E2-2014-70

Kh. Namsrai !

NONLOCAL QUANTUM ELECTRODYNAMICS

Submitted to the Proceedings dedicated to the 80th birthday of Professor
G. V.Efimov

! Institute of Physics and Technology, Mongolian Academy of Sciences,
Ulaanbaatar State University, Ulaanbaatar



H mcp i X. E2-2014-70
Henok J1bH 5 KB HTOB 1 3JIEKTPOJUH MUK

ITok 3 HO, 4TO MPOOIEM P CXOAMMOCTH KB HTOBOWM 9JIEKTPOIMH MHKH IEPBOH -
Y JIBHO CBS3 H C CHHTYJISIPHOCTBIO KJI CCHYECKOTO BIIEKTPOCT THYECKOro mois. Bun
HU3MEHEHHUs KYJIOHOBCKOTO MOTEHLH JI TPH M JIBIX P CCTOSHHUSIX MPHUBOOUT K U3Me-
HEHHIO TMPOI T TOp (POTOHHOTO MOJI, YTO IO3BOJISIET H M IOCTPOUTH KOHEUHYIO
U Tp OUEHTHO-WUHB PU HTHYIO KB HTOBYIO BJIEKTPOIUH MUKY. MBI yCT H BJIUB €M
Orp HUYCHUE H BEJIMYMHY BJIEMEHT PHOU JUTUHBI. H3BecTHO, 4TO J100 I Moaudu-
K 1M OpOI T TOP CIMHOPHOTO MOJISI MPUBOAUT K H PYIIEHUI0O OCHOBHBIX NMPUHIIM-
OB JIOK JIbHOU Teopuu. OfH KO H M yi JIOCh IIOCTPOUTh KOHEYHYIO U TP JUEHTHO-
WHB PH HTHYIO TEOPHIO JUTS 3JEKTPOM THUTHBIX B3 MMOAEUCTBUU C JI TP HXH HOM
KB JIp THOro KopHs ot onep top Kueitn —I'opnos .
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6o OWSIU.
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Nonlocal Quantum Electrodynamics

It is shown that an origin of the divergence problem in quantum electrodynamics
is associated with a singularity of classical electrostatic field. A modification of its
Coulomb potential at small distances leads to the change of the photon propagator
which allows us to construct finite and gauge-invariant quantum electrodynamics. We
establish restriction on the value of the so-called fundamental length [ < 10716 cm
from the experimental data on the measuring anomalous magnetic moment of lep-
tons. It is well known that any modification of the spinor propagator (in particular,
electron one) gives rise to many problems connected with verification of basic prin-
ciples of the theory like gauge invariance, unitarity, causality condition and so on.
However, it turns out that square-root modification of the spinor propagator is free
from these difficult problems. Here we also construct a finite square-root quantum
electrodynamics.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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This paper is dedicated to Professor G.V. Efimov’s 80th birthday.

1. INTRODUCTION

A beautiful quantum electrodynamics developed by many physicists of the
20th century (for example, see [1-5]) has played a vital role in the construction of
the finite and gauge-invariant so-called standard model [6,7] of particle physics.
What was an initial origin of this theory? It is natural that it was classical
electrostatic field theory. Generally speaking, as usual, classical and quantum
theories are the models of point-like particles. For example, the Newtonian and
Coulomb potentials
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are the potentials of the point-like sources of mass and charge, respectively:
pN(r) =md(r), pc(r) =ed(r),

where 6(r) = §(x)d(y)d(2) is the Dirac § function with properties:

7 dwd(z) =1, 7 dwd(x) f(x) = f(0),

and so on.
It is well known that the inverse Fourier transform of the Coulomb potential
for point-like charge is
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and its relativistic generalization in four-momentum space
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gives the local photon propagator which leads to the divergent theory. Of funda-
mental importance is the fact that the Coulomb potential (1) satisfies the Laplace
equation

AUc(r) =0, “)
where
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In principle, any modification of the Coulomb potential at small distances leads
to a violation of the Laplace equation (4). Here we find out more simple and
natural changing of the Coulomb potential

A
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which does not satisfy the Laplace equation (4) and gives modification of the
photon propagator (3):

Uc(r) = Us(r) )

D(p) = D'(p) = m‘/z(*ﬁﬂ), (6)
where
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Some time ago Markov [8] considered a possibility of changing the metric form
So=a? 442+ 2% a4 y? + 22412

in his indefinite metric modification of the field theory.
The Poisson equation for the potential (5) takes the form

312
AU = _—(r2 N 12)5/2.
On the other hand, the basic equation for electric stress E = —grad¢ with extended

charges is
divE = 4mp = —div gradp = —A¢,

Ao = —47p.



It means that in our case electric charge is not located at the single point and
is distributed continuously over the whole space with the density

1 312
T 4w (r2 + 12)5/2

/d?’rp(r) =1
as it should be.

Therefore, in our scheme, an idealized concept of the point-like charge is
absent. Moreover, already in the early developments of quantum mechanics there
occur square-root operators. In particular, it was the relativistic relation between
energy and momentum in a coordinate space representation that hindered its
use [9]. A review of the early and later works is contained in [10]. In bound-
state problems of two- and three-quark systems the Salpeter equation is often
used [11-13]. Problems associated with binding in very strong fields [14, 15],
string theory [16, 17] and astrophysical black holes [18-20] are applicable areas.
Green’s function for differential equations of infinite order like

Vm? —00(z) = =W (x) )

is treated in [21]. Green’s function (9) in momenum p- and x-spaces takes the
form

p

with the normalization
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Qp) = ——F——= / dXpm (N)S(A, D) (10)
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where the distribution

has properties like
m m m 1
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are the Dirac spinor propagators in corresponding spaces with random mass .
Here the relations

m2_p2:(m_ﬁ)(m+ﬁ)7 ]’)\:,yl/py
and the Feynman parametric formula
(m+na) [
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are used. In this paper by using formulas (6), (10), (11), (13) and (14) we
will construct finite nonlocal and square-root quantum electrodynamics free from
ultraviolet divergences.

2. MODIFICATION OF THE COULOMB POTENTIAL AND
DERIVATION OF THE NONLOCAL PHOTON PROPAGATOR

We propose the following finite Coulomb potential at small distances:

e 1

Ub(ry=—
C(T) A7 \/$2+y2+22+12’

(16)

where [ is some parameter dimension of length. Its value may be interpreted as
a size of an extended electric charge or as an universal constant like fundamental
length in physics. As mentioned above, this modified potential satisfies the Pois-
son equation. Let us calculate the Fourier transform of the finite potential (16):

Di(p) ! /d3 e'Pr ( < > 17d " in
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where p = |p|. By using the Mellin representation this expression takes the form
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where 1 < 8 < 2.
Further, taking into account gamma-function relations:

22(1+n)71
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and after some elementary calculations, one gets

‘/l p212
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From these formulas one can calculate residues at the points n = —1,0,1,...
The result reads
Di(p) = 5 + o Kallp) e
1\P) = = T lpl),
p*  |pl

where K;(x) is the modified Bessel function of second kind or the MacDonald
function
LT (/2
™I x
K@ =355 [ 4
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(0 <8< 1), x =|p|l. Finally, the modification of the Coulomb potential (16)
gives rise to the following nonlocal photon propagator [22]:

i 1px W _p212
D, (x) = @i / d'pe'” %7 (22)
where the form factor V; (—p%?) of the theory is defined by formulas (19)
and (20).

Here our theory with the propagator (22) is very similar to the nonlocal
theory due to [22] and [23]. Notice that the simple modification of the Coulomb
potential (16) leading to the nonlocal photon propagator (22) is cornerstone of
the finiteness of classical and quantum electromagnetic fields. For example, now
electrostatic self-energy of the extended charge is finite at small distances:

o e 3 _ 1 3 2 — ¢ —1
W — §/d rp(’r)Ul(T‘) = §/d TE B E — _Egradm



Here simple calculation reads

e [ 2 1 (5\.(1\ 1 3nx
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Moreover, the nonlocal photon propagator (22) is finite at the origin

! 2 3 2
DW(O) = gWW dpp°Dy(p”) =
0
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where 2 < 3 < 3.
Calculation of residue at the point ( = —2 and taking the limit € — 0 leads to

! _ _
D, (0) = = const.
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It turns out that, in principle, due to finiteness of D
vacuum fluctuation diagrams, shown in Fig. 1.

oy -

Fig. 1. Primitive Feynman diagrams for vacuum fluctuation

(0) one can calculate

Finally, we indicate one important consequence of the photon propagator (22)
with the form factor (19). If we want to calculate high-order divergence integrals
over the internal momentum variable p, like

—B—ioco .
1 v p*]"
L / 20 /d4p[ I
7 sin 7 [p2+A]
—B+ioco

for any order of v, then we can move integration contour in Fig.2 to the left
through points n = —2, —3, ..., in desired order, since in such type of integrals
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Fig. 2. Integration contour in formula (19)

there are no poles at these points. After integration result we can again move inte-
gration contour to the right to calculate residues at the points n = —3, -2, —1,...
and so on. This procedure of analytic continuation over complex variable 7 plays
a vital role in regularization scheme.

3. NONLOCAL QUANTUM ELECTRODYNAMICS
3.1. Introduction. Lagrangian functions of the nonlocal quantum electrody-

namics arising from the modification of the Coulomb potential at small distances
have structures similar to those in the local theory [24]:

1
—(Zs =D Fu@F"™ (@), (23)
where
- ~ 0
All2) = Aulan”, D=5

Only in our case of the nonlocal theory, renormalization constants 71, Zs, Zs, dm
are finite and moreover Z; = Z5 due to the Ward-Takahashi identity. Here
“chronological” pairing (or T product) of the fermionic field operators of electrons
has the usual local form:

_ e—ir(z—y)
S =) = OTWEFWI0 = ot [ dre—e—r. @



while “causal” function of the nonlocal electromagnetic field A, (I, ) in (23)
takes the form due to formula (22)

)Vl(*p212)
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D, (z —y) = guD'(x—y) = *—(27‘:)4@- /d4pe p=y

where V;(—p?1?) is given by formulas (19) and (20).
3.2. The Electron Self-Energy in NQED. The complete electron propagator
in NQED is given by the sum
—i(2m) 7S, (p)] = [~i2m) 1S ()] + [i2m)~1S(p)] [i(2m)*Su(p)] x
x [—i2m)~*S)] + ...,

where

The sum is trivial and gives
Si(p) = m —p— Ty —ie] .

In lowest order there is a one-loop contribution to ¥;, given in Fig. 3:

=i (z) X (z —y)(y)
where
Yi(z —y) = —ie?y,S(x — y)y.D'(x — y). (26)

Passing to the momentum representation and going to the Euclidean metric by
using ko — exp(im/2)k4, one gets

~ e? Vi(k%1?) m — P + ke
Yi(p) = —— [ d*k B~ (E) (E),
)= Gy / PR o — ke

k

p—k

Fig. 3. Diagram of self-energy of an electron in NQED



Here pr = (—ipo,p), ¥ = (—iyo,7) and kg = (k4,k). Taking into ac-
count the Mellin representation (19) for the form factor V;(k%?) and after some
calculations, we have

—B—ico
~ e? 1 1 wv(n)(m2e?)ttn
Y = ——— d F 27
!p) = —g-5; / e D@+ (n,p) (27)
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where
1 1 1—u 1+n p2 1+4+n
F(n,p) = T /du ( ” ) (1 - ﬁu) (2m — pu) (28)
0

is a regular function in the half-plane Ren > —2.
Assuming the value m?I? to be small, one can obtain (after calculation of
residues at the points n = —1,0)

~ 8n?

n e? ! m2[? 9 1. 45
K _ 1
872 1 meoop)Te

+ ) [ () <1 (P5) G+ 4w+

~ o2 : P2
Yi(p) = /du(2m —pu)ln (1 - U
0

where ¢(1) = —C, C = 0.57721566490. .. is the Euler number.

3.3. Vertex Function and Anomalous Magnetic Moment of Leptons in
NQED. Let us consider Feynman diagram shown in Fig. 4. The following matrix
element corresponds to this diagram:

ie : (@)L, (z, 2/y)(2) Au(y) : - (30)

Fig. 4. Vertex function in NQED
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Analogously, in the momentum space and in the Euclidean metric, the vertex
function takes the form

e? /d4k:EVl ((pe — kp)*1?)
(2m)* (pE — kg)?
m— kg — g m— kg
L. (31
5 (ke +pe? P kg ) O

Again passing to the Minkowski metric and using the generalized Feynman para-
meterization formula (15), one gets

I (p1,p) = — X

2 —hieo 272147
I (p1;p) = ;—W% / dnsiign;n (?(2277) Fu(n; p1,p), (32)
—B4ico
where
Fu(n;p1,p) = vuF1(n; p1,p) + Fa(n; p1, p).-
Here
1 1 1
Fi(mip1,p / [ [ dedsinsi— a5 =i
0 0 0

111
1
F2(n§p1,p)m///dadﬂd’y5la5 Y)a~ QN x
00 0

1 SN
X pc [mQ’y# —2mgq, + 4m(Bq, — apu) + (b — Bq)v.q+
+ (ep — Bg)yulap — Bg)], (33)
2 2 2
Q:mwm%fﬂv%wﬂi@y) : (34

Let us calculate the vertex function (32) for two cases: first, when ¢ = 0 and
p has an arbitrary value; second, when ¢ is an arbitrary quantity and p,p; are
situated on the m-mass shell. In the first case, assuming ¢ = 0 in formula (33)
and after some standard calculations, one gets

F, (n,plap

2t )] g

X [u’yu + 2 — up?

10



Comparing this formula with the expression (28) for the self-energy of the elec-
tron, it is easily seen that

0
Fu(nip1,p) = *@F(n;p)- (36)

m

From this identity, we can obtain a very important conclusion. In nonlocal QED
constructed using the modification of the Coulomb potential, the Ward—Takahashi
identity is valid:
~ 9 ~
I (p,p) = —=—Xi(p). 37
u(P.p) o 1(p) 37
In the second case, one can put

a(py)T, (p1, p)u(p) = T(py ) Au(@)u(), (38)

where u(p;) and u(p) are solutions of the Dirac equation

(p—m)u(p) =0, u(p,)(p1+m)=0.

Substituting the vertex function (32) into (38) and after some transformations, we
have
u(py) Fyu(n; p1, p)u(p) = u(py)Au(m; @u(p). (39)
Here .
i

m Uul/quf2 (777 q2)a

Au(miq) = vufr(n; @®) +

1
Opv = Q_i(’Yu’YV - 7V7u)a

11 1
finiq?) = F(in) ///dadﬁdvé(l —a—f—7y)a L%
000

X 9j(0475a’7aq2)7 .7 = 1727

2
L=ca+(1—a)?—pyL (40)

)
m2

gl(a7ﬁa’75q2) = (1 - 04)2(_77) + 20((1 + 77)_
(67 4+ (1 +n)(a+ B)(a +7)] x

X g2(a7577ﬂq2) = 204(1 - a)(l + 77)

m2
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To avoid infrared divergences in the vertex function, we have introduced here the
parameter € = mih /m?, taking into account the “mass” of the photon. Finally,
one gets

i
Au(q) = vuFi(g®) + %Uwunz(tf), (41)

where
—B—1i0c0
2 [t (m22) 1
- 81 2i nsin2 ™ T(2+mn)
—B+ioco

Fi(q%) fid®). (42)

It is easy to verify that the vertex function A,(q) satisfies the gauge-invariant
condition:

quu(p1)Au(q)u(p) = 0. (43)

Let us write the first terms of the decomposition for the functions Fj(q?) and

F»(g?) over small parameters m?I* and ¢*/m?:
o m212 m212 1 ¢
oo [, : Cop(1) L a 44
) 2ﬂ{+ . <n . w()+6>}+0(m2), (44)

272
A() = - {3 [ 5 20 - 2] +

+ m22 [m mzZQ —2(1) — %]} 0) (:1—22) . (45)

From this first formula we can see that corrections to the anomalous magnetic
moment (AMM) for leptons are given by

272 272
Au:% [1+m6l (m m4l +%—2w<1>)] (46)

We see that the first term in (46) is exactly famous Schwinger correction obtained
in local QED. From the experimental values of the AMM of the electron and muon
([25-27] and [28])

e 1 _
Aple) = Z—B —1=5(g—2) = (1150652180.73(0.28)) - 10 (47)

and

1
Apld) = P 1= (g, —2) = (116592 1071, 48
WS = oy 1= 50— 2) = (116592089(63) 107", @
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one gets the following restriction on the value of the universal parameter (or the
fundamental length) I:

1 <7.0-10717 em for ApfS), (49)
1<2.6-107' cm for Aug’)ﬁ%. (50)

Recent theoretical calculations of the AMM of the electron and muon have been
carried by [29].

3.4. Vacuum Polarization. Since in our scheme the propagator S(z — y) of
the charged lepton spinor is not changed, the diagrams of the vacuum polarization,
i.e., closed spinor propagators (see Fig.5) of the leptons in our nonlocal QED
are studied in the same way as in the local theory. For completeness we calculate
it in e?-order by using d-dimensional regularization procedure [30]. The result
reads in the momentum space:

—~ po —

T @=@9" -], (5D

where

ﬁ(qQ) = % /1da;(1 —z)ln (1 + W) . (52)

Fig. 5. The vacuum polarization in NQED

The physical importance of the vacuum polarization in NQED can be explored
by considering its effects on the scattering of two charged particles of spin 1/2.
4. THE SQUARE-ROOT NONLOCAL QUANTUM ELECTRODYNAMICS

The purpose of this section is to study nonlocal interactions of the charged
square-root spinors with nonlocal photons within our scheme. Thus, the La-

grangian corresponding to the equation

m? —O¢(z) =0 (53)
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is given by
LY = ¢*(z)vVm? — O¢(x). (54)
Instead of (54) we consider the Lagrangian density
L9, = =N {Bla, A)(=)b(a, 2a) + LY, | (55)
for the ¢ (x, \) field. Here the following notation is used:

L9y = (@, \)U (A1, Ao) W (2, Ao),

N = / / Dadrap(M)p(e), 9 =i -0, (56)
0x,

The equations of motion

m _ (57)
/ dAp(N) <i%¢ + M\ (x, )\)> =0

“w
—-m

for ¢(x, A) fields can be obtained from the action
A= / d*z LY (x)

by using independent variations over the fields (y, A) and P(y, A) and by taking
the differentiation 6L9,,/6¢(y, A) and 6(L{,,)" /61)(y, A). Here we have used the
following obvious relations:

(2, M) _ orp(x, \y) — 5@
E(y, )\) 51/)(% )‘)

0
]

(z = )X = A)

and definition o
(L?'gb)T = \I/(l‘a Al)UT()‘h )‘2)\11(1‘5 )‘2)
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It is easily seen that the propagator of the field ¢(x) in (53) is given by Eq. (9)
or

1

Qz) = ——===0"(a) =
V2 —
l m ; " ) m
Vi/ d)\p()\))\+55 (x) / dAp(N)S(z, A).  (58)

In the momentum representation, expression (58) takes the form
Qp) = / dAp(N)S(A. D), (59)

where

~ 1 A+D
S()‘7p):_ P

i A2 —p? —ie (60)

is the spinor propagator with random “mass” A in momentum space.

Our next goal is to study Feynman diagrams in nonlocal square-root quantum
electrodynamics with Green’s functions (22), (58)—(60).

In the “square-root” NQED the S-matrix can be constructed by the usual rule:

S = Expec T exp [/ d4:vLm(x)} , 61)
where
Lin(x) =eN (B ) Ay}, ©
A=Al (z)

and N is given by (56). The symbol T is defined by

(OIT [o(z, M)t (y, A2)] 10) = 6(A1 = A2)S(z =y, M) /p(M1) (63)

for the spinor fields. For example, at least for connected diagrams in the momen-
tum space one assumes

Expec {ﬁ(p) }

/ (NS (),

m

Expec {v”lﬁ(pl)v”zﬁ(pz)vw} = / dAp(N) {7”15(1317A)v”zg(ﬁzd)v”s} (64)

and so on.
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The gauge invariance of the “square-root” NQED means that matrix elements
of the S-matrix (61) defining the concrete electromagnetic processes have a def-
inite structure, and algebraical relations exist between them. In particular, in
the momentum representation, the so-called vacuum polarization diagram like (in
Fig.4) in the second order of the perturbation theory has the form

—~1,s —~1,s
le(k) = (kuky — gk ] +?) (65)
and the relation .
9>, (p) ~is
W =I5 (p, @)lg=0 (66)

is valid between the vertex function fif(p, q) and the self-energy of the “square-

root” electron if(p). The relation (66) generalizes the Ward-Takahashi identity
in QED. Here, in accordance with (64), we have

~ —ie2 "t o~
Si0) = Gogr [ o) [ ERDGEISE-R A 6
and
l,s _ i62 4 272 ve) “no v _
Ly (pa) = 57 | kDi((p — k)717) x Expec{ v"Q(qg + k)y"Q(k)y" =
(2m)
. 2 m N S
=t | ) [ ARDU = KPS @+ E A < SEARL @)
where )
S(p,\) = -
(b, M) 07
and 5 (k2 12) B Vl(k2l2)
.

Fort the proof of the relation (66), consider the identity

95BN _ 55 0)1#5(5, ). (69)
Opu

Further, it is easy to verify the identity (66) by differentiating (67) over p,, and
making use of the equality (69) as well as by choosing other momentum variables
in (68) and assuming ¢ = 0, p = p + ¢ = p. The relations of the type

0T (9. 0) o ye_ye =0
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follow from the definition

quExpec {ﬁ(pl)v“ﬁ(pg)} =qu ]n ]nd)\ld)\gp()\l)p()\g)x

% 5B M) 5 P, h)% — ) — O(pa) =
= [ ) [61.3) - 52 x)] 70

if ¢ =p1 — po.
Now let us demonstrate that the gauge invariance of the vacuum polarization
diagram in the “square-root” NQED and its matrix element is given by

—~ s

II

(k) = e*Expec {/ d?pTr {v“ﬁ(p + k)v”ﬁ(p)} =

nv

= ¢2 / d/\p(A)/dder{’y“g(ﬁ+ £\ 85, )\)}. 1)
Here we have used the d-dimensional gauge-invariant regularization procedure

due to [31] and the definition (64). After some calculations we obtain the same
structure as in (65):

H;V(k) - F(?) r (2 - %d> (k,ukv - kQQ,Lw)X

m 1
. 2 12 _ d/2—2
X /d)\p()\)/dmx(l z) [N = kz(1 — )] , (72)

which is manifestly gauge-invariant. Calculation of the matrix elements for f]ls (p)
and fif(p, q) can be carried out by the same method as in (27) and (32), where
we have to change m — .

In conclusion, we notice that similar modification of the Newtonian poten-
tial (1) and (5) gives rise to a finite quantum gravitational theory with the causal
Green’s function for the graviton:

¢ _ -1 4 —ip;cN W(_p2l2)
Ghvoe @) = Gy1; / dipe™ ][ () 2 i
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where the projecting tensor ]:[ (p) is given by the expression

wv,pa

IT 0) = dup@do ) + do (0)dup () — 2y (9o (0),

pv,po 3

duy(p) =Gguv — pupu/an

and V;(—p?1?) is defined by the same formula, (7). Here [ should be changed by
the Planck length:

hG N
o3

| —lp = =1.62-10733 cm,

where GG is the Newtonian constant.
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