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INTRODUCTION

Landau and Pomeranchuk were the ˇrst to show [1] that multiplicity of elec-
tron scattering processes by atomic nuclei in an amorphous medium results in
the suppression of soft bremsstrahlung. The quantitative theory of this phenom-
enon was created by Migdal [2, 3]∗. Therefore, it received the name LandauÄ
PomeranchukÄMigdal (LPM) effect.

The next step in the development of the quantitative theory of the LPM effect
was made in [5, 6] on the basis of the quasi-classical operator method in QCD.
One of the basic equations of this method is the Schréodinger equation in the
external ˇeld with an imaginary potential, which admits of formal solution in the
form of the path integral [7]∗∗. The same equation (without external ˇeld) was
rederived in [8]. The last derivation is based on the approach which coincides
basically with that of [6].

In [9] it was shown that analogous effects are possible also at coherent radia-
tion of relativistic electrons and positrons in a crystalline medium, and the theory
of these effects must also be based on the quasi-classical methods [9]. Effects
of this kind should manifest themselves in scattering of protons by the nuclei,
which has recently been shown in Groning by the AGOR collaboration [10],
and penetration of quarks through the nuclear matter at the RHIC and LHC ener-
gies [11]. The QCD analog of the LPM effect was examined in [12]; a possibility
studying the LPM effect in oriented crystal at GeV energy was analyzed in [13];
theoretically, an analogue of the LPM effect was considered for nucleonÄnucleon
collisions in the neutron stars and supernovae, and quarkÄgluon plasma [11,14].

The results of a series of experiments at the SLAC [15, 16] and CERN-SPS
[17, 18] accelerators on detection of the LandauÄPomeranchuk effect conˇrmed
the basic qualitative conclusion that multiple scattering of ultrarelativistic charged
particles in matter leads to suppression of their bremsstrahlung in the soft part
of the spectrum. However, attempts to quantitatively describe the experimen-
tal data [15] faced an unexpected difˇculty. For achieving satisfactory agree-

∗See also [4] accounting the edge effects.
∗∗In [7] an approach to the description of the LPM effect is developed where multiple scattering

is described with the path integral treatment.
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ment of data with theory [2], the authors [15] had to multiply the results in the
Born approximation of their calculations by the normalization factor R equal to
0.94 ± 0.01 ± 0.032, which had no reasonable explanation.

The alternate calculations [7, 8] gave a similar result despite different com-
putational basis [15]. The theoretical predictions in agreement with the spectrum
of 30 to 500 MeV photon bremsstrahlung measured for 25 GeV electron beam
and 0.7−6.0%LR gold target over the range 30 < ω < 500 MeV of the emitted
photon frequency ω only within a normalization factor 0.93 [8] Ä 0.94 [15]. The
origin of the above small but signiˇcant disagreement between data and theory
needs to be better understood.

Considering the fact that the calculations for the description of the interac-
tion of electrons with gold target atoms (Zα ∼ 0.6) in [8,15,16] were performed
using the Born approximation, the above-mentioned discrepancy between theory
and experiment can be explained at least qualitatively. The aim of this work
is to show that the discussed discrepancy can also be explained quantitatively if
the corrections to the results of the Born approximation (the so-called Coulomb
corrections) are appropriately considered on the basis of a revised version of the
Moli
ere multiple scattering theory [19,20].

The paper is organized as follows. In Sec. 1 we consider the basic formulae
of the quantitative LPM effect theory for ˇnite-size targets obtained by the kinetic
equation method and also the small-angle approximation of this theory which is
used further for analytical and numerical calculations. In Sec. 2 we present
the results of the conventional [21] and a revised small-angle Moli
ere multiple
scattering theory applied in the next section to the theory of the LPM effect and
its analogue for a thin target [22, 23]. In Sec. 3 we obtain the analytical and
numerical results for Coulomb corrections to some quantities of the LPM effect
theory for sufˇciently thick targets and also to the asymptotes of the spectral
radiation rate within its analogue for a thin layer of an amorphous medium.
Finally, in Sec. 4 we brie�y summarize our ˇndings and state our conclusions.

1. LPM EFFECT THEORY FOR FINITE TARGETS

There exist two methods that allow one to develop a rigorous quantitative
theory of the LandauÄPomeranchuk effect. This is Migdal's method of kinetic
equation [2, 3] and the method of functional integration [7, 8, 24]. Neglecting
numerically small quantum-mechanical corrections, we will adhere to version of
the LandauÄPomeranchuk effect theory, developed in [2,4, 25].

1.1. Basic Formulae. Simple though quite cumbersome calculations using the
results [2, 4] yield the following formula for the electron spectral bremsstrahlung
intensity averaged over various trajectories of electron motion in the medium
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(hereafter the units � = c = 1, e2 = 1/137 are used) [25]:〈
dI

dω

〉
= 2

∑
ε

{
n0L

∫
f∗(n2)ν(n2 − n1)f(n1)dn1dn2−

− (n0v)2
T∫

0

dt1

T∫
t1

dt2 Re

[∫
f∗(n2)ν(n2 − n′

2)f(n1)×

× ν(n′
1 − n1)w(t2, t1,n′

2,n
′
1,k) dn1 dn′

1 dn2 dn′
2

]}
, (1)

where

f(n1,2) =
e

2π

εv1,2

1 − n · v1,2
,

v1,2 = v · n1,2, n =
k
ω

, dn1,2 ≡ do1,2, T =
L

v
,

ν(n2 − n1) = δ(n2 − n1)
∫

σ0(n′
2 − n1)dn′

2 − σ0(n2 − n1),

w(t2, t1,n2,n1,k) =
∫

w̃(t2, t1, r2 − r1,n2,n1)×

× exp [iω(t2 − t1) − ik(r2 − r1)] dr2.

Here ε and k are the polarization vector and the wave vector of the emitted
photon; n0 denotes the number of atoms in a unit volume of the medium; L
is the thickness of the target; n1,2 are the unit vectors in the electron motion
direction; v and v are the electron velocity assumed to be invariant during the
interaction with the target (the quantum-mechanical recoil effect is negligibly
small) and its modulus; e is the electron charge; σ0(n2−n1) = dσ/don2 presents
the differential Born cross section of the electron scattering by target atoms, and
w(t2, t1, r2 − r1,n2,n1) is the electron distribution function in the coordinate r2.
The direction of motion n2 at time t2 provided that at the time t1 the electron had
the coordinate r1 and moved in the direction characterized by the unit vector n1.

The electron distribution function satisˇes the kinetic equation

∂w(t2, t1, r2 − r1,n2,n1)
∂t2

= −v2 · ∇r2w(t2, t1, r2 − r1,n2,n1)−

− n0

∫
ν(n2 − n′

1)w̃(t2, t1, r2 − r1,n′
2,n1)dn′

2 (2)

with the boundary condition

w̃(t2, t1, r2 − r1,n2,n1)|t2=t1 = δ(r2 − r1)δ(n2 − n1). (3)
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The term in (1) linear in n0 is a `usual' (incoherent) contribution to the
intensity of the electron bremsstrahlung in the medium, derived by summation
of the radiation intensities of the electron interaction with separate atoms of the
target. The term quadratic in n0 includes the contribution from the interference
of the bremsstrahlung amplitudes on various atoms. The destructive character of
this interference leads to suppression of the soft radiation intensity, i.e., to the
LandauÄPomeranchuk effect.

For ω larger than ωcr = 4πγ2/(e2LR), where γ is the Lorentz factor of
the scattered particle and LR is the radiation length of the target material (for
estimation of ωcr, see [1, 2, 22]), the interference term becomes negligibly small,
and radiation is of pure incoherent character.

1.2. Small-Angle Approximation. For ultrarelativistic particles (1−v � 1) it
is convenient to pass in (1) to the small-angle approximation (ϑ1,2 � 1) according
to the scheme

n1,2 =
(

1 −
ϑ2

1,2

2

)
n + ϑ1,2, dn1,2 = dϑ1,2;

f(n1,2) = f(ϑ1,2) =
e

π

ε ϑ1,2

ϑ2
1,2 + λ2

, λ =
m

E
= γ−1;

σ0(n2 − n1) = σ0(ϑ2 − ϑ1), δ(n2 − n1) = δ(ϑ2 − ϑ1), (4)

ν(n2 − n1) = ν(ϑ2 − ϑ1), ϑ2 − ϑ1 = θ;

w(t2, t1,n2,n1,k) = w(t2, t1, ϑ2, ϑ1, ω)

and further to the Fourier transforms of f, ν, w

f(η) =
1
2π

∫
f̃(θ) exp [iηθ] dθ =

ieλε η

πη
K1(λη),

ν(η) =
∫

ν̃(θ)eiηθ dθ = 2π

∫
σ0(θ)[1 − J0(ηθ)]θ dθ, (5)

w(t2, t1, η2, η1, ω) =
1

(2π)2

∫
w̃(t2, t1, ϑ2, ϑ1, ω)×

× exp [iη2ϑ2 − iη1ϑ1] dϑ1 dϑ2,

where ϑ1(2) denotes a two-dimensional electron scattering angle in the plane
orthogonal to the electron direction at instant of time t1(2); m and E are the
electron mass and its energy; θ presents the electron multiple scattering angle
over the time interval t2 − t1; λ is the characteristic frequency of the emitted
photon; J0 and K1 are the Bessel and Macdonald functions, respectively.
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Consequently, expression (1) is reduced to〈
dI

dω

〉
=

2λ2e2

π2

{
n0L

∫
K2

1(λη)ν(η) dη−

− n2
0

L∫
0

dt1

L∫
0

dt2

∫
(η1η2)
η1η2

K1(λη1)K1(λη2)ν(η1)ν(η2)×

× Re [w(t2, t1, η2, η1, ω)] dη1 dη2

}
, (6)

where w satisˇes the kinetic equation

∂w(t2, t1, η2, η1, ω)
∂t2

=
iω

2
(λ2 − Δη2

)w(t2, t1, η2, η1, ω)−

− n0ν(η2)w(t2, t1, η2, η1, ω) (7)

or, equivalently,

i
∂w(t2, t1, η2, η1, ω)

∂t2
=
[ω

2
Δη2

− ω

2
λ2 − in0ν(η2)

]
w(t2, t1, η2, η1, ω) (8)

with the boundary condition

w(t2, t1, η2, η1, ω) = δ(η2 − η1). (9)

The form of (8) is similar to the equation for Green's function of the two-
dimensional Schréodinger equation with the mass ω−1 and the complex potential

U(η) = −ωλ2

2
− i n0ν(η) (10)

and therefore admits of a formal solution in the form of a continual integral (see,
e.g., [24]).

2. MULTIPLE SCATTERING THEORY

The theory of the multiple scattering of charged particles has been treated by
several authors. However, most widespread at present is the multiple scattering
theory of Moli
ere [21]. The results of this theory are employed nowadays in
most of the transport codes. It is of interest for numerous applications related to
particle transport in matter, and it also presents the most used tool for taking into
account the multiple scattering effects in experimental data processing.

As the Moli
ere theory is currently used roughly for 10−300 GeV electron
beams, the role of the high-energy corrections to the parameters of this theory
becomes signiˇcant. Of special importance is the Coulomb correction to the
screening angular parameter, as this parameter also enters into other important
quantities in the Moli
ere theory.
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2.1. Moli�ere's Theory of Multiple Scattering. Let wM (ϑ, L) be a spatial-
angle particle distribution function in a homogenous medium, and ϑ is a two-
dimensional particle scattering angle in the plane orthogonal to the incident par-
ticle direction. For small-angle approximation ϑ � 1 (sin ϑ ∼ ϑ), the above
distribution function is the number of particles scattered in the angular interval
dϑ after traveling through the target of thickness L. In the notation of Moli
ere,
it reads

wM(ϑ, L) =

∞∫
0

J0(ϑη) exp [−n0L ν(η)]η dη, (11)

where
ν(η) = 2π

∞∫
0

σ0(θ)[1 − J0(θη)]θ dθ. (12)

The function (11) satisˇes the well-known Boltzmann transport equation,
written here with the small-angle approximation

∂w(ϑ, L)
∂L

= −n0 wM(ϑ, L)
∫

σ0(θ)d2θ + n0

∫
wM (ϑ + θ, L)σ0(θ)d2θ =

= n0

∫
[wM (ϑ + θ, L) − wM (ϑ, L)] σ0(θ)d2θ. (13)

The Gaussian particle distribution function used in the Migdal LPM effect theory,
which differs from (11), can be derived from the Boltzmann transport equation
by the method of Fokker and Planck [26].

One of the most important results of the Moli
ere theory is that the scattering
is described by a single parameter, the so-called screening angle (θa or θ ′

a)

θ ′
a =

√
1.167 θa = [exp (CE − 0.5)] θa ≈ 1.080 θa, (14)

where CE = 0.577 . . . is the Euler constant.
More precisely, the angular distribution depends only on the logarithmic

ratio b,

b = ln
(

θc

θ ′
a

)2

≡ ln
(

θc

θa

)2

+ 1 − 2CE, (15)

of the characteristic angle θc describing the foil thickness

θ2
c = 4πn0L

(
Zα

βp

)2

, p = mv, (16)

to the screening angle θ ′
a, which characterizes the scattering atom.

In order to obtain a result valid for large angles, Moli
ere deˇnes a new
parameter B by the transcendental equation

B − ln B = b. (17)
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The angular distribution function can then be written as

wM (ϑ, B) =
1
ϑ2

∞∫
0

ydyJ0(ϑy)e−y2/4 exp
[

y2

4B
ln
(

y2

4

)]
, y = θcη. (18)

The Moli
ere expansion method is to consider the term y2 ln(y2/4)/4B as a
small parameter. Then, the angular distribution function is expanded in a power
series in 1/B:

wM(ϑ, L) =
∞∑

n=0

1
n!

1
Bn

wn(ϑ, L), (19)

in which

wn(ϑ, L) =
1

ϑ 2

∞∫
0

ydyJ0

(
ϑ

ϑ
y

)
e−y2/4

[
y2

4
ln
(

y2

4

)]n

, (20)

ϑ 2 = θ2
cB = 4πn0L

(
Zα

βp

)2

B(L). (21)

This method is valid for B � 4.5 and ϑ 2 < 1.
The ˇrst function w0(ϑ, L) has a simple analytical form

w0(ϑ, L) =
2

ϑ̄ 2
exp

(
− ϑ2

ϑ 2

)
, (22)

ϑ 2 ∼
L→∞

L

LR
ln
(

L

LR

)
. (23)

For small angles, i.e., ϑ/ϑ = ϑ/(θc

√
B) less than about 2, the Gaussian (22) is

the dominant term. In this region, w1(ϑ, L) is in general less than w0(ϑ, L), so
that the correction to the Gaussian is of order of 1/B, i.e., about 10%.

A good approximate representation of the distribution at any angle is

wM(ϑ, L) = w0(ϑ, L) +
1
B

w1(ϑ, L) (24)

with

w1(ϑ, L) =
2

ϑ 2
exp

(
− ϑ2

ϑ 2

){(
ϑ2

ϑ 2
− 1

)[
Ei

(
ϑ2

ϑ 2

)
− ln

(
ϑ2

ϑ 2

)]
+ 1

}
− 2, (25)

Ei(Θ) = Ei(Θ) + πi,
(26)

Ei(Θ) = −
∞∫

−Θ

e−L dL

L
,

7



where Ei(Θ) is the exponential integral [27] and Θ = ϑ2/ϑ 2. This approximation
was applied by the authors of [23] to the analysis of data [15,16] over the region
ω < 30 MeV that will be shown in Sec. 3.

Let us notice that the expression (12) for the function ν(η) is identical to (5).
As was shown in classical works of Moli
ere [21], this quantity can be represented
in the area of the important η values 0 � η � 1/θc as

ν(η) = −4π

(
Zα

βp

)2

η2

[
ln
(

η θa

2

)
+ CE − 1

2

]
, (27)

where the screening angle θa depends both on the screening properties of the
atom and on the σ0 approximation used for its calculation.

Using the ThomasÄFermi model of the atom and an interpolation scheme,
Moli
ere obtained θa for the cases where σ0 is calculated within the Born and
quasi-classical approximations:

θB

a = 1.20 αZ1/3, (28)

θa = θB

a

√
1 + 3.34 (Zα/β)2. (29)

The latter result is only approximate (see critical remarks on its derivation in [26]).
Below we will present an exact analytical and numerical result for this angular
parameter.

2.2. Coulomb Correction to the Screening Angular Parameter. Recently, it
has been shown [20] by means of [6] that for any model of the atom the following
rigorous relation determining the screening angular parameter θ′a is valid:

ln(θ′a) = ln(θ′a)B + Re [ψ(1 + iZα/β)] + CE

or, equivalently,

ΔCC[ln
(
θ ′

a

)
] ≡ ln(θ′a) − ln(θ′a)B = f(Zα/β), (30)

where ΔCC is the so-called Coulomb correction to the Born result, ψ is the
logarithmic derivative of the gamma function Γ, and f(Zα/β) is a universal
function of the Born parameter ξ = Zα/β which is also known as the BetheÄ
Maximon function:

f(ξ) = ξ2
∞∑

n=1

1
n(n2 + ξ2)

. (31)

To compare the approximate Moli
ere result (29) with the exact one (30), we
ˇrst present (29) in the form

δ
M

≡ θa − θB
a

θB
a

=
√

1 + 3.34 (Zα/β)2 − 1 (32)
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and also rewrite (30) as follows:

δCC ≡ θa − θB
a

θB
a

=
θ ′

a −
(
θ ′

a

)B(
θ ′

a

)B = exp [f (ξ)] − 1. (33)

Then we get

δMCC ≡ δM − δCC

δ
M

=
ΔMCC

δ
M

. (34)

For some targets used in [15,16] and β = 1, we have obtained the following
values of relative Moli
ere δM and Coulomb δCC corrections and also values
of the difference ΔMCC and relative difference δMCC between the approximate
Moli
ere (32) and exact (33) results (Table 1).

Table 1. The difference between the approximate (32) and exact (33) results for the
Coulomb correction to the screening angle

Target Z δM , % δCC, % ΔMCC, % δMCC, %

W 74 40.4 32.5 7.5 19.6
Pt 78 44.3 35.9 8.4 19.0
Au 79 45.2 36.7 8.5 18.8
Pb 82 48.2 39.3 8.9 18.5
U 92 58.3 48.5 9.8 16.9

For instance, Table 1 shows that the difference and relative difference between
the approximate and exact results for these Coulomb correction reach 8.5% and
18.8%, respectively, in the case of the gold target discussed in [8, 15,16].

We show further that the above discrepancy between theory and experi-
ment [8, 15, 16] can be completely eliminated on the basis of these Coulomb
corrections to the screening angular parameter.

3. COULOMB CORRECTIONS IN THE LPM EFFECT THEORY AND
ITS ANALOGUE FOR A THIN LAYER OF MATTER

3.1. Coulomb Corrections to the Parameters of the Migdal LPM Effect
Theory. The analytical solution of Eq. (7) with arbitrary values of ω is only
possible within the FokkerÄPlanck approximation∗

ν(η) = a η2, (35)

∗An explicit expression for w obtained in this approach can be found in [4].
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but at ω = 0 it is also possible for arbitrary ν(η).
In the latter case (ω = 0)

w(t2, t1, η2, η1, 0) = δ(η2 − η1) exp [−n0ν(η2)(t2 − t1)], (36)

and integration over t1, t2 in (6) is carried out trivially, leading to the simple
result 〈

dI

dω

〉 ∣∣∣∣
ω=0

=
4λ2e2

π

∫
K2

1(λη) {1 − exp [−n0Lν(η)]} ηdη. (37)

Considering the aforesaid, in the other limiting case (ω � ωcr) we get〈
dI

dω

〉 ∣∣∣∣
ω�ωcr

= n0Lλ2e2

∫
K2

1 (λη)ν(η)ηdη. (38)

3.1.1. Case ω�ωcr. After the substitution of ν(η) (27) into (38), the inte-
gration is carried out analytically, leading to the following result:〈

dI

dω

〉 ∣∣∣∣
ω�ωcr

=
16
3π

Z2α3

m2

(
ln

λ

θa
+

7
12

)
n0 L. (39)

Let us ˇnd an analytical expression for the Coulomb correction to the Born
spectral bremsstrahlung rate (39):

ΔCC

[
〈dI/dω〉

]
≡
〈

dI

dω

〉
−
〈

dI

dω

〉B

=

= −16 Z2α3 n0L

3π m2

[
ln(θ′a) − ln(θ′a)B

]
= −16 Z2α3 n0L

3π m2
f(ξ). (40)

Then, the corresponding relative Coulomb correction reads

δCC

[
〈dI/dω〉

]
≡ 〈dI/dω〉 − 〈dI/dω〉B

〈dI/dω〉B = − f(ξ)
0.583− ln

(
1.2 αZ1/3

) . (41)

Let us enter the ratio

RCC(ω) =
〈dI(ω)/dω〉
〈dI(ω)/dω〉B = δCC

[
〈dI/dω〉

]
+ 1. (42)

We will also estimate the numerical values of (41) and (42) for β = 1
(Table 2). It is seen from Table 2 that the relative correction to the Born spectral
bremsstrahlung rate δCC

[
〈dI/dω〉

]
is about −8% and the corresponding ratio

R(ω)|ω�ωcr is approximately 0.92 for the gold target discussed in [15]∗.

∗The use of approximate Moli
ere's result (29) for θa would give the value R(ω)|ω�ωcr =
0.900 in the discussed case.
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Table 2. The relative Coulomb correction δCC

[
〈dI/dω〉

]
to the Born spectral

bremsstrahlung rate for ω � ωcr and β = 1

Target Z Zα f(Zα) −δCC RCC

Be 4 0.029 0.001 0.000 1.000
C 6 0.044 0.004 0.001 0.999
Al 13 0.094 0.011 0.002 0.998
Ti 22 0.160 0.031 0.007 0.993
Fe 26 0.190 0.043 0.010 0.990
Ni 28 0.204 0.049 0.012 0.988
Mo 42 0.307 0.105 0.026 0.974
Sn 50 0.365 0.144 0.036 0.964
Ta 73 0.533 0.276 0.071 0.929
W 74 0.540 0.281 0.072 0.928
Pt 78 0.569 0.307 0.079 0.921
Au 79 0.577 0.312 0.081 0.919
Pb 82 0.598 0.332 0.086 0.914
U 92 0.671 0.395 0.104 0.896

3.2. Case ω= 0. In the other limiting case the performance of numerical
integration in (37) get the following results for the relative Coulomb correction
−δCC

[
〈dI/dω〉

]
and the ratio R(ω)|ω=0 (Table 3) at thicknesses of experimental

targets L = 0.7−6%LR [15]. Here LR ≈ 0.33 cm is the radiation length of the
target material (Z = 79)

LR =
4Z2e6n0

m2
ln
(
183Z1/3

)
. (43)

Table 3. The relative correction δCC

[
〈dI/dω〉

]
for Z = 79 and ω = 0

L, cm −δCC RCC L, cm −δCC RCC

0.007 LR 0.039 0.961 0.060 LR 0.018 0.982

3.3. Case ωcr>ω. When ωcr > ω > 0, it is obvious from general considera-
tions that

RCC(ω)|ω>ωcr � RCC(ω)|ωcr>ω � RCC(ω)|ω=0. (44)

From Table 3 and (44) it follows that the calculation results for 〈dI/dω〉
cannot be obtained from the Born approximation results by multiplying them by
the normalization constant, which is independent of the frequency ω and target
thickness L.

However, considering a nearly 3.2% systematic error of the experimental
data [15] in the range 500 > ω > 30 MeV, it is clear why multiplication by the
normalization factor helped the authors [8,15,16] to get reasonable agreement of
the Born calculation results with the experimental data.
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Considering the two previous limiting cases allows one to obtain some inter-
polation values for RCC(ω)|ωcr>ω from Tables 2 and 3 (see Table 4).

Table 4. The interpolation values of the ratio RCC(ω,L) for ω < ωcr, Z = 79, and β = 1

L, cm RCC(ω, L) R̄CC(ω)|ω<ωcr

0.007 LR 0.920 � RCC(ω)|ω<ωcr � 0.961 0.940
0.060 LR 0.920 � RCC(ω)|ω<ωcr � 0.982 0.951

So for target thicknesses 0.007 LR to 0.060 LR, the averaged value of the
ratio RCC(ω, L)|ω<ωcr is approximately 0.945 ± 0.008, which coincides within
the experimental error with the normalization factor value 0.94 ± 0.01 ± 0.032
introduced in [15] for obtaining agreement of the calculations performed in the
Born approximation with experiment. The obtained result means that the nor-
malization is not required for 〈dI(ω)/dω〉 calculated on the basis of the reˇned
screening angle.

We will now obtain the analytical expressions and numerical estimations for
the Coulomb corrections to the function ν(η) = 2π

∫
σ0(θ)[1 − J0(ηθ)]θ dθ (5)

and the complex potential U(η) = −ωλ2/2 − i n0ν(η) (35).
For the ˇrst quantity, using (27), we obtain

ΔCC[ν(η)] ≡ ν(η ) − νB(η ) =

= −4πη 2

(
Zα

βp

)2

ΔCC[ln
(
θ ′

a

)
] = −4πη 2

(
Zα

βp

)2

f(ξ). (45)

The Coulomb correction to the potential (35) becomes

ΔCC[U(η)] ≡ U(η ) − UB(η ) = −4πin0η
2

(
Zα

βp

)2

f(ξ). (46)

Now we obtain the corresponding relative Coulomb corrections. Using (5),
we get

δCC

[
U(η)

]
≡ ΔCC[U(η)]

UB(η )
=

ΔCC[ν(η)]
νB(η )

≡ δCC

[
ν(η)

]
. (47)

Then (27), (28), and (45) give

δCC

[
ν(η)

]
=

f(Zα/β)
ln η + ln (θB

a ) − ln 2 + CE − 0.5
= (48)

= − f(Zα/β)
0.615− ln

(
1.2 αZ1/3

)
− ln η

. (49)

12



We see from (48) and (41) that

δCC

[
ν(η)

]
= δCC

[
U(η)

]
< δCC

[
〈dI/dω〉

]
, (50)

and we can estimate the δCC

[
ν(η)

]
values from (48) for η � 1. Their numerical

values are presented in Table 5.

Table 5. The relative Coulomb corrections δCC

[
ν(η)
]

and δCC

[
U(η)

]
for the gold, lead,

and uranium targets

Z a � η � b −δCC

[
ν(η)
]

= −δCC

[
U(η)

]
79 0.01 � η � 0.1 3.7% � −δCC

[
ν(η)
]
� 5.0%

82 0.01 � η � 0.1 3.9% � −δCC

[
ν(η)
]
� 5.3%

92 0.01 � η � 0.1 5.5% � −δCC

[
ν(η)
]
� 8.0%

Thus, for instance, −δCC[ν(η)] = −δCC[U(η)] ∼ 4.3%< − δCC[〈dI/dω〉] ∼
8.0% for Z = 79 (Au).

Let us consider the spectral bremsstrahlung intensity (6) in the form proposed
by Migdal: 〈

dI

dω

〉
= Φ(s)

(
dI

dω

)
0

, (51)

where (dI/dω)0 is the spectral bremsstrahlung rate without accounting for the
multiple scattering effects in the radiation,(

dI

dω

)
0

=
2e2

3π
γ2q L, (52)

q = ϑ2/L. (53)

The function Φ(s) in (51) accounts for the multiple scattering in�uence on the
bremsstrahlung rate,

Φ(s) = 24s2

⎡⎣ ∞∫
0

dx e−2sxcth (x) sin (2sx) − π

4

⎤⎦ , (54)

s2 = λ2/ϑ2. (55)

It has simple asymptotes at the small and large values of the argument:

Φ(s) ≈
{

1, s > 1,
6s, s � 1,

(56)

s =
1

4γ2

√
ω

q
. (57)
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The formula (51) is obtained with the logarithmic accuracy. At s > 1, (51)
coincides to the logarithmic accuracy with the BetheÄHeitler result〈

dI

dω

〉
BH

=
L

LR

[
1 +

1
12 ln

(
183Z−1/3

)] . (58)

If s � 1, we have the suppression of the spectral density of radiation in compar-
ison with (58).

Now we obtain analytical and numerical results for the Coulomb corrections
to these quantities. In order to derive an analytical expression for the Coulomb
correction to the Born spectral bremsstrahlung rate (dI/dω)0, we ˇrst write

ΔCC

[(
dI

dω

)
0

]
≡
(

dI

dω

)
0

−
(

dI

dω

)B

0

=
2e2

3π
γ2L ΔCC[q] , (59)

ΔCC[q] ≡ q − qB =
1
L

ΔCC

[
ϑ2
]
. (60)

Accounting for ϑ2 = θ2
cB (21), we get

ΔCC

[
ϑ2
]
≡ ϑ2 −

(
ϑ2
)B

= θ2
c ΔCC [B] . (61)

Then, using (15) and (90), we arrive at

ΔCC[b] = −f(ξ) =
(

1 − 1
BB

)
ΔCC[B], (62)

ΔCC[B] =
f(ξ)

1/BB − 1
. (63)

Finally, (59) becomes

ΔCC

[(
dI

dω

)
0

]
=

2(eγθc)2

3π (1/BB − 1)
f(ξ), (64)

and the relative Coulomb correction reads

δCC [(dI/dω)0] = δCC [q] = δCC

[
ϑ2
]

= δCC [B] =

= RCC [(dI/dω)0] − 1 =
f(ξ)

1 − BB
. (65)

Next, in order to obtain the relative Coulomb correction to the Migdal func-
tion Φ(s), we ˇrst derive corresponding correction to the quantity s2 (55):

ΔCC

[
s2
]

=
ω

16γ4

(
1
q
− 1

qB

)
, (66)
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δCC

[
s2
]

=
qB

q
− 1 =

(
ϑ2
)B

ϑ2
− 1, (67)

where (
ϑ2
)B

/ϑ2 =
(
δCC

[
ϑ2
]
+ 1

)−1

. (68)

This leads to the following relative Coulomb correction for s (57):

δCC [s] =
((

ϑ2
)B

/ϑ2
)1/2

− 1 =
(
δCC

[
ϑ2
]
+ 1

)−1/2

− 1. (69)

For the asymptote Φ(s) = 6s (56), we get

δCC [Φ(s)] = δCC [s] =
(
RCC [(dI/dω)0]

)−1/2

− 1. (70)

Then, the total relative Coulomb correction to 〈dI/dω〉 in this asymptotic
case becomes

δCC [〈dI/dω〉] = δCC [(dI/dω)0] + δCC [Φ(s)] . (71)

Numerical values of these corrections for some speciˇed values of the Moli
ere
parameter BB are presented in Table 6.

As can be seen from Table 6, the moduli of the Coulomb corrections to
the quantities (dI/dω)B

0 and ΦB(s) decrease from about 9 to 4% and from 5
to 2%, respectively, with an increase in the parameter BB from a minimum
value 4.5 [21] to a value 8.46 corresponding to the conditions of experiment [23];
and the modulus of the total relative correction δCC [〈dI/dω〉] decreases from
approximately 14 to 6%. Let us notice that the average value of the ratio R̄CC =
0.947 ± 0.015 for the gold target coincides with the corresponding value R̄CC =
0.945 ± 0.008 from Table 4. This corresponds to the mean value δ̄CC = −5.4%,
which coincides with the value of the normalization correction (−5.5±0.2)% for
6%LR gold target (Table II in [16]).

A comparison of the non-averaged ratio value RCC [〈dI/dω〉] = 0.936 from
Table 6 with the normalization factor R ∼ 0.94 would be unjustiˇed, because
the regime of strong suppression (s � 1 and Φ(s) ≈ 6s) is not achieved in
the analyzed SLAC experiment. For such a comparison, we will carry out now

Table 6. Relative Coulomb corrections to the parameters of the Migdal LPM theory,
δCC [(dI/dω)0] (65), δCC [Φ(s)] (70), and δCC [〈dI/dω〉] (71) for Z = 79 (Au) and β = 1

BB δCC

[(
dI

dω

)
0

]
RCC

[(
dI

dω

)
0

]
δCC [Φ(s)] δCC

[〈
dI

dω

〉]
RCC

[〈
dI

dω

〉]

4.50 −0.089 0.911 −0.048 −0.137 0.863
4.90 −0.080 0.920 −0.043 −0.123 0.877
8.46 −0.042 0.958 −0.022 −0.064 0.936
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calculation for the regime of small LPM suppression (s � 1 and Φ(s) ≈ 1 −
0.012/s4).

In order to obtain the relative correction δCC [Φ(s)] in this regime, we ˇrst
derive an expression for the Coulomb correction ΔCC [Φ(s)] to the Migdal func-
tion Φ(s):

ΔCC [Φ(s)] = 0.012
(

1
(s4)B − 1

s4

)
=

0.012
s4

δCC

[
s4
]

, (72)

δCC

[
s4
]

=
(

qB

q

)2

− 1 =

((
ϑ2
)B

ϑ2

)2

− 1 = 1/
(
δCC

[
ϑ2
]
+ 1

)2

− 1 =

= 1/
(
RCC [(dI/dω)0]

)2

− 1. (73)

This leads to the following relative Coulomb correction for Φ(s):

δCC [Φ(s)] =
0.012

s4
δCC

[
s4
] (

s4
)B

(s4)B − 0.012
=

= 0.012
δCC

[
s4
]

δCC [s4] + 1
1

(s4)B − 0.012
. (74)

In Table 7 are listed the values of the relative Coulomb corrections to the
quantities of (51) in the regime of small suppression for some separate s values
(s = 1.2 and s = 1.3).

Table 8 presents the values of the corrections −δCC [〈dI/dω〉] (%) for sepa-
rate high-Z target elements over the entire range 1.0 � s � ∞ of the parameter s,

Table 7. Relative Coulomb corrections to the quantities of the Migdal LPM theory,
δCC [(dI/dω)0], δCC [Φ(s)], and δCC [〈dI/dω〉], in the regime of small LPM suppression
for high-Z targets of experiment [16]

Target Z δCC

[(
dI

dω

)
0

]
δCC

[
s4
]

δCC [Φ(s)] δCC

[〈
dI

dω

〉]
RCC

[〈
dI

dω

〉]

1. For β = 1, BB = 8.46, s = 1.2

Au 79 −0.0420 −0.0896 −0.0006 −0.0426 0.9574
Pb 82 −0.0445 −0.0953 −0.0006 −0.0451 0.9549
U 92 −0.0529 −0.1149 −0.0007 −0.0536 0.9464

2. For β = 1, BB = 8.46, s = 1.3

Au 79 −0.0420 −0.0896 −0.0004 −0.0424 0.9576
Pb 82 −0.0445 −0.0953 −0.0004 −0.0449 0.9551
U 92 −0.0529 −0.1149 −0.0005 −0.0534 0.9466

Note:
For case 1 R̄CC [〈dI/dω〉] = 0.953 ± 0.006; δ̄CC [〈dI/dω〉] = (−4.71 ± 0.58)%.

For case 2 R̄CC [〈dI/dω〉] = 0.953 ± 0.006; δ̄CC [〈dI/dω〉] = (−4.69 ± 0.58)%.
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for which the regime of small LPM suppression is valid. It also gives the sampling
mean of the corrections −δ̄CC [〈dI/dω〉] (%) over the range 1.0 � s � ∞.

Table 8. The dependence of −δCC [〈dI/dω〉] values on the parameter s in the regime
of small LPM suppression for some high-Z targets of experiment [16] at β = 1 and
BB = 8.46

Z s = 1.0 s = 1.1 s = 1.2 s = 1.3 s = 1.5 s = 2.0 s = ∞
79 0.0432 0.0428 0.0426 0.0424 0.0422 0.0421 0.0420
82 0.0458 0.0454 0.0451 0.0449 0.0447 0.0446 0.0445
92 0.0545 0.0540 0.0536 0.0534 0.0532 0.0530 0.0529

Note:
δCC [〈dI/dω〉] = (−4.50 ± 0.05)% (Z = 82),
δCC [〈dI/dω〉] = (−5.35 ± 0.06%) (Z = 92),
δ̄CC [〈dI/dω〉] = (−4.70 ± 0.49)%.

Table 8 shows that averaging over the range 1.0 � s � ∞ corrections
δCC [〈dI/dω〉] for some separate high-Z targets∗ gives their sampling means
δCC [〈dI/dω〉] = (−4.50 ± 0.05)% (Z = 82) and δCC [〈dI/dω〉] = (−5.35 ±
0.06)% (Z = 92), which coincide with the normalization correction values
(−4.5 ± 0.2)% for 2%LR lead target and (−5.6 ± 0.3)% for 3%LR uranium
target (Table II in [16]), respectively, within the experimental error.

Averaging corrections δ̄CC [〈dI/dω〉] over this range gives the sampling mean
(−4.70 ± 0.49)%, which excellently agrees with the weighted average value
(−4.7± 2)% of the normalization correction obtained in [16] for 25 GeV data∗∗.
We believe that this allows one to understand the origin of the normalization
problem for high-Z targets discussed in [15, 16].

3.4. FokkerÄPlanck Approximation Accuracy in the Case ω= 0. Finally,
let us brie�y discuss the accuracy of the FokkerÄPlanck approximation that allows
an analytical expression to be derived for the Migdal particle distribution function
and entire 〈dI(ω)/dω〉 range to be rather simply calculated (using numerical
calculation of triple integrals).

To this end, we will ˇx the parameter a in expression (35) in such a way
that the results of the exact calculation of 〈dI(ω)/dω〉

∣∣
ω�ωcr

and its calculation

in the FokkerÄPlanck approximation coincide. As a result, we get

∗For low-Z targets, the E-146 data showed a disagreement with the Migdal LPM theory pre-
dictions. There is a problem of an adequate description of the photon spectra shape for the low-Z
targets [16]. Therefore, we will analyze only results for some high-Z targets of the SLAC E-146
experiment.

∗∗It becomes (−4.8± 3.5)% for the 8 GeV data if the outlying 6%LR gold target is excluded
from them [16].
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a = 2π

(
Zασ

m

)2(
ln

σ

θa
+

7
12

)
. (75)

Now we calculate 〈dI(ω)/dω〉
∣∣
ω=0

using the relations (35) and (75) and com-
pare the result with the result obtained using `realistic' (Moli
ere) expression (27)
for ν(η). Then for the ratio

RFPM =
〈dI(ω)/dω〉FP

〈dI(ω)/dω〉
M

(76)

we get the following values:

RFPM(ω, L) =
{

0.890, L = 0.007 LR

0.872, L = 0.060 LR

. (77)

The values of corresponding relative corrections

δFPM

[
〈dI/dω〉

]
=

〈dI(ω)/dω〉FP − 〈dI(ω)/dω〉
M

〈dI(ω)/dω〉
M

(78)

in percentage are given in Table 9.

Table 9. The relative correction δFPM

[
〈dI/dω〉

]
for Z = 79 and ω = 0

L, cm −δFPM RFPM L, cm −δFPM RFPM

0.007 LR 0.110 0.890 0.060 LR 0.128 0.872

It is obvious that the relative difference between the FokkerÄPlanck appro-
ximation and the description based on the Moli
ere theory δFPM

[
〈dI/dω〉

]
is

about 12%, which is noticeably higher than the 3.2% characteristic systematic
experimental error [15].

Thus, the FokkerÄPlanck approximation and Gaussian distribution cannot be
used for describing the experimental data [15,16] at low frequencies ω < 30 MeV.
For their description the application of the Moli
ere multiple scattering theory is
advisable.

3.5. Coulomb Corrections in the LPM Effect Theory Analogue for a Thin
Target. In [23] it is shown that the region of the emitted photon frequencies
ωcr > ω > 0 naturally splits into two intervals, ωcr > ω > ωc and ωc > ω > 0,
in the ˇrst of which the LPM effect for sufˇciently thick targets takes place, and
in the second, there is its analogue for thin targets. The quantity ωc is deˇned
here as ωc = 2E2/(m2L).
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Application of the Moli
ere multiple scattering theory to the analysis of ex-
perimental data [15,16] for a thin target in the second ω range is based on the use
of the expression for the spatial-angle particle distribution function (11) which
satisˇes the standard Boltzmann transport equation for a thin homogeneous foil,
and it differs signiˇcantly from the Gaussian particle distribution of the Migdal
LPM effect theory.

Besides, it determines another expression for the spectral radiation rate in the
context of the coherent radiation theory [23], which reads〈

dI

dω

〉
=
∫

wM(ϑ)
dI(ϑ)
dω

d2ϑ. (79)

Here
dI(ϑ)
dω

=
2e2

π

[
2χ2 + 1

χ
√

χ2 + 1
ln
(
χ +

√
χ2 + 1

)
− 1

]
(80)

with χ = γϑ/2. The latter expression is valid for consideration of the particle
scattering in both amorphous and crystalline medium.

The formula (80) has simple asymptotes at the small and large values of
parameter χ:

dI(ϑ)
dω

=
2e2

3π

{
γ2ϑ2, γϑ � 1 ,

3
[
ln(γ2ϑ2) − 1

]
, γϑ � 1 ,

(81)

Replacing in this formula ϑ2 by the average square value of the scattering
angle ϑ2, we arrive at the following estimates for the average radiation spectral
density value: 〈

dI

dω

〉
=

2e2

3π

{
γ2ϑ2, γ2ϑ2 � 1 ,

3
[
ln(γ2ϑ2) − 1

]
, γ2ϑ2 � 1 .

(82)

In the experiment [15,16], the above frequency intervals correspond roughly
to the following ω ranges: (ωcr > ω > ωc) ∼ (350 MeV > ω > 30 MeV)
and (ωc > ω > 0) ∼ (30 MeV > ω > 5 MeV) for 25 GeV electron beam and
0.7−6.0%LR gold target. Whereas in the ˇrst area the discrepancy between
the LPM theory predictions and data is about 3.2 to 5% which requires the use
of normalization factor R ∼ 0.94, in the second area this discrepancy reaches
∼ 15%.

Using the approximate second-order representation of the Moli
ere distribu-
tion function (24)Ä(26) for computing the spectral radiation rate (79), the authors
of [23] succeeded to agree satisfactorily theory and 25 GeV and 0.7%LR data
over the ω range 5 to 30 MeV.
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This result can be understood by considering the fact that the correction
of order of 1/BB to the Gaussian ˇrst-order representation of the distribution
function wM(ϑ) is about 12% for the value used in calculations BB = 8.46 [23].

Let us obtain the relative Coulomb correction to the average value of the
spectral density of radiation for two limiting cases (82).

In the ˇrst case γ2ϑ2 � 1, taking into account the equality

δCC[γ2ϑ2] = δCC[ϑ2], (83)

(65), and (82), we get

δCC

[〈
dI

dω

〉]
= δCC

[(
dI

dω

)
0

]
=

f(ξ)
1 − BB

, (84)

where BB ≈ 8.46 in the conditions of the discussed experiment [23].
In the second case γ2ϑ2 � 1, we have

ΔCC

[
ln
(
γ2ϑ2

)
− 1

]
= ΔCC

[
ln
(
ϑ2
)]

= ΔCC

[
ln (B)

]
. (85)

For the latter quantity, one can obtain

ΔCC[ln (B)] = ΔCC[B] + f(Zα) = δCC[B]. (86)

The Coulomb correction then becomes

ΔCC

[
ln
(
γ2ϑ2

)
− 1

]
=

δCC[B][
ln(γ2ϑ2)B − 1

] . (87)

Taking into account (65), we arrive at a result:

δCC

[〈
dI

dω

〉]
=

f(ξ)[
ln(γ2ϑ2)B − 1

](
1 − BB

) . (88)

The numerical values of these corrections are presented in Table 10.
The second asymptote is not reached [23] in the experiment [15,16]. There-

fore, we will now consider another limiting case corresponding to this experiment

Table 10. The relative Coulomb correction δCC

[
〈dI/dω〉

]
to the asymptotes of the

Born spectral radiation rate over the range ω < ωc for β = 1, BB ≈ 8.46, and(
γ2ϑ2

)B

≈ 7.61 [23]

Target Z γ2ϑ2 −δCC

[
〈dI/dω〉

]
RCC

Au 79 γ2ϑ2 � 1 0.042 0.958
Au 79 γ2ϑ2 � 1 0.040 0.960
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and taking into account the second term of the Moli
ere distribution function
expansion (19).

Substituting the second-order expression (24) for the distribution function
in (79) and integrating its second term (25), we can arrive at the following
expression for the electron radiation spectrum at μ2 = γ2ϑ2 � 1 [23]:〈

dI

dω

〉
=

2e2

π

{
ln
(
μ2
)
− CE

(
1 +

2
μ2

)
+

2
μ2

+
CE

B
− 1

}
. (89)

In order to obtain the Coulomb correction to the Born spectral radiation rate
from (89), we ˇrst calculate its numerical value at (μ2)B ≈ 7.61 and BB ≈ 8.46,
and we become 〈dI/dω〉B = 0.00542. The BetheÄHeitler formula in the Born
approximation gets 〈dI/dω〉B

BH = 0.00954.
Then, we calculate the numerical values of B and μ2 parameters including

the Coulomb corrections. From

ΔCC[B] =
f(ξ)

1/BB − 1
= −0.355, (90)

we obtain B = 8.105 for Z = 79 and BB ≈ 8.46. The equality

ΔCC

[
ln μ2

]
= ΔCC [ln B] = ΔCC[B] + f(ξ) = δCC[B] = −0.042 (91)

gets ln μ2 = 1.987 and μ2 = 7.295. Substituting these values in (89), we have
〈dI/dω〉 = 0.00531. The relative Coulomb corrections to these parameters are
presented in Table 11. These corrections are not large. Their sizes are between
two and four percent, i.e., of order of the experimental error.

Table 11. The relative Coulomb corrections in the analogue of the LPM effect theory
for 0.07 LR gold target, ω < ωc, and β = 1

δCC[B] δCC

[
ln μ2

]
δCC

[
(dI/dω)0

]
δCC

[
〈dI/dω〉

]
δCC [Φ(s)]

−0.042 −0.021 −0.042 −0.020 −0.021

Accounting for the relative Coulomb correction to the BetheÄHeitler spectrum
of bremsstrahlung, we ˇnd (dI/dω)BH = 0.00916. So we get〈

dI

dω

〉
= 0.580

(
dI

dω

)
BH

. (92)

This leads to the value of the spectral radiation rate in terms of dN/[d(log ω)]
×1/LR, where N is the number of events per photon energy bin per incident
electron, dN/[d(log ω)/LR] = 0.118 · 0.580 = 0.068 which agrees very well
with the experimental result over the frequency range ω < 30 MeV for 25 GeV
electron beam and 0.7%LR gold target. This result additionally improves the
agreement between the theory and experiment (see ˇgure).
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Measurement of the LPM effect over the range 30 < ω < 300 MeV and its analogue

in the range 5 < ω < 30 MeV for the 0.7%LR gold target and 25 GeV electron beam.
The signs `+' denote the experimental data; the histograms B − H and LPM give the

BetheÄHeitler and the LPM Monte Carlo predictions [15]. The solid and dashed lines

(S−F and V KT ) over the range ω < 30 MeV are the results of calculations without [23]
and with the obtained Coulomb corrections

4. SUMMARY AND CONCLUSIONS

• Within the theory of LPM effect for ˇnite-size targets, we calculated the
Coulomb corrections to the Born bremsstrahlung rate 〈dI(ω)/dω〉B and estimated
the ratio 〈dI(ω)/dω〉 / 〈dI(ω)/dω〉B = R(ω, L) for gold target based on results
of the revised Moli
ere small-angle multiple scattering theory for the Coulomb
corrections to the screening angle.

• We demonstrated that the R(ω, L) value coincides with the normalization
constant R value for 0.7−6%LR (25 GeV) data over the ω range 30 to 500 MeV
from [8,15]; however, the latter ignores the dependence of the ratio on ω and L.

• We have obtained the analytical and numerical results for the Coulomb
corrections to the function ν(η) = 2π

∫
σ0(θ)[1 − J0(ηθ)]θ dθ and complex po-

tential U(η) = −ωλ2/2−i n0ν(η) and showed that −δCC

[
ν(η)

]
= −δCC

[
U(η)

]
∼

4.3% < −δCC

[
〈dI/dω〉

]
∼ 8.0% for Z = 79 (β = 1).

• Additionally, we found Coulomb corrections to the quantities of the
Migdal LPM theory and some important parameters of the Moli
ere multiple
scattering theory: ΔCC [(dI/dω)0], ΔCC [q], ΔCC

[
s2
]
, ΔCC [s], ΔCC [Φ(s)], and

ΔCC [〈dI/dω〉].
• We also calculated relative Coulomb corrections δCC [(dI/dω)0] = δCC [q]

= δCC

[
ϑ2
]

= δCC [B] and estimated δCC [Φ(s)] = δCC [s] as well as δCC [〈dI/dω〉]
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for s � 1 and Z = 79 (β = 1). So we demonstrated that the latter correction
δCC [〈dI/dω〉] comprises the order of 14% at minimum BB value 4.5.

• We demonstrated that the average value −5.4% of the relative Coulomb
correction for Z = 79 coincides with the normalization correction value (−5.5±
0.2)% for 6%LR gold target obtained in the experiment [16].

• We have performed analogous calculations for the regime of small LPM
suppression over the entire range 1 � s � ∞, and we found that the values
of the Coulomb corrections δCC [〈dI/dω〉] = (−4.50 ± 0.05)% (Z = 82) and
δCC [〈dI/dω〉] = (−5.35 ± 0.06)% (Z = 92) coincide with the values of the
normalization correction (−4.5± 0.2)% for 2%LR lead target and (−5.6± 0.3)%
for 3%LR uranium target, respectively, within the experimental error.

• The sample average over the range 1 � s � ∞, δ̄CC [〈dI/dω〉] = (−4.70±
0.49)%, excellently agrees in the regime of small LPM suppression with the
mean normalization correction (−4.7 ± 2)% obtained for 25 GeV data in the
experiment [16].

• Thus, we managed to show that the discussed discrepancy between theory
and experiment can be explained both qualitatively and quantitatively on the basis
of the obtained Coulomb corrections to the Born bremsstrahlung rate within the
Migdal LPM effect theory.

• We found that applying the revised small-angle multiple scattering theory by
Moli
ere allows one to avoid multiplying theoretical results by above normalization
factor and leads to agreement between the theory of LPM effect and experimental
25 GeV data for sufˇciently thick targets over the range 30 < ω < 500 MeV with
an accuracy about one percent.

• We evaluated the accuracy of the FokkerÄPlanck approach and the Gaussian
ˇrst-order representation of the distribution function w0(ϑ) in the limiting case
ω = 0 and showed the need of accounting for the second-order correction of order
of 1/BB ∼ 12% for w(ϑ) to eliminate the discrepancy between the theory and
experiment over the frequency range 5 < ω < 30 MeV for 25 GeV and 0.7%LR

data of the experiment [15,16].
• Finally, we found the numerical values of the relative Coulomb corrections

δCC [(dI/dω)0], δCC [Φ(s)], and δCC [〈dI/dω〉] in the LPM effect theory analogue
for a thin target and demonstrated that these corrections additionally improve the
agreement between the theory [22,23] and experiment [15,16].
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