approx-
imation, we utilize the Breit—-Wigner ansatz for the spectral function and clarify its
relation to the complex mass pole solution of the pion Bethe—Salpeter equation. Ap-
plication of the Levinson theorem proves that describing the pion Mott dissociation
solely by means of spectral broadening of the pion bound state beyond T leaves
out a significant aspect. Thus, we acknowledge the importance of the continuum of
scattering states and show its role for the thermodynamics of pion dissociation.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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1. INTRODUCTION

We investigate the thermodynamics of mesonic bound states in hot medium
consisting of a nonideal quark plasma with correlations in the pion and sigma
meson interaction channels. A special emphasis is put on a correct description of
the bound states’ dissociation in the vicinity of and beyond the Mott temperature.
To this end, we utilize the Polyakov-loop-extended Nambu—Jona-Lasinio model
at finite temperature.

The model has two order parameters: the chiral condensate, determining
the value of the dynamically generated quark mass m(7T') related to the chiral
symmetry breaking/restoration transition, and the Polyakov loop variable ®(7T")
which is an order parameter for deconfinement. Their values are obtained from
self-consistent solutions of the coupled gap equations for these parameters which
correspond to the location of the minimum of the thermodynamical potential
Q(m,®;T) in the mean-field approximation (MFA). Going beyond the MFA,
we evaluate the contributions from pion and sigma meson fluctuations within the
Gaussian approximation to the path-integral representation of the thermodynamic
potential. Above the Mott temperature, one observes the spectral broadening of
bound states leading to the appearance of complex mass poles in the mesonic
propagators. A proper analysis leads to coupled Bethe—Salpeter equations from
which meson masses and corresponding spectral widths are obtained. Next,
the equation of state for the quark—meson system is obtained in the form of a
generalized Beth—Uhlenbeck equation [1] which describes the effects that chiral
symmetry restoration and deconfinement have on the contributions from pions
and sigma mesons and allows for an adequate description of bound, resonant
and scattering states on equal footing. The spectral functions in the mesonic
channels are evaluated from the complex-valued polarization loop integrals. An
examination of the Levinson theorem [2] proves that in order to correctly describe
the Mott effect, the continnum of mesonic correlations (scattering states) has to be
taken into the account. As a result of this analysis, we obtain a description of pion
dissociation where the effect of the vanishing bound state is exactly compensated
by the occurrence of a resonance in the continuum of scattering states.

The present work improves on previous works within the NJL model [3,4],
where unphysical quark degrees of freedom appeared in the hadronic phase due



to the lack of the coupling to the Polyakov loop and the Stefan-Boltzmann
limit was not obtained due to a misplaced momentum cutoff. We also improve
the recent work [5] by properly discussing the role of Levinson’s theorem in
the PNJL model approach to the generalized Beth—Uhlenbeck equation of state
for the quark—meson plasma. The model presented joins both exact limits of
finite-temperature QCD — the pion gas at low temperatures and the quark—gluon
Stefan—Boltzmann limit at high temperatures — within a microscopic chiral quark
model approach.

2. QUARKS AND LIGHT MESONS IN THE PNJL MODEL

The definition of the Nambu-Jona-Lasinio model [6-12] with Polyakov
loop [13-17] is given in the Appendix A. Here we start from the expansion
of the thermodynamic potential

T
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around homogeneous mean field values, which leads to the decomposition of the

auxiliary fields ¢’ and 7 into their mean field and fluctuation parts:
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Utilizing the decomposed fields results in the factorization of the partition function
into the respective parts describing mean-field and fluctuation contributions:
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The thermodynamic potential in the mean-field approximation of the PNJL model
is evaluated to be given by the following expression [17]:
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where factors Ny, N, originate from performing the trace operation and are
a consequence of isospin and color symmetry. The quark energy is given by
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In the mean-field approximation of the PNJL model, the values of the con-
stituent quark mass m and the Polyakov-loop variable ®, along with its complex
conjugate ®, are obtained from the condition that the thermodynamic potential
should be minimized with respect to these parameters, which is augmented by
the stability conditions. For y = 0, we have ® = ® and thus the minimizing
conditions are given by
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These conditions are equivalent to a set of coupled gap equations [15,17]. For
the mass gap equation we get
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are the so-called generalized Fermi functions, characteristic for the PNJL model.
One should note that if & — 1, the expression (11) reduces to the standard NJL-
model Fermi functions. For PNJL calculations we should additionally find the
values of ¢ from corresponding gap equation [17] at given T and pu.

In order to solve (10), a set of model parameters has to be determined: the
cutoff parameter A, the current quark mass mg (in the chiral limit my = 0), and
the coupling constant Gs. These parameters are fitted at 7' = 0 to reproduce



physical quantities: the pion mass M, = 135 MeV, the pion decay constant
F. = 92.4 MeV, and the quark condensate (gq)'/® = —240.772 MeV. The used
parameters [18] are shown in Table 1.

Table 1. The set of model parameters reproducing observable quantities (in brackets)
and (gq)/® = —240.772 MeV [18]

mo, MeV | A, MeV | GsA? | Fr, MeV | M., MeV
5.495 602.472 | 2.318 (92.4) (135)

Since NJL-type models are non-renormalizable, it is necessary to introduce a
regularization, e.g., by a cutoff A in the momentum integration. Following [17],
in this study, in case of thermodynamic quantities, we use the three-dimensional
momentum cutoff for vacuum terms and extend the integration till infinity for
finite temperatures. A comprehensive study of the differences between the two
regularization procedures (with and without cutoff on the quark momentum states
at finite temperature) has been performed in [19].

Solutions of the gap equation (10) and the corresponding gap equation for the
Polyakov-loop variable ¢ at zero chemical potential and nonzero 1" are presented
in Fig. 1. Above the critical temperature, which is equal to 7, = 237 MeV in the
chiral limit and T, = 251 MeV for a finite current quark mass, one observes chiral
symmetry restoration indicated by the rapid decrease of the constituent quark mass
and the Polyakov-loop variable becoming close to 1. The corresponding mean-
field contribution to the pressure, given by P = —Qr, is shown in Fig. 6 (scaled
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Fig. 1. Temperature dependence of the quark masses m(7") and Polyakov-loop variable
®(T') at p = 0. Results for quark mass are scaled by m(0) = 367.5 MeV



by a factor T%) in Section 5. One observes that, in opposition to classical NJL
models (e.g., [3,4]), quark degrees of freedom are suppressed below the critical
temperature in the PNJL model. Moreover, above the critical temperature, the
gluonic degrees of freedom are accounted for correctly.

The contribution to the thermodynamics stemming from the fluctuations de-
scribed by (4) is evaluated in a scheme where we expand the logarithm up to the
second (Gaussian) order according to

1
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to get

8
2 —2
+
dr | &3z 2
/T/ v 4Gs
0

\4

ZWT, V4] = / Dapﬁexp{ -

- %Tr (Snte[m]Z[o, 7|Sar [m] Sl 7)) } (13)

where we have introduced X[o, 7] = o + iy577.

Performing the calculation leads to the subsequent factorization of the thermo-
dynamic potential into parts describing the contribution from mesonic correlations
corresponding to o and 7 channels of interaction
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with the polarization loop IIxs(qo, ¢) given explicitly by
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One easily obtains the thermodynamic potential corresponding to the chosen me-
son part of the partition function up to the Gaussian order given by

d
0 (.= 2

where the degeneracy factor dj; equals 1 for sigma mesons and 2 for pions.

Trln S;}, (16)
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Fig. 2. Temperature dependence of the meson masses My, (left panel) and meson pressure
for @ (solid lines) and o (dotted lines)

From the point of view of the polarization operators, the pseudoscalar and
scalar meson masses can be defined by the condition that for ¢> = M3, the
corresponding polarization operator I15;(M3,) leads to a bound-state pole in the
meson correlation function [17]. For mesons at rest (q = 0) these conditions
correspond to the Bethe—Salpeter equations

d3p 4F _
1+4GNCNf/WW’;Eg(1 —fa — fi) =0, (17)
dp p?> 4E,

1—|—4GNCNf/ (18)
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Solutions of the two Bethe—Salpeter equations (17) and (18) constitute the
set of meson masses and are presented in Fig.2 (left panel). The Mott tempera-
ture, which is defined by the condition M (Tnots) = 2mq(Tmots), is for given
parameters oty =~ 231 MeV in the chiral limit and Typo =~ 256 MeV away
from it. The modification of quasiparticle properties is clearly visible: up to the
Mott temperature Thjott, the o mass practically follows the behaviour of 2mg(T'),
with a drop towards the pion mass, signalling chiral symmetry restoration (in the
chiral limit the o mass exactly coincides with twice the quark mass up to Tiott)-
In the same region, the pion mass remains practically constant (and equals zero in
the chiral limit). At T ~ Ty, however, the masses of chiral partners become
approximately degenerate, M, ~ M,, and then both masses increase linearly
with temperature.

The corresponding meson pressure is shown in Fig.2 (right panel).

3. GENERALIZED BETH-UHLENBECK APPROACH
TO THE QUARK-MESON PLASMA

Deriving the thermodynamic equation of state for a quark—-meson system in
the Beth and Uhlenbeck form reduces to the introduction of scattering phase



shifts into the formula for the thermodynamic potential. This requires that we
analytically continue the propagator into the complex plane.

In a first step, we introduce meson spectral functions A%, (w,q) by utiliz-
ing the integral representation of the logarithm in (16), followed by the usual
expression of the propagator by means of A%, (w,q) [20], i.e.,

A 1 Taw 1 Fa
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(19)
Using the fact that the spectral density is given by the discontinuity of the prop-
agator at the real axis, we arrive at
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where the argument of the logarithm is by definition the scattering matrix $;(w, §)
in the Jost representation [3]. This normalized complex function can also be rep-
resented by means of a scattering phase shift $/ (w, §) = exp[2i® s (w, 7)], which
allows us to identify
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Utilizing the above identity leads, after performing the trace operation, to the
following result:
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where D)/(s) is a generalized mass distribution (density of states) containing all
the dynamics of the system. The above expression is the so-called generalized
Beth—Uhlenbeck form of the thermodynamic potential. The connection to the
original Beth—Uhlenbeck expression for the second virial coefficient can be found
in [3] in detail.

For an analysis of meson masses and corresponding widths, necessary to ob-
tain a description of mesonic correlations as bound states dissolving into resonant
states above the Mott temperature, one splits the polarization function I/ (g0, ¢)
according to

MWar (90,0) = 4NNj Iy = 2NNy Pag o(ao) = I = Puo(qo),  (23)

where, in the limit ¢ = O that we utilize, the integrals /; and I are given by
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with Py = —q2 for pions and Py; = —¢? + 4m? for sigma mesons. By

identifying qo = My — i%F M, one can perform the complex mass pole analysis
leading to
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which decomposes into coupled Bethe—Salpeter equations for meson mass and
meson spectral width.

In the first departure beyond the pole approximation (Appendix B), it is
justified above Tyjott to consider Djs(s) to be described by a Breit—Wigner type
function

My
D) )
(s = M3,)" + (MyT )2

Ar(s,T) =ar (27)

where M)y, is the meson pole mass, I'y; is the corresponding meson width, and
ap is a normalization factor. Below Tyjot, Where the spectral broadening I'(T")
of the states vanishes, the above expression becomes the delta function typical



for the spectral function of a mesonic bound state. The meson phase shift @,
corresponding to (27) should be of the form

m
Pur(s) ~ or(s) = — amZ — 2N S
— —arctan 7M>
2 ( My Ty
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X | arctan | ———— | —arctan | ———| |, (28
( [ M MuUpy (25)

where, by introducing the notation ¢ r(s), we acknowledge the fact that the above
phase shift is connected with resonant properties of the mesonic correlations.
4. LEVINSON’S THEOREM FOR QUARK-MESON THERMODYNAMICS

In order to inspect the validity of the approach so far presented, in our
analysis we consider the Levinson theorem

“+oo

o

/ ds 92 _ nr, (29)
ds

4m?2

where n denotes the number of bound states below the threshold 4m?2. Indeed,
it is easy to check that the resonant phase shift ¢(s) alone does not fulfill (29).
This implies that the scattering phase shift should be composed of at least two
parts. In fact, as was demonstrated in [4], it is appropriate to decompose the
scattering phase shift ®,, into a part corresponding to the mesonic correlation
and a part describing quark—antiquark scattering,

Oy = ¢R + ¢sc~ (30)
Namely, using (21), we can represent the total scattering phase shift ®p; as
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(31

Then it is straightforward, using (23) and the relation between logarithm and
arctan functions, to show that
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and, by several more consecutive steps, to obtain
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At this point it is enough to recognize the above expression as the sum of arctans
to finally obtain
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Using the conditions (26), in the above equation the masses and widths could be
identified in accordance with (28).

As the first part of this decomposition is independent of mesonic properties,
we presume that it is connected with the scattering states’ input to the thermody-
namics. On the other hand, the second part of (34) describes solely the behavior of
dissolving mesons. Thus, we are assured that the correct description of mesonic
correlations accounts not only for bound and resonant states’ contribution, but
also for the input from the scattering states.

In our analysis we will use a combined approach, where the scattering part
of the phase shift @, is defined according to (34) and the resonant part is given

10



by a delta function below Thyioty and by the Breit—Wigner ansatz (27) beyond it.
Explicitly, we take

D = — =
n (5) T ds
1d
o(s — MJ%4) + ;E@C(S)a T < Tmott,
- (37
aR Tpr My 1

TG ML) LMy, T

d
%Qbsc(s)v T > TMott~

We will in the following regard the states for positive real s > 4m? only.

Finally, the scattering states’ contribution to the density of states is normalized
and exactly compensates the contribution from the resonance (or the bound state,
resp.). This accordance with the Levinson theorem confirms the validity of the
presented approach.

5. RESULTS AND DISCUSSION

The above-described complex mass pole analysis leads to the results for the
meson masses Mjy,; and widths 'y, as presented in Fig.3. We observe that
the sigma-meson width is non-zero for all the temperatures considered, although
below Thoty it is not significant and therefore allows us to consider sigma to be a
quasi-bound state. Above the Mott temperature, pion and sigma masses quickly
become equal and so do their spectral widths. This is the imprint of the chiral

800

™,

600 -

Mass, MeV
S
(=]
S
T

200

L L L 1
0 100 200
T, MeV

Fig. 3. Temperature dependence of meson masses Mpy; and corresponding spectral
widths I'as
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symmetry restoration where the ¢ and m meson, being chiral partners, become
degenerate.

In what follows we will concentrate on the discussion of the m meson, because
it undergoes the Mott transition from the bound state to the resonant correlation in
the continuum, accompanied by a jump of the scattering phase shift at threshold
from 7 to 0 in accordance with the Levinson theorem.

In Fig. 4 we show the phase shift ®,; (lower panel) in the decomposition (30)
into its resonant (upper panel) and scattering continuum (middle panel) parts,
obtained from the solution of Egs. (35) and (36).

S, GeV?

Fig. 4. Dependence of phase shift ® = ¢r + ¢sc and its components ¢r and ¢ in the
pion channel on the center-of-mass energy

The pion pressure resulting from utilizing the Breit—~Wigner spectral function
alone and together with the input from the scattering states is shown in Fig. 5 along
with the pressure of the massive pion gas. Figure 6 shows the pion pressure as
compared with the quark pressure obtained from the mean-field approximation of

12
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Fig. 5. Temperature dependence of the pion pressure in the approximated GBU approach
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Fig. 6. Comparison of the pion pressure obtained with the input from the MFA approxi-
mation to thermodynamic potential

the PNJL thermodynamic potential. We notice that including the description of
the scattering states results in a correct description of pion thermodynamics in the
vicinity of and beyond the Mott temperature.

6. CONCLUSIONS

Pion dissociation by the Mott effect in quark plasma was described within
the generalized Beth—Uhlenbeck approach on the basis of a PNJL model whereby
a unified description of bound, resonant and scattering states was given. As a
first approximation, we utilized the Breit-Wigner ansatz for the spectral function
and clarified its relation to the complex mass-pole solution of the pion Bethe—
Salpeter equation. It has been demonstrated that a description of the pion Mott

13



dissociation solely by a spectral broadening of the pion bound state when it
enters the continuum of unbound states for temperatures beyond T, necessarily
entails a violation of Levinson’s theorem. In order to solve this problem, we have
extended the approach beyond the complex mass pole approximation and solved
the scattering phases in the pion channel of quark—antiquark interaction. The
account for the scattering continuum in accordance with the Levinson theorem
leads to a strong reduction of the pion pressure above the Mott dissociation
temperature. We suggest that the behavior of the scatterinng phase shift in
the pion channel and its temperature dependence across the Mott transition, as
obtained in the present work, can be used to develop a generic ansatz for the
behavior of hadronic densities of states to be used in a generalized PNJL-hadron
resonance gas model [21] that embodies the Mott dissociation of hadrons.
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APPENDIX A
NAMBU-JONA-LASINIO MODEL WITH POLYAKOV LOOP

Confinement in pure SU(N.) gauge theory can be simulated by introduc-
ing an effective potential for a complex Polyakov-loop field. The PNJL La-
grangian [13-17] is

Lonsr =7 (i7" Dy — mo — 1) g+
+ Z G (@ aq)” — U(R[A] B[A];T). (AD)

M=o’ 7

The quark fields are coupled to the gauge field A, through the covariant derivative
D, = 8, —iA,. The gauge field is A" = 5y A° = i} A4 (the Polyakov gauge).
The field ® is determined by the trace of the Polyakov loop L(Z) [15]:

B[4] = T L(3), (A2)

B
where L(Z) = P exp | —i [ dTA4(Z, T):l ['ys are the vertices for the scalar (o)
0

and pseudoscalar (7’) four-fermion interaction channels. The gauge sector of the
Lagrangian density (A1) is described by an effective potential U (P[A], P[A]; T)

14



fitted to the lattice QCD simulation results in pure SU(3) gauge theory at finite
T [15,16] with

UDTT) 0T~ by, 5 s bi—
T =-—> (I)(I)—E((I) +® )+Z(‘I>(I>), (A3)

2 3
ba (T) = ap + a1 (%)4‘@2 (%) + as (%) . (A4)

The parameters of the effective potential (A3) and (A4) are summarized
in Table 2.

Table 2. Parameters of the effective potential 1/[A]

ao al a2 as b3 b4
6.75 | -1.95 | 2.625 | -7.44 | 0.75 | 7.5

In general, the parameter 7, depends on the number of active flavors and
the chemical potential. In the present work we use 7 = 208 MeV, as has been
proposed in [22].

The partition function in the path-integral representation is then given by

Zenan [T,V p] =

B
= /D@Dq exp{/dT/d?’x [q(iv" (0, — iA,) —mo — 7O ) g+
v

0
+Gs(@0q)? + Gs(@xq)? — U(R[A], B[A]; T)] } (A5)

where the interaction vertices are written explicitly. By means of the Hubbard-
Stratonovich transformation, we are able to integrate out the quark degrees of
freedom to arrive at the partition function written solely in terms of collective
fields

0_/2 _’_7?/2
xexp{ — /dT/d3x (T—FU(@[A};T)) +Tr In [55*1[0/,7?/]} ,
0oV 5
(A6)
where S~1[o’, 7] is the inverse propagator given explicitly as
S7Ho!, 7 = (iwn — p+ Ag) =7 - F—mg — 0’'Tyr — T (A7)

and the operation Tr is taken over color, flavor, Dirac and momentum indices of
quark fields.
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APPENDIX B
THE BREIT-WIGNER ANSATZ

We introduce the following pion propagator:

1
Sy(p?) = ————— B1
In the first step we expand the polarization function around the mass pole:
dIl(p?
H(p?) = M(p* = M?) + (p* — M?) (Z) +... (B2)
P N pr=nrz)
and we insert this expansion into the defined propagator
1
Su(p?) = i =
1—2GI(p* = M?) —2G(p* — M?) —
dp p2=M2
=0 (by definition)
1 914
=- = . (B3)
I 2 _ M2
2G(p* — M?) d—2 oM
dp p2=M?2

where in the last step we simply defined gqua. By means of the wave function
renormalization, we define a normalized propagator in the following way:

S (p?) = 931z Sur (p?). (B4)

Now Sy (p?) is a propagator for renormalized mass fields 5 = gMmqg®. At this
point we consider a complex mass pole solution

2
p? = (M ﬁ:z%) , (B5)

where for small T we get p? ~ M? 4+ iMT and the corresponding propagator, in
a similar way,
1 p? — M2+ iMT

We introduce the spectral function by its definition to get

MT

A(s = p?) = 2iIm Spy ~ i(s—M2)2 T

(B7)
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®Dopm 1 60 X 90/16. Bym r odcern 4. Ileu b odceTH 4.
Ven. neu. n. 1,25, Yu.-uzn. i, 1,61, Tup x 325 ax3. 3 k 3 Ne 57962.
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