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Barrier Bucket Method in Cyclic Accelerators

The paper describes the main principles of the Barrier Bucket Method of charge
particles stacking and acceleration in proton synchrotrons. The consideration is
done with two models of ©rectangular barriersª and ©quasi-sinusoidalª ones using
different approaches to analysis of particle motion. The ˇrst of them Å so-called
©step by step approachª, allows us to give a very clear physical explanation of
the method and obtain easily the main characteristics of the method in analytical
form. However, that is not always an efˇcient way. Therefore, the general case of
the ©barriersª of an arbitrary form is considered as well and differential equations
of particle phase motion are derived. This approach gives ample opportunities for
analysis and numerical simulations of different phase dynamics regimes of particles
in cyclic accelerators. Numerical examples for the method illustration are presented.

The investigation has been performed at the Veksler and Baldin Laboratory of
High Energy Physics, JINR.
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INTRODUCTION 

 The Barrier Buckets (BB) method has been proposed in 1983 by J. E. Griffin [1] 

and since that time was applied to storage and acceleration of particles in proton 

synchrotrons (e. g. see review article [2]). The idea of the method is based on 

application of periodic RF voltage pulses synchronous with the particle revolution (e. g., 

of rectangular form) for storage and/or acceleration charged particles in cyclic 

accelerators. Such pulses are generated with a broad-band RF system that is constructed 

with RF cavities loaded with ferrites, amorphous iron and similar RF ferromagnetic 

materials. 

In recent years an interest to application of this method in different projects was 

reactivated due to development of both stochastic and electron cooling methods. Two 

projects  Nuclotron-based Ion Collider fAcility (NICA) [3] at Joint Institute for 

Nuclear Research at Dubna and Facility for Antiproton and Ion Research (FAIR) [4] at 

Darmstadt plan to construct ion storage rings and colliders, where this method will be 

used both for stacking and acceleration of ions. 

 The charged particle dynamics in cyclic accelerators with barrier voltage 

RF system is described with the equations similar to those for classic RF systems of 

harmonic voltage [5]. However, some peculiarities of particle dynamics in barrier 

systems require a special consideration. The methods of numerical simulation 

developed for this purpose [2, 614] are very fruitful and give good results of practical 

importance. They have been bench-marked persuasively versus experiments without [8] 

and with [10, 14] cooling applied. Nevertheless, these methods are able to give us 

answers “yes” or “no”, and a lack of analytical approach exists. 

 This article has a goal to describe the physics principles of the barrier method and 

different regimes of its application and also to give a set of formulae useful for 

analytical estimates. 

 Widely used way of description of BB method is based on a consideration of 

particle energy variation at interaction with the barrier voltage potential well (see for 
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instance Ref. 6, 15). More clear explanation of the method principle is based on a 

consideration of the particle motion in the longitudinal phase space where a RF system 

generates a sequence of alternate pulses of equal amplitudes V at the equilibrium 

particle revolution frequency. Then, if a particle somehow is “inserted” into phase 

interval between phases 0 and s2BBB (Fig. 1) its phase trajectory 

can be stable at certain conditions. These conditions we will find first using in the next 

Section the “step by step” approach. The general case for arbitrary barriers is 

considered in paragraph Section 2. The procedure of particle insertion (stacking) into 

the stable phase area is described in Section 3. The particle acceleration with barrier 

voltage is presented in Section 4. Most sophisticated versions of the method application 

based on so called moving barriers technique is considered in Section 5. Some technical 

characteristics of barrier RF systems existed before and developed in recent years are 

described in Section 6. All numerical examples are given for parameter values, related 

to the NICA project. 

 The option of BB system with rectangular voltage barriers has advantages both for 

technical applications and for analytical calculations of particle phase dynamics 

(simplifying significantly the last ones). Due to this reasons we consider mainly this 

options. Nevertheless, a few examples with barriers of quasi-sinusoidal form are given. 

1. STACK  PHASE  ZONE, SEPARATRIX  PARAMETERS  AT  

RECTANGULAR  BARRIERS  

Let’s consider particle motion inside the phase interval {0, s} (Fig. 1) in the 

absence of acceleration (i.e. at constant magnetic field B(t)Bconst.) As we show 

below, the particle phase trajectory, at certain conditions, is represented by a closed 

loop, and particles can be stacked there. Inside a barrier the particle momentum shifts 

per one turn by the value 
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Here c is velocity of the equilibrium particle traveling in the ring, Ze is its charge, 

22 11 tr  is so called slippage factor. For n turns in negative barrier momentum 

shift gets equal to 

 .,
c

ZeV
ppnpp BBn 

   (1.2) 

Below when we consider barrier voltage of quasi-sinusoidal form this Formula for pB 

is used as well, but the symbol V designates the voltage amplitude. Here p is particle 

momentum shift (PMS further) when the particle moves between the barriers. As we see 

from (1.2), at  

 1



Bp

p
Nn  (1.3) 

PMS pn changes its sign and the particle changes direction to the left-directed of its 

motion in phase space (Fig. 1). Entering the positive (left) barrier particle accelerates 

and, correspondingly, its momentum increases algebraically. As result, after the next N 

turns PMS becomes positive and phase drift direction changes to right-directed. For N 

turns particle phase shift (inside any of two barriers) is equal to 
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Here index s designates equilibrium particle and its orbit parameters,  is so called 

slippage factor of the ring focusing system,  is Lorenz-factor of equilibrium particle, ps 

is its momentum, tr is Lorenz-factor value corresponding to particle transition energy 

for the ring lattice, s2 and Ts are frequency and period of equilibrium particle 

revolution in the ring, correspondingly. 

 We consider here, for definition, the case of particle energy below transition 

value, i. e.  

 < tr ,  > 0. 

Substituting in (1.4) the expression for pn (1.2) and calculating the sum over n 

we find the particle phase shift for N turns: 
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Fig. 1. Scheme of particle motion in the stable phase area BB and in positive and negative barriers; bold 
solid curve  barrier potential V(); solid curve  phase trajectory of an stable particle p(), the dot line 
 the same on separatrix; p() and V() in arb. units; arrows indicate momentum shift direction (0) 
 

For further description it is convenient to introduce the parameter equal to particle phase 

shift corresponding to pB: 
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Here A is particle atomic weight, mn is nucleon mass. Then substituting pNpB 

into formula for N above we have 
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Particle does not cross the barrier if  
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That is necessary condition of separatrix existence. Substituting here N from (1.6) we 

find the exact number of turns for a particle on separatrix: 
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(see comments to Formula (1.12) below). Then the PMS on separatrix between the 

barriers (see Fig. 1 and equation (1.3)) is equal to 

 |p|sepNpB.  (1.8) 

For pB (1.1) one can write from (1.8) the value of PMS on separatrix (between the 

barriers!): 
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It is noteworthy that the last expression in (1.9) by 2  less that classic one for 

sepspp in the case of harmonic RF voltage. 

 Rewriting this equation for the barrier height V we find  

 .
2

sep

2
2








 

  p

p

e

cm

Z

A
V

B

n  (1.10) 

Particle synchrotron oscillation on separatrix 

In the phase interval BB particle phase shift per turn (on separatrix) is, obviously, 

constant and equal to (compare (1.4)) 

 .2
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Then, its period of full turn on separatrix is 

  .4
2

22sep BBB
BB

s
BB

BB
s TNTT 














  (1.12) 

Thus, the period on the separatrix in BB system with rectangular barriers has a finite 

value, as opposed to the case of harmonic RF voltage [5]. That is result of application of 

idealized rectangular barrier voltage form with rising and falling edges of infinite 

steepness. For real barrier voltage pulses the period on separatrix is infinitely long. We 

consider this problem in detail in the section 2.2 (see (2.22)). Nevertheless, the result 

obtained for rectangular barriers is valuable for simple estimates (see Fig. 2). 

It is useful to write one more expression for B to be used hereafter: 
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Fig. 2. Separatrix parameters: a) Barrier voltage V(E) (1.10) vs ion energy (GeV/u); b) turn number (solid 
curve) and period (sec, dashed  curve) of particle oscillation on separatrix vs ion energy (GeV/u); the 
following parameter values are used: particles  197Au79+, CRing503 м, tr7.09, |p/ps|5104, 
rectangular barriers: B/10, BB1.3*) 
 

2. GENERAL  CASE  OF  THE  BARRIERS  OF  ARBITARY  FORM  

2.1. Equations of particle traveling in phase space  

 From previous consideration one can derive differential equations for the case of 

barrier voltage of general form similar to those ones of particle motion at harmonic RF 

voltage action (see equations (1.1), (1.4)): 
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Here VVmax(), f() is function describing phase dependence of V() function, 

CRingcTs is the ring circumference. These equations are valid both at constant 

magnetic field of the accelerator and when magnetic field changes in time. We’ll 

consider the last case in section 4.  

 Introducing dimensionless parameters  
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, , (2.4) 

where B  is defined with Formulae (1.5), (1.13) we obtain from (2.2), (2.3) the 

following equations:  
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The variables Y()  and () are canonically conjugated with Hamiltonian 

   df
Y
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In other words, 

       dfUW )(and22     (2.9) 

are particle kinetic and potential energy. Correspondingly, Y() and () are particle 

momentum and co-ordinate and   is analogue of time. From the equation (2.5)(2.7) 

follows that the functions Y() and () depend only on form of function f(), i. e. on 

form of barrier voltage. In such a sense, these functions are universal solution of those 

equations. The expression (2.8) allows us to derive general solution of the equations 

(2.5)(2.7) in variables (), : 
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Here 0(0). The sign “” is to be chosen at (0)0, and backwards.   

Formula for Hamiltonian can be obtained easily if to write equation (2.5) in the form 

 ,






f
d

d

d

d  

and substitute here  dd  from (2.6). Then, after integration we come to (2.8), where H is constant of 

integration. 

One should note that defined in (1.5) parameter B can be rewritten as  2synch sB T , where 

synch is frequency of linear synchrotron oscillations of particles in the field of harmonic RF system at 

harmonics number h 1. Therefore one can say that  is the phase of particle synchrotron oscillation in 

BB RF system and (2.7) is an analogue of well-known equation of synchrotron oscillation in harmonic 

RF system (see Ref. 5, Chapter IV).  

Form of potential function U() in Fig. 3 clearly shows existing of potential well 

where particles can be stacked. The condition of particle catching in the stacking phase 

area, or the condition of particle motion phase stability is, evidently, as following: 

 0H . 
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Fig. 3. Functions f() (solid lines) and U() (dashed lines) for rectangular barriers (a) and quasi-
sinusoidal ones (b); B/10, BB1.3 

 

Phase trajectory of a stacked particle has form of a closed loop. The turning point max 

can be found from the equation (2.10) if we choose there 00. Then we come to the 

equation  

a) 
 
 
 
 
 
 
 
 
 
b) 
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For the rectangular barriers of equal height V (Fig. 1, 3, a) it gives us 

 .2 0max  BBB  (2.12) 

The separatrix phase span corresponds to 00, smax  that agrees with results of 

Section 1. 

 At H0 particle injected in inj phase area   0inj U  with any nonzero 

momentum 0inj   passes stack area and continues travelling along abscissa in phase 

area indefinitely long. To catch it into stack potential well one needs to decrease its total 

energy to the level of H0, i. e. one needs to have some “cooling” mechanism. We 

consider this procedure in the Section 3.  

 The equation (2.7) has a well known general solution for the case of arbitrary 

function f(): 

 

 
  0,

)()(2

)( 0

2
0

0

0





 









df

d
. (2.13) 

Here, as before, 0 is initial phase value. For the case of a piecewise smooth function 

f() like in the case of the RF barrier voltage one has to solve the equation (2.7) 

sequentially, piece by piece, and matching solution at the borders of the pieces. The 

simplest way to do it is finding the first integral of the equation (2.7) that is equal to 

denominator of the expression under integral in (2.13). Simultaneously it is equation of 

phase trajectory (2.10) in (Y, ) variables (i. e. for both H 0 and H 0 in (2.8)). 

Particularly, if we have chosen Y00 the solution (2.10) for the rectangular barriers at 

the stack area (H0) gives us 
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 The barrier voltage function for quasi-sinusoidal barriers (Fig. 3, b) is 

  
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Integrating (2.10) with this function at 00 we find 
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For separatrix we have 00, 00, f(0)0 (dot curve in Fig. 1), and from (2.14), 

(2.15) we obtain the values of Ysep between the barriers:  

 .
,barrierssinusoidal-quasi,2

,barriersrrectangula,2

sep BBBB
B

B
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  (2.16) 

The first expression here leads, after substitution of () from (2.4), to the Formula 

(1.9). For quasi-sinusoidal barriers we obtain similarly 
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 (2.17) 

As follows from (2.16), (2.17) the value for PMS on separatrix at quasi-sinusoidal 

barriers less than that one at the rectangular barriers by the factor of 2  and the value 

of Vsin exceeds V (1.10) by the factor /2 (that corresponds to ratio of integrals of f() 

over B phase interval for rectangular and quasi-sinusoidal barriers).  
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 The expressions (2.14), (2.15) allow us to calculate the emittance of bunch 

stacked between two barriers: 

   .0,)(2)(
0

0

2

0  




dYstack  (2.18)  

Factor 2 appears here owing to symmetry of the outer phase trajectory relatively to the 

abscissa in Fig. 1. For rectangular barriers a simple integration gives us 
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BBBstack

BBBBstack

YYYY

 (2.19) 

Here Ymax  is Y() value between the barriers on the outer phase trajectory.  

 Knowing solution Y() one can find second integral of the equation (2.7) and a 

time-dependent (-dependent) solution in variables Y(), (). It make possible 

calculation of particle period travelling along phase trajectory. We postpone 

consideration of this problem to the Sections 2.2 and 3. 

2.2. Particle trajectory inside separatrix 

 Analytical solutions exist, as usually, for a few particular cases, like rectangular 

and quasi-sinusoidal barriers (as we saw above), for harmonic RF, etc. Most efficient 

way to analyze particle dynamics in BB RF system is numerical solution of the 

equations (2.5)(2.7) in dimensionless variables , , . Then, using universal 

functions () and () for given barrier function f() one can calculate concrete 

characteristics.  

As an example we consider in this Section the case of rectangular barriers (1.1) 

with parameters of the function f() described in the caption of Fig. 4. We mentioned 

already that synchrotron tune on separatrix should be infinitely long. Indeed, if we inject 

particle in the point inj0 with PMS pinj0 it will not move at all (because 

V(0)0). Then a small nonzero PMS or inj0 provides a particle motion along phase 

trajectory close to separatrix (PTCS). An exception exists for rectangular barriers if 

f()1 at 0. It is, as mentioned above, an “idealized case” of barrier voltage pulses 

with indefinitely steep edges (do compare Fig. 4 and Fig. 1).  
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Fig. 4. Particle phase trajectories inside separatrix in the stable phase area (a) between positive and 
negative rectangular barriers and (b) inside negative barrier; dashed curve  the barrier voltage function 
f(); dot line is normalized PMS (2.4) on separatrix calculated with equations (2.5), (2.6) in Mathcad at 
initial conditions 00, Y00; two solid lines and dot-dashed one  the trajectories calculated at initial 
conditions (0, Y0) equal to (/2, 0.6), (, 0.3), (4.2, 0.15) correspondingly; arrows indicate momentum 
shift direction (0); rectangular barrier buckets (see (1.10),  B/10, BB1.3  
 

It clearly demonstrates, a propos, calculation with Mathcad RungeKulta solver: process stops if 

put f()1 at 0 and nicely operates if f()1 at 0. 

 For calculation of time of particle travelling along phase trajectory (synchrotron 

tune) one can use the equation (2.6) at given () (first integral of the equation (2.7)): 

   .0,
)(

2
0

0



 





s d
period   (2.20) 

0                             /2                                                                  3/2  

, rad 

() 
f() 

a) 

b) 

, rad 

() 
f() 
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Here we use again symmetry of phase trajectory (factor 2), 0 is initial phase where 

(0)0. For rectangular barriers (2.14) we find by integration  
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 (2.21) 

For particle on separatrix 00 and we come again to (1.12). Thus, we have shown 

finally that “step by step” approach agrees with general one. 

 The case of quasi-sinusoidal barriers is more complicated. Indeed, similar 

integration of (2.20) with Y() from (2.15) results in logarithmic dependence of period 

on 0. This fact is confirmed with numerical integration of the equations (2.5), (2.6) for 

quasi-sinusoidal f(), as Fig. 5 shows. One can see the logarithmic growth of the 

travelling period (in  units) with 0 decrease, similar to the case of harmonic 

RF voltage [5]: 

 .ln7.13 0 period  (2.22) 

The difference we see between rectangular barriers (1.12), (2.21) and quasi-sinusoidal 

ones is related to mentioned above steepness of the barrier pulse edges. For quasi-

sinusoidal barriers a particle at  s ,0  does not move at all if its momentum at 

this points is equal to zero (on separatrix!) because f(*)0 exactly. For “idealized” 

rectangular barriers discussed above we have uncertainty that does not influence at 

analytical integration or “step by step” approach due to finite step value.  
 

y = -1,0243Ln(x) + 13,695

20

21

22

23

24
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26
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Fig. 5. Dependence of period (particle synchrotron tune) on initial point coordinate 0 near the point 
0 calculated with equations (2.5), (2.6) in Mathcad for quasi-sinusoidal function f() at B/10, 
BB1.3; the trend formula is shown in the diagram  

0 

period 
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Knowing the value of Y() for given function f() one can find concrete parameter 

values for this case. For instance, the amplitude of barrier voltage is expressed 

according to Formula (2.4) via Ymax and other parameters as following:  

 .
2

2

sep
2
max

2
2





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

 

  p

p

e

cm

Z

A
V n  (2.23) 

Here Ymax is the Y value on PTCS between the barriers, at arbitrary barriers form.  

3. STACKING  (RECTANGULAR  BARRIERS)  

 Formation of intense particle beams in cyclic accelerators is performed often with 

application of repeated injection cycles at certain periodicity and storage injected 

particle bunches  so called stacking. We consider now the stacking process for the 

case of rectangular barriers using results of Section 2. 

3.1. Particle phase travelling period at stacking  

  First we expand the phase area up to 2 (see Fig. 1, 6) and have  
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 (3.1) 

As we mentioned in the Section 2.1 a particle injected into inj phase area travels along 

-axis without limitation. In this case it undergoes some periodic oscillations of 

momentum (()) when passing through the barriers (Fig. 6). One can calculate 

parameters of these oscillations using same method as in previous section. First we 

calculate () with (2.10) over interval 002 at the condition that initial 

(injection) phase value 0 spans in the injection space area inj (Fig. 1, 6). Particle 

momentum inside this area is constant (and equal 0). Therefore a choice of 0 value 

does not change () magnitude and integration in (2.10) one can perform along the 

span 02. As result we find 
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Fig. 6. Phase trajectories of injected particle (dashed line, inj0,2, inj0,25) and stacked one (dot 
line, max0,5); f() is shown with solid curve 

 

With this result found one can calculate period of injected particle oscillation using 

equation (2.6) similarly to (2.20), (2.21) and choosing initial point at the end of inj 

area (i. e. 00): 
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3.2. Sufficient condition for particle stacking 

 Comparing the results (3.2) with (2.16) we see that for any value of particle 

injection momentum 0 its momentum in BB phase area (3.2, II) is larger that sep. It 

means that phase trajectory of the particle injected into phase interval inj with 

momentum shift pinj0 is not a closed loop (Fig. 6, dashed line). To be captured into 

the stable phase (stack) area  

B BB 

inj 

B 
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 s0  (3.4) 

one has to meet the condition 

 ,sepBB  (3.5) 

Were BB is () value is the stack area. That is the sufficient condition for particle 

capture in the closed phase trajectory in stacking phase area.  

 This condition, as we have seen just above, is not met for particles injected into 

unstable phase area inj. Thus, at any value of 0 the particle injected into unstable 

area inj can not be caught into stable area (3.4) and passes through it. To get caught 

the particle has to pass inside the positive or negative barrier at phase where its 

momentum shift pn0 (see Fig. 1 and Fig. 6). Then it comes inside separatrix of 

stable phase trajectories. Only way to get such position (in the case of stationary 

barriers, see Section 5) is reduction of particle momentum after injection during particle 

travelling in phase space, i. e. a cooling application. Both electron and stochastic 

cooling methods are applicable for this purpose.  

 The last statement can be clearly explained with Fig. 3. Indeed, a particle injected 

into injection phase area inj has zero potential energy and total energy H0. Due to 

this reason it can not be caught in potential well of the stable area BB. 

 One can formulate the requirement to the cooling rate (cool)
1: during injection 

period Tinj reduction of PMS pBB has to be sufficient for particle to enter inside 

separatrix of stable phase area BB. One can assume exponential dependence of 

particle momentum on time (not always takes place): 

      BBcool ppAtAtp  0,exp , 

where pBB is PMS value inside the stable phase area at first passing BB area after 

injection. Then the sufficient condition of particle capture into stable phase area can be 

written as following: 
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Here BB is described with Formula (3.2, II) and B 2sep  (see (2.16)). 

Substituting these formulae into (3.6) we find 
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Thus, the most hard requirement of cool value takes place at large 0 magnitude. And 

on the contrary, for small 0 magnitude the requirement is very soft. It is well 

understable: the smaller is 0 value of injected particle the nearer is its phase trajectory 

in BB phase area to the separatrix and the faster is catching of the particle inside 

separatrix. 

3.3. Necessary condition for particle stacking 

 If PMS at injection 0 is sufficiently small the next limitation in the 0 value 

appears. Indeed, the PMS at injection has to be large enough to allow particle 

accomplishing at least one synchrotron oscillation during injection period Tinj: 

 .injTTperiod   (3.8) 

If not the particle will be lost at the next injection pulse (when acceptance of the 

injection phase area is filled). Using the period value (3.3) with Formula for  from  

(2.4) we come to nonlinear algebraic equation, which allows us to find minimal value of 

0: 

   .inj
0 B

s
period T

T
   (3.9) 

One can rewrite this formula to the form containing  seppp  that is characteristics of 

the stack area:  
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A solution of the equation (3.10) for 0 can be found numerically. Then, knowing 

minimal allowed value of 0 we can calculate  injpp  minimal PMS in injection 

area: 
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 (3.11) 

An example of such calculation is presented in Fig. 7. 
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Fig. 7. Dependence of minimum sppinj  in 106 units on ion energy (Gev/u); the markers indicate 

calculation results for rectangular barriers with Formulae (3.10), (3.11) (diamonds) and approximate 

Formula (3.12) (empty squares); ;105 4
sep

 spp  the parameters of the ring and the barrier scheme 

are the same as in previous examples, the injection period Tinj10 s; the Formula of the trend (solid 
curve) y(Eion) is shown in the diagram 
 

 The calculation can be significantly simplified at 01 when 

  .0inj0  period  Substituting this value in (3.9) with  from (2.4) we find the 

approximate formula 
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Parameter 
sepspp  here is actually characteristics of BB system via Formulae (1.9), 

(1.10). The results of calculations with (3.12) are in a good agreement with results of 

numerical solution described above. For parameters listed in caption to Fig. 7 at least 

both results coincide with accuracy of 15 % depending of energy. One can conclude 

that the criterion (3.12) works well for simple estimates. 
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 An example of experiment for studies of ion stacking with BB technique 

performed at GSI [10] is presented in Fig. 8.  

 

 
Fig. 8. Stacking of 124Xe54+ ions in ESR [10] with two fixed barrier buckets at electron cooling. Saturation 
of stacked beam intensity can be explained by peculiarities of technical realization of the stacking scheme 
(see section 3.5) 
 

3.4. Stacking with accelerating voltage at injection area 

 To avoid at stacking the loss of the particles having momentum below allowed 

minimum, as described in the previous section, it was proposed [16] to apply to 

injection phase area inj (Fig. 1, 6) a small voltage VinjkinjVV. For instance, the 

function f() for  rectangular barrier voltage in this case is described as follows: 
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 (3.13) 

Evidently, the function f() has to meet the following condition:   

   .0
2

0




df  (3.14) 

If not the unstacked (yet) particle accelerates passing the full phase span 02 (see 

also Section 6). The condition (3.14) gives us the relation between parameters k and kinj: 
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The criterion of choice of kinj value is described with the same Formula (3.8). It requires 

to calculate Tperiod as function of kinj. This calculation is similar to the procedure of 

Formula (3.3) obtaining, but is rather cumbersome. However, a simple estimate of 

minimal value of kinj can be done for rectangular barriers if we consider an outmost 

case of a particle injected at zero PMS into phase point inj at the beginning of inj 

phase area (Fig. 9): 

 .,0 injinj0   (3.16) 

One has to underline that in Fig. 9 we shifted injection area into negative phase span. It 

was done to keep the stable phase area at the same phase span (3.4). 
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Fig. 9. Particle phase trajectory at stacking with rectagular barriers and additional acceleration voltage in 
phase area inj; solid curve is the barrier function f() (3.13) at kinj0.04, k1.2; dashed line is U() 
function (3.17); dot line is normalized PMS Y() (2.4) on phase trajectory calculated with equations 
(2.5), (2.6) in Mathcad; B10, BB1.3, particle injection parameters: 00, injinj 

 

The predominant contribution into particle oscillation period gives the time of its 

crossing of inj phase area. One can find easily (see Section 2) PMS in inj area and 

correspondingly  parameter span: 
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Applying limitation (3.8) we find (using (3.10)) the minimal value of kinj:  

 .
2

sep

2

inj
22

inj
inj











 















p

p

T

T
k sB  (3.18) 

() f() 

0.6                0                  0.6                 1.2                1.8 
 

/ 



 21 

We see from numerical example (Fig. 10) the parameter kinj grows up with energy when 

it approaches transition energy value. 

 The estimate (3.18) is an inferior limit. In reality one may require larger, by 

several times, kinj magnitude. That occurs due to relatively fast drift of particle through 

BB area where it has big PMS. For correct value of kinj parameter one has to perform 

numerical simulations. 
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Fig. 10. Dependence of parameter kinj (in 106 units) on energy (Gev/u). The ring and BB system 
parameters as in previous figures, Tinj10 s; large squares  rectangular barriers (3.13), numerical 
calculations of differential equations (2.5), (2.6), small empty squares  the same calculated with 
approximate Formula (3.18); triangles  sinusoidal barriers, numerical calculations of (2.5), (2.6); solid 
lines  trends, the Formulae are shown in the Figure 
 

The peculiarity of the regime considered here shows the potential function (Fig.9)  
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This function forms potential well in all phase span (3.20)  

 .2inj inj  (3.20) 
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3.5. Barrier voltage ripples and parasitic separatrix 

Imperfection of a system of barrier voltage generation can manifest itself in 

appearance of voltage ripples, which follow the main barrier peaks. Two typical 

examples of such imperfect barrier voltage functions and possible aftermath are 

demonstrated in Fig. 11. The ripples can form phase areas of “parasitic separatrixes” 

where injected particles can be trapped at certain condition, as it was observed in Ref. 

10. Such trajectories have the form of closed loops (Fig. 11, a, b, curves 3, 4).  

A rough estimate of the effect of particle trapping into parasitic separatrix can be 

made comparing square of phase space inside separatrix Ssep and parasitic one Sripple. 

The first one is equal to (see (1.9)) 

    BBBBBBB
s

V
p

p
S  22

sep
sep .  

Similarly, the Sripple size can be written as follows: 
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s
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p
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. 

Here Vripple is the ripple voltage amplitude, ripple is the width of ripple voltage peak, 

ripple is length of ripple peaks in phase space. Assuming rippleB one can write a 

simple formula for the part  of particles lost at injection and stacking:   
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That gives us the requirement to the barrier voltage quality 

 .~
2 2

2















ripple

BBBripple

V

V
 (3.22) 

For instance, barrier voltage system with parameters shown in Fig. 11, b 

(2BBB4.71 rad, ripple1 rad) one has to provide 3102.2 VVripple  at 

1 % particle loss. 
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Fig. 11. Two examples of barrier voltage ripples and particle phase trajectories calculated with the 
equations (2.5), (2.6); main barrier peaks are quasi-sinusoidal followed with (a) exponentially fading 
oscillations (a) and (b) two sinusoidal peaks of decreasing amplitude; the injection parameters of n-th 
phase trajectory (inj, Yinj)n: a) (4.75, 0.0)1, (5.4, 0.0)2, (5.0, 0.12)3, (4.95, 0.0)4; b) (4.95, 0.0)1, (5.0, 0.0)2, 
(5.1, 0.0)3, (5.2, 0.1)4  
 

4. PARTICLE  ACCELERATION  WITH  BARRIER  VOLTAGE  

 For particle acceleration with BB system one has to apply a voltage Vacc to the 

interval BB (Fig. 6). Equilibrium particle momentum should increase with time 

according to well-known equation 
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Here Bs(t) and Rs are magnetic field and trajectory radius averaged over the equilibrium 

trajectory. This equality allows us to derive the formula connecting the growing 

magnetic field Bs(t) and accelerating voltage Vacc. Substituting 

 
dt

dB

c

ZeR

dt

dp sss   

into the equality  

 
s

Bs

T

p

dt

dp   

and pB from (1.2) we find desired formula: 

 .acc dt

dB

c

C
V Ring 


  (4.2) 

Here  ssRBB  and  are magnetic field and equilibrium trajectory radius in dipoles, 

correspondingly. At the ring parameters CRing503 m, 25 m and magnetic field 

growth rate sT1.0 dtdB  it requires Vacc1.26 kV.  

 The problem is not so trivial for nonequilibrium particle:     .ptptp s   If the 

condition (4.2) for Vacc is met the particle drifts between barriers, in BB phase area, 

having constant momentum shift    0ptp  . It looks like the particle “does not feel” 

presence of accelerating voltage Vacc, because both nonequilibrium particle and 

equilibrium one get per turn the same energy ZeVacc and, correspondingly, momentum 

pacc shifts. As result, a difference of their momenta remains constant. Therefore, in first 

approximation, the separatrix of particle phase trajectory is described, for instance, with 

the same Formulae (1.9), (2.13), (2.14) as at absence of acceleration. At the second 

approximation one has to take into account an influence of magnetic field growth when 

particle travels inside the barriers. This effect can be taken into account by introducing 

an equivalent deceleration voltage Vdec and corresponding it  fdec(): 
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decdec BBB
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C
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
   (4.3) 

Both functions are, generally speaking, depending of . Then the function f() used 

before can be presented as follows:  

      ,dec  fff B  (4.4) 
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where fB() is the same, as before, the function of barrier voltage defined in (2.1) plus 

acceleration voltage (4.2). 

 Now the condition of particle motion phase stability (2.11) goes over  

       .or,0
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sss

dfdfdf B  (4.5) 

 As an example we consider here the case of linear dependence of magnetic field 

B on time and rectangular barriers. Then both Vacc() and fdec() are constant.  

 The simplest solution is to apply Vacc voltage (i. e. fBfdecconst) to all stable 

phase area (3.4). This addition provides particle acceleration compensating effect of 

growing B and  trajectory of nonequilibrium particle has the same form as at absence 

of acceleration (Fig. 4). The peculiarity of such regime is position of equilibrium phase: 

it is the locus located on -axis, in the phase span BBBB. 

 Another solution (that can be suitable for some technical reasons) consists in an 

increase of acceleration voltage Vacc in BB phase area only by the addition  
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It provides fulfillment of the conditions (4.5). Then the particle phase trajectory can be 

described as result of particle phase motion under the influence of  

        .dec  ffff BB  

 In the case of rectangular barrier f() has the following view: 
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Fig. 12 demonstrates phase trajectories of accelerated particles at different injection 

parameters given in the Figure caption. One can see that the trajectories here have some 

similarity of forms with those ones at classic harmonic RF voltage acceleration [5]. The 

similarity is also in existence of single equilibrium point in this case: Yequilibrium0, 

equilibriumBBB. As we see from Fig. 12, the phase trajectory loop shrinks to 

this point as inj approaches equilibrium.  
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 The phase trajectories have a form of closed loop and their parameters Y(), () 

are insensitive directly to particle acceleration. It means that Y() function for each 

trajectory is invariant of energy. Then, one can derive from (2.4) with (1.5) for any 

trajectory the value of PMS dependence on energy: 
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
 (4.8) 

(do compare [5], p. 159). 
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Fig. 12. Particle phase trajectories in the stable phase area (3.4) at acceleration with rectangular barriers 
calculated with the equations (2.5), (2.6) in Mathcad for fequi() (4.7); a) full-sized phase trajectories, b) 
parts of the trajectories near and inside negative barrier; dot curve is normalized PMS Y() (2.4) near 
separatrix calculated at inj0.001, 00, arrows indicate momentum shift direction; three solid lines 
are Y() at inj/2,  and 1.38, for all three lines 00; dashed curve  the barrier function fequi() 
(4.7), B10, BB1.3  

 

 Two examples of particle acceleration above have been considered for idealized 

parameters when the functions Vacc() and Vdec() coincide with absolute precision. In 

reality some disbalance of these functions exists always, and the integral equalities in 

(4.5) are violated. It leads to deformation of phase trajectories and their separatrix 

(Fig. 13). Limitation of disbalance value can be formulated using condition similar to 

(2.11) and (4.5). In fact, an extreme case takes place when one of the separatrix borders 

reaches one of the borders of the stable area (3.4). If disbalance exceeds this level 

particle losses occur at acceleration. The condition of stable acceleration (4.5) can be 

written now as following:  
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For instance, in the first example above we find the disbalance restriction 
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  (4.10) 

This case is presented in Fig. 13, a. Another case of oscillating disbalance voltage is 

shown in Fig. 13, b. 
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Fig. 13. Influence of disbalance between Vacc() and Vdec() functions on particle phase trajectories, the 
condition (4.10) is met in all cases: a) fB() function is constant in all stable phase area (3.4), fB()0 
 dot line, fB()0  dashed line; two right solid curves  separatrix and intermediate phase 
trajectory at fB()0, left solid line  separatrix at fB()0; b) dashed line 
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 One should note that barrier voltage function fB() (and fB()fB() in both 

examples considered in this section does not meet “the no saturation condition” 

formulated below (see(6.1)). As shown in Section 6, one can remedy this defect rather 

easily by adding necessary voltage in the injection area. 

5. MOVING  BARRIERS  IN  BARRIER  BUCKET  METHOD 

  Modern digital electronics allows us manipulating with barrier voltage parameters 

 amplitude, phase, form and width of voltage pulses in a wide range. A scheme with 

such parameters is called “moving barrier generator”. Application of fast switches 
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provides control of necessary regimes. Therefore, the simplest version of f() function 

considered in previous sections does not limit all possible schemes used for particle 

stacking in cyclic accelerators. The most sophisticated schemes with moving barriers 

have been developed in Fermilab and used for antiproton stacking and beam formation 

in the rings of the Fermilab accelerator complex [2, 6–9]. Proposed in the 1980th [1] the 

method of moving barriers has found a new quality when it was supplemented with 

cooling methods  both stochastic and electron ones. 

Here we consider one example of moving barriers scheme that is planed to be 

used in the NICA collider for ion stacking [13]. 

The 2 phase space at particle stacking in NICA collider consists of two stable 

areas BB and inj divided with two pairs of rectangular barriers as shown in Fig. 14, 

a; 14, A and described with the following formula: 
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 (5.1) 

The left stable area BB is intended for stack, the right one inj  for injected new 

bunch. They are divided with two barriers of opposite sign and voltage amplitude equal 

to k (varied further). After new bunch injection into preliminary empty inj area both 

middle barriers are decreased (by modules) synchronously to zero, i. e. k0. At 

certain values of the k the “gate” for injected particles opens and they penetrate from 

inj area into BB one (Fig. 14, b; 14, B). At the same time the stack particles are kept 

in BB area. When both barriers decrease even more both bunches merge in a single 

bunch that occupies the phase area of the size of BB2Binj (Fig. 14, c; 14, 

C). Generally speaking, the side barriers (equal to unit) can be decreased to zero as well 

and the merged bunches occupy all circumference of the ring, i.e. phase area of 2. 

However, for some technical reasons one could be more preferable to keep the side 

barriers at constant amplitude. 
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Fig. 14. Dynamics of merging of stacked bunch and injected one: the phase trajectories are numerically 
calculated with the equations (2.5), (2.6), description in the text, arrows show momentum shift directions. 
Fast barrier decrease: a) injection of new bunch: k1.0, Ystack0.3, Yinj10.6, Yinj20.45; b) 
intermediate state “b”: k0.2, Ystack0.3, Yb1Yinj1, Yb2Yinj2; c) intermediate state “c”: k0, 
Ystack0.3, Yc1Yinj1, Yc2Yinj2; d) final state: k1, (Ystack)d0.702. Adiabatic barrier decrease: A) 
injection of new bunch: k1.0, Ystack0.3, Yinj10.6, Yinj20.4; B) intermediate state “B”: k0.506,  
Ystack0.298, YB10.564, YB20.385; C) intermediate state “C”: k0.288, Ystack(Ystack)penetration 
0.288, YC1YB1, YC2(Y2)penetration 0.352; D) final state: k1, (Ystack)D0.661 
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 The next step consists of adiabatic displacement of right side negative barrier into 

position of former middle negative barrier and restoration of all four barriers into initial 

positions. As result the stack is compressed in phase and increased in momentum spread 

(Fig. 14, d; 14, D).  

 The barriers decrease has two outmost regimes: the fast and the adiabatic ones, 

i. e. varied during time much shorter (fast) or much longer (adiabatic) than the periods 

of particle traveling along phase trajectory  both for stack particles and for injected 

ones (see (1.12) and (2.21)). 

5.1. Fast barrier decrease 

At fast (“instant”!) barrier decrease a particle continues its phase motion along 

phase trajectory that is defined with particle trajectory parameters at the moment of 

barrier switching OFF, i. e. having certain Yswitch momentum and s with phase. It 

means the outer trajectory of injected particles (thin outer curve in Fig. 14, b) and 

merged bunches (thin outer curve in Fig. 14, c) are defined with YswitchYinj1 (Fig. 14, 

a). Thus, the bunch emittance c in Fig.14, c is described with Formula (2.19) at 

YmaxYinj1. Then, after merged bunches adiabatic compression, the Yfnl value on the 

outer phase trajectory is defined again with equation (2.19) where (Ymax)c is 

emittance of the merged bunch before compression. To find Yfnl value we have to solve 

now the cubic equation (2.19). It can be done numerically, as we had to do for finding 

parameters of trajectories in Fig. 14 and have found by such a method (Ystack)d equal to 

0.702 (Fig. 14, ad).  

5.2. Adiabatic barrier decrease 

 Before detailed description of the regime of adiabatic barriers decrease we need to 

make some additional examination of particle dynamics in the RF system with different 

heights of the voltage barriers. And this examination we begin with inj area (Fig. 15). 

Executing calculations similar to (2.14)–(2.19) for rectangular barriers one can obtain 

the following results for phase trajectory parameters in the injection area inj:  
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Here (see symbols in Fig. 16)  

 .2,3 max0min  BBB  (5.3) 

We can write also two evident equalities. The first one follows from the condition  
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It gives  

 .0 k  (5.4) 

The second one is the condition of particle penetration from injection area into the stack 

one:  

 .0 B  (5.5) 

At this condition we find from (5.2) the value of particle momentum at beginning of its 

penetration in the stack area:  

 .2 Bnpenetratio kY   (5.6) 

Later on we need Formulae for bunch emittance of particles kept between two barriers 

of different heights. Performing calculations similarly to (2.18), (2.19) with the 

expression (5.2) for Yinj() we obtain Formulae for injected bunch emittance: 
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Here Y is the Yinj value between the barriers (see (5.2)).  

Expressions for Ystack() (stack area) and emittance of stack bunch stack can be 

obtained similarly. For stack emittance one has to replace in (5.7) inj with BB. Then 

we find 
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Symbol  here is defined in second line of the expression (5.8) for Ystack(). Symbol 

stack2 is shown in Fig. 15, stack1 has similar meaning for stack particle trajectory in 

first B area. Evidently, instead equalities (5.4), (5.5) we can write  

 ., 221 Bstackstackstack k   (5.10) 
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Fig. 15. Particle trajectories in the stack phase area (left curve) and in the injection one (right curve); the 
stack particle trajectory is shown in part; the barriers have equal phase spans and the following 
amplitudes: VV41, V2V30.4, B10, BB1.3; the phase trajectories are numerically 
calculated with the equations (2.5), (2.6), description in the text, arrows show momentum shift directions 
 

 Now we are ready for description of particle phase dynamics at adiabatic barrier 

decrease (Fig. 14, AD). The procedure of calculation of particle trajectory parameters 

we begin with  

Stage A (Fig. 14, A). For given initial values of 3 trajectories, i. e. Ystack, 

Yinj1 and Yinj2, we calculate the values of phase trajectory areas (“emittances”) with 

second expression in the Formulae (5.7) and (5.9): stack, inj1, inj2.  

 Stage B (Fig. 14, B)  beginning of particles Yinj1 penetration into stack area.  

First of all, one should consider deformation of the phase trajectory during decrease of 

the middle barriers. This process is accompanied with expansion of the trajectories 

along abscissa in Fig. 15 that leads to displacement of the points min and max to the left 

and to the right correspondingly. Due to phase space area conservation (adiabatic 

invariant!) it compresses along ordinate axis leading to decrease of Y values. When min 

() 

54     32          74             2 
 

f() 

stack2          0              

B 

inj 

BB B 
B min         max 



 33 

and max points reach the outer borders of the barriers (i. e. the condition (5.5) is met) 

the particle penetration into adjacent area begins. 

Now we need to find a value of kB corresponding to this stage. It has to be done by 

solving of cubic equation for kB (first expression in (5.7)) at given inj1 and 0B. 

Then from (5.6) at kkB we find the value of YB1. To find the values of Ystack and YB2 

we solve the cubic equations for Y (second expressions in (5.7) and (5.9)) at kkB and 

corresponding values of emittances inj2 and stack. 

 Stage C (Fig. 14, C)  beginning of stack particles penetration into injection area. 

The calculation procedure is similar to that one at stage B: finding kC and the values of 

all three Y-parameters. All three phase trajectories merge together occupying both stack 

and injection areas. 

One should underline that all three emittances, stack, inj1 and inj2, do not remain 

constant, but increase after penetration in the adjacent area at the stages B and C, 

because particles when penetrated move freely in phase space with negligibly week 

interaction with decreasing middle barriers. As result, the Y values of these particles do 

not change during the barriers decrease further to zero. E. g., for this reason at the 

beginning of stack particle penetration in the injection area (stage C) we have 

Ystack(Ystack)penetration0.288, YC1YB1, YC2 (Y2)penetration0.352. The last -

parameter reaches the shown value at k0.197 and keeps it further. 

Stage D (Fig. 14, D)  adiabatic compression of all particles. The final size of 

compressed bunch we find from condition of outer phase trajectory area conservation: 

(Ystack)D0.661. This value is slightly less of (Ystack)d0.702 obtained at fast decrease 

of the middle barriers. Such a small difference is result of chosen small width of the 

barriers when contribution of the middle barrier area is rather insignificant. 

 Similar procedure is explained in the Ref. 2 on the language of energy variation. 

By our opinion that conceals the picture of particle dynamics in phase space. 

 In the case of cooling application the described scheme with moving barriers has 

significant advantage comparatively to that one considered in section 3. It moderates 

essentially requirement to cooling time (3.6), (3.7). Indeed, one has to cool down new 

injected particles only to the level when their maximum PMS at the stages “b” and “B” 
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(Fig. 14) is less than Ysep in BB area. After merging of injected bunch and stack and 

forming final stages “d” or “D” one can continue cooling having more time for this 

purpose.  

 Another advantage of this scheme shows up at cooling also. In the case of 

stochastic cooling application we have a significant gain in cooling rate when bunches 

are merged and occupy all circumference of the ring. The cooling rate is inversely 

proportional to linear density of particles, therefore the gain factor is of the order of 

2/inj [17]. For electron cooling the gain is not so evident. Nevertheless, reduction of 

linear density of stored beam is preferable to reduce effects of beam space charge. 

6. BARRIER  RF  VOLTAGE  TECHNIQUE  

 Modern barrier RF systems are constructed with digitally controlled driving 

generators and power amplifiers having solid-state voltage switches. Such a device is 

able to produce short high voltage pulses of rectangular form with steep edges and 

minimal ripple amplitude. The device feeds an RF cavity loaded with ferromagnetic 

(ferrite, amorphous iron, etc.).  

 The ferromagnetic load leads to some peculiarity of barrier RF systems: the 

voltage function f() has to meet “the no saturation condition”: 

   .0
2

0




df  (6.1) 

If not the ferromagnetic will be saturated after certain number (not so big!) of barrier 

voltage pulses (magnetic flux is proportional to time integral of the V(t) function). 

 The barrier RF systems have typically frequency bandwidth in the range of tens of 

kHz to hundreds of MHz.  

 Most sophisticated barrier RF systems were developed in Fermilab since first 

pioneering works fulfilled there (Table 1).  
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Table 1. Parameters of barrier RF systems at Fermilab accelerator facility [2] 

Accelerator/Storage ring & 
Function of Barrier RF System 

Ferrite Type (Cavity 
Dimension) 

Properties: Power, Vpeak, Rshunt, 
Bandwidth, Power Amplifiers 

Debuncher – Gap preserving MnZnNiZn (~ 1 m) 2.4kW, 700V, 104 , 10kHz10MHz, 
IFI3100S 

Accumulator – Ion clearing 
and isolated bucket 

MnZnNiZn 
(~ 1 m) 

100W, 70V, 50 , 10kHz10MHz, 
ENI2100 

Recycler – for all RF 
manipulations 

Ceramic Magnetics MN60, 
CMD10 (~1 m) 

4×3.5kW, 4×500V, 4×50, 
10kHz100MHz, Amplifier Research, 
Model 3500A100 

MI –Test cavity FinemetRcore (~0.75 m) 150kW, 10kV, 500, Fast Switch 
MI – Damper Cavities MnZnNiZn (~1 meter) 3×3.5kW, 3×500V, 3×50, 

10kHz100MHz, Amplifier Research, 
Model 3500A100 

 

Parameters of some barrier RF systems developed in recent years and under 

development are presented in Table 2. 

 

Table 2. Parameters of some barrier RF systems  

Laboratory (accelerator) 
Parameter  

BNL/KEK 
(AGS) [18] 

KEK for BNL 
(AGS) [19] 

Budker INP for JINR 
(NICA Collider) [20] 

Core material  ferrite Finemet*) amorphous iron 
Gaps per cavity  4 4 14 
fres, MHz 2.6 1.1 0.5790.587 
R/Q per gap, Ohm 180 1500  
Q 30 0.6  
Amplifier rating, kW 600 120 22 
 *) Trademark, Hitachi Metals, Ltd. 

 

Barrier RF systems become more and more popular in accelerator technologies as solid-

state powerful RF electronics is getting growing improvements. 

 

CONCLUSION  

 

 Application of Barrier Bucket RF system to storage and acceleration charged 

particles in synchrotrons and storage rings has significant advantages in comparison 

with classic RF harmonic systems. Especially it becomes apparent when one deals with 

heavy particles like protons and ions where using of cooling methods is unavoidable 

practically.  
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 The technique of BB method well developed since its first proposal and allows 

presently to construct very sophisticated RF schemes using potentials of modern solid-

state electronics.  

 The method of analysis charge particle dynamics in BB Systems presented here 

allows to perform rather easily analytical calculations of the system parameters and 

obtain a complete description of particle dynamics characteristics in a wide parameter 

range. Supplemented with numerical simulations such an approach guarantees a proper 

choice of parameters of the BB system when it is under design.  

 This method can be applied efficiently to analysis of particle dynamics with 

harmonic RF systems. 
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