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lupxos 1. B. E2-2014-66
3 MEeTKM O IPOCTOH MOAM(UIIPOB HHOM TEOPUH BO3MYIIECHUIT

H m uens — npemioXuts MOOUGHUK IHI0 TEOPUH BO3MYILEHHA AT KB HTOBOM
xpomonH Muku (pQCD), KoTop s peryindpH B 001 CTH HU3KHX DHEPIUH M MOXET
I Tb NP KTHUYECKHUH METOA H Ju3 JA HHbIX HUXe 1 I'sB Bmiorh 1o uHdp Kp cHOi
rp Huusl. Hen BHO oTKpbITHIA pocT 4-netneBbix pQCD-psanos mig dopmd KTop
Boépkern B p iioHe Q < 1 9B u u cruyHOe peiieHde MpoOIeMbl MPH TOMOIIU
H JIUTHYecKOi Teopuu BoamymieHuit (ATB) Bmnote 1o @ ~ 0,6 I'sB mocmyxunm
WMITYJIbCOM IS T KO IMOIIBITKH.

P ccm tpuB eM g «M ccuBH 9 pQCD» nmeer a8 ocHoB Hus. IlepBoe cocrout
B ToM, 4T0 K pQCD 106 BisieTcsl TONBKO OIMH HOBBIH I p MeTp — 3(hPEeKTUBH s
«M cc mmbon » m, S Mgy S 1 I'9B, Kotop 4 sBisercss MHGP KP CHBIM peryJis-
TopoM. I'py60 ToBOps, MbI BBOIUM €€, 3 MeHsis YIbTp uoneTosblii In Q2 M cCUBHBIM
nor pupmom, In (Q? + Mgp,), KOTOPBIA PerynspeH B o0l CTH HU3KHX DHEPIUl U
ABJIETCS KOHEYHBIM B HH(P Kp CHOM Tmpenesie. Bropoe ocHOB Hue CBA3 HO CO CBO-
6omHOU oT ayxoB ATB, KOTOp s BKJIIOY €T HecCTelleHHble p 310xkeHus. [lociaenHue
JeN 10T TEOPHIO BO3MYILIEHUH COBMECTUMOM C JIMHEHHBIMM MHTETrp JIbHBIMH IIPeo0p -
30B HHSIMH.

P 6or BemonHen BJI 6op Topuu Teopernueckoii ¢pusrku uM. H. H. Boromo6os
OUAN.

MpenpunatT OObENMHEHHOrO WHCTHTYT SIEPHBIX Hccnenos Huil. dy6H , 2014

Shirkov D. V. E2-2014-66
Remarks on Simple Modified Perturbation Theory

The goal is to devise a pQCD modification that should be regular in the low-
energy region and could serve practically for the data analysis below 1 GeV up to
the IR limit. The recently observed “blow-up” of the 4-loop pQCD series for the
Bjorken SR form factor around @ < 1 GeV and partial resolving of the issue with
the help of the Analytic Perturbation Theory (APT) until ) ~ 0.6 GeV provided the
impetus for this attempt.

The “massive pQCD” under construction has two grounds. The first is pQCD
with only one parameter added, an effective “glueball mass” m, S Mg S 1 GeV,
serving as an IR regulator. Roughly, we introduce it by changing the UV In Q? for a
massive log, In (Q? + Mglb), regular in the LE region and finite in the IR limit. The
second stems from the ghost-free APT comprising non-power perturbative expansion
that makes it compatible with linear integral transformations.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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1. INTRODUCTION: MOTIVATION AND OUTLINE

The perturbative QCD (pQCD)* is a firmly established part of the particle
interaction theory. Starting with gauge-non-invariant quantization, it correlates
several dozens of experiments at quite different scales from a few up to hundreds
of GeV. At the same time, pQCD meets troubles in the low-energy (large-distance)
domain, below a few GeV, at the scales marked by the QCD parameter A <
380 MeV. This Achilles’ heel is related to its UV origin essence.

To avoid the unwanted singularity in the LE region, several modifications [1—
5] of the pQCD have been devised. Recently, one of them, the Analytic Perturba-
tion Theory (APT) ([6, 7] and a later review paper [8]), has proved to be good [9]
in describing the polarized '} ™" (Q?) = I'1 (Q?) form factor of the Bjorken Sum
Rules (BjSR) amplitude down to a few hundred MeV.

The difference of proton and neutron Bjorken moments is usually presented
as a sum of PT and higher twist (HT) non-perturbative contributions

r(Q% = %[1—A§}F(Q2)]+FHT7 Tur :Z% M

i=2
with ART, including the N*LO ~ (as(Q?))* term. However, an attempt to fit
rather precise JLab data by expression (1) with appropriate HT coefficients failed
as the PT part exploded (Fig. 1) in the region 0.7—1 GeV and the extracted (via
comparison with fitted JLab data) uo; values turned out to be unstable w.r.t.
higher loop terms in the first PT sum. This prevented data description below
1 GeV (Fig.2). Along with Eq. (1), in [9] the PT sum was changed for the
APT one**

AR = a(as@)F = AFTQ) =D aA(@), @

k<4 k<4

*The renormalization group improved QCD perturbation expansion taken in the UV limit.
**In current paper, we change original notation Ay to Ay. The notation Ay will be used only
for results of previous articles just for comparison.
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Fig. 1. Relative contributions IV; of PT terms to AEJT(QQ)
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Fig. 2. The pQCD anti-progress below @ < 1 GeV as 2 — 3 — 4-loops

with A (QQ), the APT [6, 7] ghost-free expansion functions. The change resulted
in good fitting of the JLab data down to a few hundred MeV (Fig.2) with stable
HT parameters.

This result begets hope for the global fitting down to the IR limit. Unfor-
tunately, none of the above-mentioned ghost-free modifications [1-5] is suitable
for this purpose. The common drawback is the use of UV logs in the IR region.

To approach the global fitting of data (like these for the BjSR form factor),
one needs a modified perturbation theory (MPT) with two essential properties:

e Correspondence with common pQCD in UV (that is above a few GeV);

e Regularity and finiteness of the modified effective coupling oM*T(Q) and
matrix elements in the low-energy domain.



As a primary launch pad for this construction, the above-mentioned APT
seems good. It satisfies the first condition and, partially, the second one. To
exempt the APT-like scheme from its last drawback — the singularity (infinite
derivatives) in the IR limit, one has to disentangle it from the UV logs. To this
end, in the first version of this research [10], the IR regulator has been introduced
just by the shift of the Q2 scale,

Q* — Q* + M3, 3)

with the only fitting parameter added, an effective glueball mass, Mgiy,.

Here, we are going to address one more trick evoked by unitarity [11, 12]
arguments (the J(z) differs from rapidity by factor \/(x + 1)/z = E/Q, which
provides it with correct Q?-analyticity; see, e. g., Eq.(24.4) in the text [13]):

1 1/2
lnz — J(x) :2\/3ch arctanh <L> =
T 1+2x
z+1 919
=2/ — In(Vz +Vz+1), r=Q° /My, 4
This “quasi-rapidity” J(z) tends to the usual UV log, ln(QQ/Mglb) +2In2 +

(Inz)/2z, at Q* > M}, and behaves as J(z < 1) ~ 2 + 2z/3 — 42%/15
in the IR.

2. GENERAL RELATIONS

2.1. Two-Loop Massive RG Solution. At LE (below m.) we use the two-
loop massive RG solution in the denominator representation® (see [14])

— — a0
Ai(z) = a(¢) = 1+ag fodp+aobln(l+agfod)’

®)

which corresponds to the PT expansion in the form
as(@)yipr = apr(9) = ao — af o @) + af [0 #())* — af B é(z)  (6)

that reflects our ansatz on the functional equality of one- and two-loop massive
contributions which we take in a simple form

p=In(1+pa). 7)

Below, we use the 3-flavor values 5y = 0.716, 51 = 0.405, b = [31/00 = 0.566.
The 1-loop expression is also of interest:

206) 5 an(6) = Ty S 116a(6), ®)

*For a more precise two-loop solution, see Subsection 2.5 below.
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Fig. 3. ajyy vs. Ai(z) = apg Fig. 4. ¢(x) vs. ¢ar(x)

with maximum relative deviation (see Fig.3) from ap =a (¢) at prmax =
e—1=1.72
The p parameter can be estimated by comparing ¢ (Fig.4) with the “quasi-

1
Tt In(v/z ++vx+1) — 2. This gives p ~
x

0.60 £ 0.05, \/Tmax ~ 1.7. For the oy parameter assess, one can use the BjSR
threshold condition

rapidity” model: ¢qr(z) = 2

% +0.363 02 + 0.652 af +1.804ag > 1 = of " > 0.69. 9)

2.2. Condition on A;(m.) . The normalization (Conjunction) condition
A (z;) =0.330+£0.014 (10)

combined with (5) yields a relation, at fixed p = 0.6, between two quantities ay
and Mgp:

1
X, +bInX,=3.03£0.13+bln (—),
e7y]

M2

9 (11
1 mZ
XT:XT(a05Mg1b):a_O+bln <1+p )
glb

Under plausible assumption g =

Pe < 1.43), one gets X, = 2.70. In
turn, this gives Mgy,

0.7 (1/ap S 2
2> 450 MeV. For more detailed information, see Figs.5

~
Mg,

and 6. The tendency is simple: ~ —0.5 GeV. However, one has to mind

0

that estimate (9) in the MPT case is under suspicion as it does not account for non-
powerness of the MPT expansion. Some more information on A;(x) = a (¢(z))
can be learnt from Figs.7 and 8. From there we have

My (ao = 1.0) ~ (512+43) MeV, My (ag = 2/3) ~ (661+£61) MeV. (12)
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Fig. 5. Mg, estimate vs. three oo values

Fig. 6. The same as in Fig.5 but for the
1-loop case
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Fig. 9. Various couplings at LE domain

Fig. 10. A1 (Q) vs. lattice results [15]

To conclude this part, we give the A; LE behavior vs. common @ and APT
A; ones, on the one hand (Fig.9), and vs. lattice simulation results [15] (Fig. 10),

on the other hand. From Fig.8 one

can get additional, process-independent,

argument in favour of Eq.(9) numerical estimate — see Tables 2,3 and the text

afterwards.



2.3. Recurrent Relation. In the construction under devising, we intend to
preserve an essential APT feature, namely, the non-polynomiality of “perturba-
tive” MPT — expansion over a set (the same symbol A as in the minimal APT
is used) of functions (A (Q?)).

2.3.1. Differential Recurrency. In the APT, higher functions are connected
by the differential recurrent relation

— == Ap(x) = fo Arr1(z) + O Arga(z) + ... (13)

To the arguments ascending to the 80s (see Ref.11 in [16], and papers
[17,18]) and related to the 72-term summation procedure in the s-channel (see
also [1-5]), one can add a fresher reasoning [19, 20].

This differential recurrency ensures compatibility [21-23] with linear trans-
formations involved in transition to the distance picture (Fourier-conjugated with
the momentum-transfer one) and to the annihilation s-channel (reverse Adler
transformation).

2.3.2. Comment on Eq.(13). This simple recurrent operator (the log deriva-
tive) is an ansatz mainly motivated by the structure of m2-terms [17, 18] generated,
in turn, by the UV log branching. Generally, it is an open question how to modify
this log-derivative for the mass-dependent structures relevant to the LE domain.
E.g., one can write instead

1
*E 6p¢4k(l‘) = 6() .AkJrl(l') + 61 .AkJrQ(l‘) + ..., 6p = (14)

dp(z)

Here, p(x) is an appropriate function, defined for a real positive argument, with
log asymptotics.

For the recurrence function, we start with the simplest option without addi-
tional parameter

p(r) =¢(x) —Inp=In(1+pr) —Inp =In(x + z.);

15)
v =Q*/Mp,, wx.=1/p.
Then, technically
9, =04:=0, 0A(z)=(2+z.)A", (16)
and
0% Ap(7) = (z + 2.)? Ap (2) + (x + 24) Ap. (17)
Our recurrent ansatz
Bo Apyi(x) = =1 0 Ag (2) = B1 Ay, Apzs =0 (18)




leads to three equations for the 3 expansion functions As 3 4 in terms of the given
Ai(z) = a(9), )
= Ay =— —53((;5) — b.Ag,
Bo
1 1 (19)
=———0A2—b =——0UAs.
As 57 Az —b Ay, Ay 3 As

2.4. Higher SiMPT Functions. Higher Simplest MPT (SiMPT) expansion
functions Ay 3 4 are defined by Eqgs. (19). Their combination yields linear DE for
As (in the ¢ variable):

Ay () = 2173 5 a(6) + % G As(), Ods—kAs=—f(é)  (20)

5b ~ 54

Its solution with AF boundary condition

(k _ 85 _ 152, ¢ 3 1.48, f(¢) =q ? a(¢)>. 21)

o0

As(@) = as(9) = g / 3 a(f)e ™™ df =
¢ =—q[0a(¢) +ka(p)] +kq I(o) (22)
contains integral
I(¢) =k / a(f) e df, (23)
[}

which is calculated numerically — see Fig. 11 and Table 1. Below, in Figs. 12
and 13, all higher functions A3 3 4 are given numerically via Egs. (19).
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Table 1. The values of integral I(¢) for definite ¢ at fixed parameter av
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Table 2. Quantities A1 ,2,3,4 as functions of ¢ and x

¢
Qo
000510 | 15|20 |25]30]|35]|40 |45 |50]55]| 60
0.5]0.667|0.492|0.397(0.335|0.292]0.259|0.233|0.213]0.196|0.181|0.169|0.158|0.149
1 10.50210.404(0.342(0.297|0.263]0.237|0.216(0.198|0.183|0.171|0.160{0.150{0.142
2/310.402|0.340{0.296|0.263|0.237(0.218|0.198|0.184|0.171{0.160{0.151|0.142|0.135
1.2
11f — ALa=23 — A, =1
10fF ——-Aap=23 —=-A), =1
09 g e A3= oy = 2/3 eeeenn A3’ ap=1
0.8 B\— — Ay ag=2/3 —-—= Ay ap=1
0.7 §

¢ x Qo = 1 oy = 2/3
Q, GeV| A AQ .Ag Ay Q, GeV Al As .Ag A4

0.00|0.00| 0.00 |1.000|1.050|0.911|1.289| 0.00 |0.667|0.454|0.279|0.240
0.15|10.27| 0.27 |0.858]0.774|0.600(0.717| 0.34 |0.607|0.377|0.215|0.166
0.25|0.47| 0.35 |0.786|0.649|0.470{0.509| 0.46 |0.574|/0.337|0.183|0.133
0.50|1.08| 0.53 |0.653]|0.447|0.278|0.245| 0.69 |0.505|0.261|0.127|0.080
1.00(2.86| 0.87 [0.495|0.255|0.125|0.080| 1.12 |0.410|0.172]|0.069|0.035
1.25(4.15| 1.04 |0.443(0.204|0.090|0.051| 1.35 |0.376|0.144|0.054|0.024
1.50(5.80| 1.23 |0.402|0.168|0.068|0.034| 1.59 [0.347|0.123|0.042|0.018
1.70(7.46| 1.40 |0.375(0.145|0.055|0.026| 1.81 [0.328/0.109|0.036|0.014

Now, one can verify the preliminary estimate oy T ~ 0.686, Eq. (9). Towards

this end, on the basis of Tables 2 and 3, we found the PT sum

1
Anpr(Q) =) ek Ak; Aq +0.363 As + 0.652 As + 1.804 Ay,

k

values at the IR limit:

AMPT(Q = 0; Qo = 1): 3619, and AMPT(Q = 0; ap = 2/3): 0.991.

Linear extrapolation gives slightly more accurate bounds

asMPT < 0.67,

Mgy, > 650 MeV.

(24)

(25)

(26)




Table 3. Quantities A1,2,3,4 as functions of @

Q, GeV a():l a0:2/3 a0=1/2

Al A2 AB A4 Al A2 A3 A4 Al A2 AB A4
0.00 [1.000{1.050(0.911{1.289{0.66(6)|0.454|0.279(0.239{0.500{0.253]0.120| 0.073
0.20 |0.911(0.873|0.707|0.904| 0.644 10.42410.253|0.209{0.494|0.247|0.116| 0.070
0.40 0.747]0.586|0.408|0.418| 0.591 |0.357(0.198|0.149|0.477|0.230{0.105| 0.061
0.60 0.612(0.392(0.231{0.189| 0.530 |0.288(0.146|0.097{0.454|0.209{0.091| 0.050
0.80 ]0.519(0.280(0.143|0.097| 0.476 10.232]0.107|0.063]0.428|0.186|0.077| 0.040
1.00 {0.454]0.214{0.097|0.056| 0.432 (0.191{0.081{0.043|0.404|0.165]|0.065| 0.031
1.40 (0.374|0.145(0.055]0.026| 0.369 (0.139]0.051{0.023|0.361{0.132]0.047{ 0.020
1.78 0.330{0.112]|0.038{0.015| 0.330 |0.111{0.037|0.014{0.330|0.110|0.036|0.014

The last limitation on M., does not contradict the current lattice estimate (see re-
view [24]).

2.5. On Exact Two-Loop Massive Solution. The massive RG solution, more
precise than (5), is expressible via a special Lambert function W (z).

In this connection, remind that the Lambert function naturally arises in the
course of exact solving of the two-loop RG equation for the running coupling in
the massless, pure log case. Under simple reservation, the same is true for the
massive case.

To this end, we analyze massive renormalization group (MRG) solution for
the functional equality input. Omitting technical details (see [25,26]), one gets
the transcendental relation for « (x)ﬁ]RG = a(¢):

Fas(@)iine) =F(ao) + fo 6(x),
’ da
F(a) = —5o M? 5(@250@2 + B1a’.

If, as commonly, the expansion 3y/3(a) ~ 1/a? — b/a is used, then Fox(a) =
1/a+bIna = V,(a). Hence,

27)

as(@)ira. = Fi(Fi(ao) + o 6(x)) (28)
At the same time, a straightforward calculation of the integral in (27) yields
1 1 1
Fry(a)=——bln <—+b> :V<—+b>b (29)
a a a
and )
s (2 2 = By (Fa(o) + fo d(x)). (30)

The functions reverse to the just introduced V4 are simply related to the Lambert
function.



3. LONGITUDINAL AND TRANSVERSE SPIN STRUCTURE AT LOW @2

For the purpose of a smooth continuation of I'}"" (Q?) to the non-perturbative
region 0 < Q2 < Aécn [27,28], it is convenient to consider the (Q2-evolution of
the integral , 1
2
Qéwg Fl(Q2) = %/dmgl($5Q2)v (31)

0
which is equivalent to the integral over all energies of the spin-dependent photon—
nucleon cross section, whose value at Q2 = 0 is defined by the GDH sum
rule [29, 30]

Il(Q2) =

2
Ha
s
where 14 is the nucleon anomalous magnetic moment. Then, the function 77 (Q?)

can be written as a difference,

L(Q%) = In(Q%) — L(Q?), (33)

between the transverse and “longitudinal minus transverse” structures where

L(0) = (32)

1
2M? 2M?
Ir(Q?) ===-T7(Q?) = —/dng(:I:,Q2),
Q? Q?
) 0 (34)
2M?
L(Q%) = —5 [ drga(z,Q?)
Q O/

The well-known Burkhardt—Cottingham (BC) sum rule [31] provides us with an
exact expression for I (QQ), in terms of familiar electric Gg and magnetic G
Sachs form factors as

1

L(Q%) = ZMGM(Q2)

pGu(Q*) — Gp(Q?)
1+ Q2/aM?

(35)

where p is the nucleon magnetic moment. As a consequence of the strong 2
behavior of the r.h.s. of Eq. (35), we get for large (>

1
/92($7Q2>dz|Q2_,oo =0, (36)
0

so I is much smaller than I; for large Q2. Now from the BC sum rule (35), it
follows that )

_ Hatpae
= 1 ,

15(0) (37)

10



where e is the nucleon charge. The GDH value (32) is then reproduced with
A€

1r(0) = 2= (38)
This slope is essentially larger than the one for I;, explaining the observed
excess of the slope of the latter over the GDH value. In practice, as there
is currently no evidence that the BC sum rule has any perturbative or non-
perturbative corrections, one may apply the SiMPT series to I'7(Q?) instead of
I'1(Q?), which will allow matching to the GDH value.

4. LAMBERT FUNCTION

Generally, the multi-branch Lambert function W of the complex variable z
is defined by the relation

W(2)eWE =z W) +InW(z) =Inz. (39)

One of its asymptotics is

W(z)|

Of our interest is a particular branch, W_;(z), real on a real negative semi-axis
—z =1t > 1/e. Farther in this text we shall omit lower index, always having in
mind this branch. Then, in the massless case (see [32, 33] and references therein)

2,2y _ _Po 1 - _ _L ).

—Inz—1In(Inz2). (40)

Z— 00

0 P 41)

L=In(=<| B=5.

<A2> &

According to (33), its asymptotics can be presented as follows:
1
2oy —— 42
ol .

(@) oL+ 1 InL “2)

In our massive SIMPT case, we can use this expression with the change of the
log argument, L — ¢(x), that is Inz to In(z + 1/p). For a quantitative estimate,
look at the numerical table of Lambert in spirit of Egs. (4) and (15).

See page 31 in my P2-2008-107 (Russian-language preprint) and earlier pa-
pers in TMP (1981. V.49. P.291-297; Engl. transl.: P.1039-1042); preprint
E2-81-274. There, in the course of solving, one meets an equation like

Bo ¢p(x) = J(A(z)) — J(ao) =
Ay (z) A1 (o(x))

d
g b= 0566 (43)

. /L_ _dg
0 Bog® + Prg® g2 +bg3’ Bo
ao

11



If the integrand is expanded ~ 1/g* —b/g, or exact (3(g) is equal to

1
g2 + bg3
a formally expanded expression (like in some 2-dim soluble models), then after
integration

J(A)%erlnAb(biAlnbLA)blnb, (44)
1 1 1

exponentiating the last relation, we get

e?(@)/BtJ(a0)/b4Inb _ o J(A)/b+Inb _ A o1/PA  where B = % =0.790, (46)
0
where we used (43) to express J(A) in terms of J(ag). After rearrangement
of (46) we get
bA el/bA _ ed)(z)/B+1/bagfln 1/bao _ bag e¢(az)/B+1/ba0’ 47)

and, using the definition of the Lambert function W(z) (i.e., W(z) (=) = 2),
one can write the result as

1

w — L eo@/B-1/bas
bao

If not expanded, it is still calculable and expressible (a bit differently!) via the
W Lambert function

bA(x) = —

1 1 b b2 1 1
_ b - - 4
Frbg @ g Tabg A= <A+b>’ w
1 1
b(—bA+1—1n <H+1>> —b(1+1nb). (50)

Again after exponentiation we get

e¢($)/B+J2(a0)/b+1+1nb — ng(A)/b-‘,—l—Hnb _ (1/bA + 1)—1el/bA+1. (51)

And the solution is the following:

bA(z) = — 1 . (52)

W( _ Me—aww—wbao—l) 11

b ap
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The difference A between these two expressions

e :
1\T) = — )

s [ — A eo@)/B-1/bas

bao
X (53)

AQ(ZE) -

b lW( _ Me—¢(l‘)/3—1/bao—1> 41

ao

could be essential when the cubical term in ((g) is a leading one. This can
happen in the LE region at ap ~ 1. There, the difference As(x) — A1(z) is
positive and could reach several tenths.

4.1. Auxiliary Relations

1
z+blnez=0b-—+Inba| Fblnb, t+Int—te’,
ba (54)

t—Int=—(—t+Int) > 7e", 7=—t.

4.2. Numerical Example. Suppose ag = 0.8. Then, ba = 0.566(1—0.522) =
0.566 - 0.477855 = 0.270, 1/ba = 3.697, ...

5. OUTLOOK: ON 3-LOOP LONG-LOG

One more way to realize the accuracy of SiMPT is to estimate the pos-
sible influence of three-loop effects. This can be done with a specific trick

proposed in [34]:
L—L"=L+B+L?+272 (55)

Acknowledegements. This work was supported in part by RFBR Grant 14-
01-00647.

The manuscript was prepared for publication with the participation of P. Fiziev,
S.V.Mikhailov and O. V. Teryaev.

REFERENCES

Shirkov D., Mikhailov S. I/ Z. Phys. C. 1994. V.63. P.463; arXiv:hep-ph/9401270.
Simonov Y. // Phys. Atom. Nucl. 1995. V.58. P.107; arXiv:hep-ph/9311247.
Badalian A., Simonov Y. // Phys. Atom. Nucl. 1997. V.60. P. 630.

Shirkov D., Sidorov A., Mikhailov S. arXiv:hep-ph/9707514. 1997.

Bl o

13



. Nesterenko A., Papavassiliou J. // J. Phys. G. 2006. V.32. P.1025; arXiv:hep-

ph/0511215.

. Shirkov D., Solovtsov I. /| Phys. Rev. Lett. 1997. V.79. P.1209; arXiv:hep-

ph/9704333.

. Solovtsov I, Shirkov D. // Theor. Math. Phys. 1999. V.120. P.1220; arXiv:hep-

ph/9909305.

. Shirkov D., Solovtsov I. // Theor. Math. Phys. 2007. V.150. P.132; arXiv:hep-

ph/0611229.

. Khandramai V. et al. // Phys. Lett. B. 2012. V.706. P.340; arXiv:1106.6352.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

Shirkov D. // Phys. Part. Nucl. Lett. 2013. V. 10. P. 186; arXiv:1208.2103.

Lipatov L. // Nucl. Phys. B. 1988. V.309. P.379.

Shirkov D. // Phys. Atom. Nucl. 1999. V.62. P.1928; arXiv:hep-ph/9903431.
Bogolyubov N., Shirkov D. Quantum Fields. Benjamin/Cummings, USA, 1983.
Shirkov D. // Theor. Math. Phys. 1982. V.49. P. 1039.

Aguilar A. et al. // Phys. Rev. D. 2009. V. 80. P.085018; arXiv:0906.2633.
Radyushkin A. // JINR Rapid Commun. 1996. No. 78. P.96; arXiv:hep-ph/9907228.
Krasnikov N., Pivovarov A. // Phys. Lett. B. 1982. V. 116. P. 168.

Jones H., Solovtsov I. /] Phys. Lett. B. 1995. V.349. P.519; arXiv:hep-ph/9501344.
Shirkov D. // Theor. Math. Phys. 1999. V. 119. P.438; arXiv:hep-th/9810246.
Shirkov D. // Lett. Math. Phys. 1999. V.48. P. 135.

Shirkov D. /I Theor. Math. Phys. 2001. V.127. P.409; arXiv:hep-ph/0012283.
Shirkov D. // Theor. Math. Phys. 2003. V. 136. P.893; arXiv:hep-th/0210013.
Shirkov D. V. /] Nucl. Phys. Proc. Suppl. 2006. V. 152. P.51; arXiv:hep-ph/0408272.
Ochs W. // J. Phys. G. 2013. V.40. P.043001; arXiv:1301.5183.

Shirkov D. // Nucl. Phys. B. 1992. V.371. P.467.

Shirkov D. // Theor. Math. Phys. 1992. V.93. P. 1403.

Soffer J., Teryaev O. // Phys. Rev. Lett. 1993. V.70. P.3373.

Soffer J., Teryaev O. // Phys. Rev. D. 2004. V.70. P. 116004; arXiv:hep-ph/0410228.
Gerasimov S. // Sov. J. Nucl. Phys. 1966. V.2. P.430.

Drell S., Hearn A. C. // Phys. Rev. Lett. 1966. V. 16. P.908.

Burkhardt H., Cottingham W. // Annals Phys. 1970. V.56. P.453.

Magradze B. // Conf. Proc. C. 1999. V.980518. P. 158; arXiv:hep-ph/9808247.
Magradze B. /| Few Body Syst. 2006. V. 40. P.71; arXiv:hep-ph/0512374.

Shirkov D., Zayakin A. // Phys. Atom. Nucl. 2007. V.70. P.775; arXiv:hep-
ph/0512325.

Received on September 15, 2014.



Pen xrop E. U. Kp eéuenko

TTonmnuc Ho B ey 16 27.10.2014.
@opm T 60 X 90/16. Bym r odcern g. Iled 16 occerH 5.
VYen. neyu. n1. 1,06, Yu.-uzn. i1, 1,49. Tup x 325 ak3. 3 x 3 Ne 58363.

Wzn tenbckuit otnen OObeIUHEHHOTO HHCTUTYT SAEPHBIX MCCIIENOB HHUI
141980, r. dy6H , Mockosck s 061., yi. 2Konmmo-Kiopwu, 6.
E-mail: publish@jinr.ru
www.jinr.ru/publish/



