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A mapping between the linear system of evolution equations, generated by
a finite-dimensional operator, and the system of generalized Riccati equations is
constructed. The canonical form of evolution equations is extended up to a multi-
variable system of linear differential equations governed by the companion matrix
of the finite-dimensional operator. Solutions of these equations form a set of gen-
eralized trigonometric functions which are coefficients of the series of expansion of
an exponential function. This series is a polynomial function possessing a definite
number of roots. A nonlinear system of differential equations for the roots of the
high-order Riccati-type equations is derived. Inverse mapping from the solutions of
the obtained system of Riccati equations onto the solutions of the evolution equations
is constructed.
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1. INTRODUCTION

Let H be a finite-dimensional operator presented by (n x n) matrix. It is
supposed, the operator H is a generator of some evolution process which is
described by linear differential equation of the type

d

S0 = HY(), ¥(0) =Ty, (1.1)

whose direct closed-form solution involves computation of the matrix exponential
U(t) = exp (tH)Py.

The matrix representation of the finite-dimensional operator H obeys its charac-
teristic polynomial equation

f(H) =0. (1.2)

As a matter of convenience, let us suppose that the characteristic polynomial
coincides with the minimal polynomial. We present polynomial f(X) in the form

f(X)=X"+ zn:(—)’“akX"—’“, ar € C. (1.3)
k=1

Let E be a companion matrix of the operator H. The companion matrix satisfies
the same characteristic equation (1.2), so that

F(E)=o0. (1.4)

Besides the evolution equation generated by operator H, one may define an
evolution equation governed by the n-order Riccati equation of the form

d

—U = f(U). 1.5

ZU = J(U) (15)
Evidently, the evolution equations (1.1) and (1.5) are closely connected with

each other. The main task is to establish an interconnection between solutions of

the evolution equations (1.1) and (1.5).



In general, the coefficients of the polynomial f(U) in (1.5) are defined as
certain functions of the parameter of evolution. If f(U) is a cubic polynomial,
then equation (1.5) is called the Abel ( Riccati—Abel) differential equation [1,2].
This kind of equations frequently appears in the modelling of real problems in
varied areas. Diverse methods were developed for finding the Abel equations (see,
for instance, [3] and references therein). A general exact integration strategy for
these equations was first formulated by Liouville [4] and is based on the concept
of classes, invariants, and the solution of equivalence problem.

If the coefficients of the polynomial f(U) are given by rational functions,
then a classification according to invariant theory of the integrable rational Abel
differential equations can be done [S]. Many integrable members of one class can
be systematically mapped onto an integrable member of a different class. In [6],
it has been found a unified way to find the rational map from the knowledge on
the explicitly given first integral.

In [7,8], solutions of the n-order Riccati equation with constant coefficients in
a field were expressed in terms of n-order trigonometric functions. The method
was based on the theory of generalized trigonometric functions which arise as
characteristic functions of multicomplex algebra [9,10]. The fact that the solutions
of special kind of the Riccati-Abel equation can be expressed in terms of the
third-order trigonometric functions, has been found by P.R. Vein [11]. Recently,
in [12,13] this result has been expanded with several novel findings.

The purpose of the present paper is to establish a mapping between solutions
of these two types of evolution equations (1.1) and (1.5). In order to give
an idea, we start with the most simple exercise with operator of evolution H
defined by (2 x 2) matrix. In that case, evolution equations given by linear
system of differential equations (1.1) are straightforwardly transformed into the
Riccati equation (1.5) with quadratic polynomial. Next, we consider the case of
evolution generated by (3 x 3) matrix. By means of this example, we come to
the conclusion that the problem of solution of the Riccati-Abel equation is quite
distinct from the example with quadratic equation. At the level n > 3, a resolution
of the problem requires an extension of the conventional frames of the evolution
problem, namely, the evolution equation with single parameter of evolution has
to be extended up till the system of (n — 1)-equation with (n — 1) evolution
parameter. Then, it is shown, the extended system of linear differential equations
is transformed into the system of generalized Riccati equations. Furthermore,
under certain conditions, the extended system of evolution equations is reduced
to canonical form of n-order Riccati equation.

The paper is set out as follows: In Sec.2, we recall the principal points
of the multicomplex algebra and solutions of evolution equations governed by
generator of the algebra. In Sec. 3, the problem of reduction of the linear system
of equations to the Riccati—Abel equation is explored. In Sec.4, the properties of
the truncated polynomials are studied. In Sec. 5, a system of evolution equations



governed by n-order matrix is transformed into the system of n-order Riccati
equations. In Sec. 6, one-to-one mapping between solutions of n-order Riccati
equation and the parameter of evolutions is established. In Sec.7, the developed
method is illustrated by analysis of the particular case for n = 6.

2. TRIGONOMETRIC FUNCTIONS OF n-ORDER

Let E be (n x n) companion matrix of the finite-dimensional operator H,
and the polynomial f(X) be its characteristic polynomial defined in (1.3). It is
supposed that the m-order polynomial f(X) possesses n distinct roots xzx, k =

1,...,n € C. The companion matrix FE is explicitly defined as follows:
00 0 0 0 =—an
10 0 0 0 ap_
E= Ce e . . (2.1)
0 0 1 0 —ao
0 0 01 o

The companion matrix F is the representation of equivalence class of all (n x n)
matrices with trace a;, determinant a,, and sum of corresponding minors a;,t =

2,...,n — 1. Elements of the general complex algebra are defined by the series
n—1

Z = Zequ, e =1, ZeGC,. (2.2)
k=0

In matrix representation, the generator e — FE so, that the element of general
complex algebra of n-order is given by (n x n) matrix of the form

n—1

Z=> Efq, E°=1I (2.3)
k=0

Thus, Z € GC,, is (n — 1)-degree polynomial of the form

n—1

QU)=>_ Urqk, g1 #0. (2.4)
k=0

The modulus of Z € GC,, is conventionally defined by the following determi-
nant [10]:

n—1
|1Z|" = Det()_ E*qy). (2.5)
k=0



The determinant is an n-order multivariable polynomial of n variables: gx,k =
0,1,2,...,n — 1. However, the algebraic module of the GC,,-number has to be
defined via the basic polynomial f(X) of the general complex algebra GC,,. In
fact, the following formula for the modulus holds true:

n—1 n—1
1Z|" =Det(>_ E*qr) = aqiy ] flw), (2.6)
k=0 k=1

where ug, k =1,2,...,n — 1 are roots of the (n — 1)-degree polynomial Q(U).
Introduce the following n-dimensional vectors:

(V?)ij = 51'73‘:1'4_1, Z,j = 1, cee, Ny V(ll = [(—)"_1an, ..., —a9g, al]T, (27)

and form the set of n-component vectors by imposing

Vi1 = Ev%, E=1,23,...,n—2. (2.8)

It is convenient to present the companion matrix E and its powers EP, p =
2,...,n — 1 in the basis of vectors v as follows:

E=Nvy, ... ,v0 | vY], (2.9)

EP = [vg,...,vgfl,v‘f,...,vg], p=23,...,n— 1. (2.10)

Denote by x;,i = 1,2,...,n the roots of polynomial f(X). Introduce n vectors

consisting of degrees of the roots of f(X) by
v (i) = [l 22, . ar T (2.11)
Vandermonde’s matrix is presented in the basis of these vectors
W =1[vs(1),vz(2),...,vg(n —1),vz(n)]. (2.12)
The eigenvalue problem for companion matrix E is formulated as follows:
EW = WD(z), (2.13)

where D(x) is a diagonal matrix D;;(x) = z;0; ;. Correspondingly, the eigen-
value problem for single eigenvalue is written as

Vo(i) E=xv,(i), vi(i)=[1, 227,20 (2.14)

In the same way as the usual complex algebra is used to describe trigonom-
etry, the general complex algebra GC,, induces representations of the set of



n-order trigonometric functions [9]. The Euler formula for the exponential ma-
trix is defined by the series

n—1
exp <ZEk¢k> = 90(¢) + Eg1(9) + E*g2(¢) + ...+ E" ' gn_1(9), (2.15)

k=1

where ¢ means the set of (n — 1) parameters ¢ := (&1, d2, P3, ... Pn—1)-
An evolution generated by matrix E is formulated in a standard way

d
5V'(0) = Ev(0) (2.16)
Solution of this equation is given by the exponential matrix
V() = exp (E¢)v?(¢ = 0), (2.17)

where v9(¢) is a vector with components

v? =90, 91,92, > gn—1]". (2.18)

Let v9(0) be an initial vector, then solution of Eq.(2.17) is expressed via the
exponential matrix as follows:

vI(p+ ¢o) = exp (Ed)vI (o). (2.19)

This formula can be also considered as summation formula for the ”g-functions”
9k(0),k=0,1,...,n— 1.

The crucial point is the following: besides the evolution governed by equa-
tion (2.17), the complete set of differential equations for generalized trigonometric
functions ( g-functions ) consists of the evolution equations generated by degrees
of the basic matrix F, they are

—V9(¢) = Ekvg(¢)7 ¢ = (¢1)¢2) - . '7¢7L—1)a k= 1) sy — 1. (220)

3. EXPRESSION OF SOLUTION OF n-ORDER RICCATI EQUATION IN
TERMS OF GENERALIZED TRIGONOMETRY

Let us start with the simple example when n = 2. In that case

f(X)=X? - a1 X +ay, (3.1)

E= < (1) _acl‘Q ) (3.2)

and



Algebraic modulus of Z € GC5 is defined by
1Z]> = |qo + Eq1|> = ¢; f (), (3.3)

where u is a solution of linear equation

Q(U) = uq1 +qo = 0. (3.4)
Exponential of E is defined by the Euler formula
exp (E¢) = Q(E) = g1(9)E + go(¢)1, (3.5)

where functions go(¢) and g;(¢) are trigonometric functions obeying the system
of differential equations

(0 )=(0 ) () o

This system of equations is readily transformed into the Riccati equation of the

type
9 du

Flu) = — @y =z = 5. (3.7)
with u(¢) = —go(¢)/91(¢). Obviously,
Det(exp (E¢)) = exp (sp(E)¢) = exp (a19), (3.8)
and, according to formula (3.3), we write
exp (a10) = g f (u). (3.9)

This formula is necessary in order to construct an inverse mapping from solution
of the Riccati equation u(¢) onto solutions of the matrix equation (3.6). Thus,
possessing u(¢), we define functions g1 and go as follows:

7(0) = T e (), ao9) = @) 610

Now, let us use a similar algorithm to construct an interconnection between
evolution equations generated by higher-order polynomials and the Riccati equa-
tion. In order to give a main idea, firstly, let us consider an evolution equation
generated by the third-order companion matrix £ obeying the cubic equation

E? —a1E? + asFE — asl =0, I means unit matrix. (3.11)
Expansion of exponential function of E is given by the series

exp (E¢) = go(d) + g1(9)E + g2(¢) B, (3.12)



where third-order trigonometric functions are solutions to the system of differen-
tial equations

d Jdo 0 0 a3 Jdo
o\ 9= 1 0 —a g |- (3.13)
g2 01 a g2

Our aim is to reduce this system of equations to the Riccati—-Abel equation of the
type
au
d¢
Here, we have to recall that trigonometric functions of the third order depend on

two variables, ¢1 and ¢o, so that the Euler formula (3.12) has to be written in
the form

U3 — a1 U? + apU — as. (3.14)

exp (E¢1 + E*¢2) = go(¢1, d2) + Eg1(d1, ¢2) + E*g2(o1, d2). (3.15)

In [9,10], we have proved that the linear differential equations for trigonomet-
ric functions gx, k = 0, 1,2 are reduced into canonical form of the Abel equation
under the condition go = 0. It is worth to emphasize, in that case one has to work
with complete form of the evolution generated by finite dimensional operator, i.e.,
one has to take into account all system of differential equations with respect to
complete set of parameters (¢1, ¢2). So, for evolution generated by the third-
order companion matrix E, besides the system of differential equations (3.13)
one has to consider equations with respect to the second parameter ¢o:

d g0 0 a3 azai 90
do | )T 0 —az az—aa g |- (3.16)
2\ 92 1 a a? — as )

These systems of differential equations are reduced into the Riccati-Abel equation
under the condition

92(¢1, d2) = 0. (3.17)

This equation implicitly contains functional dependence of the type ¢o = ¢2(d1)
and serves as a basic constraint to define solution of the Riccati—Abel equation as
follows:

U(¢2) _ _90(¢1(¢2)7 ¢2) )
91(p1(92), ¢2)

When n > 2, this algorithm is generalized straightforwardly [10]. Let f(X)
be n-order polynomial with companion matrix E. First of all, it has to be
noted that the evolution process generated by (n x n) matrix E consists of

(3.18)



(n — 1) evolution equations generated by matrices E, E2, ..., E"~! with respect

to (n — 1) parameters of evolution ¢y, ¢2, ..., ¢p—_1, correspondingly,
’ 0
HU(P) = EFU(¢), k=1,2,....n—1;¢ = (¢1,h2,...,bIn_1), O = i
(3.19)

The solution of this system is given by the exponential function
n—1
exp (Z E%k) =go+Egq + E%g2+ ...+ E" g, 1 =Q(E). (3.20)
k=1
Then in [8] it is proved that by using constraints
g(6) =0,k=2,3,...,n—1, (3.21)

the system of linear differential equations (3.19) is reduced into the n-order
Riccati equation with respect to parameter of evolution ¢,,_; of the form

d
d¢n_1U = f(U), (3.22)
with solution
Ulpn-1) = —%- (3.23)

Thus, transformation of the linear system of evolution equations into canon-
ical form of the n-order Riccati equation requires (n — 2) constraints. However,
we can transform differential equations for g-functions into a system of “Riccati-
type” equations. Consider (n — 1)-degree polynomial in the right-hand side of
the Euler formula (3.20)

Q(U) :go+Ugl+U2g2+...—|—Un71gn_1. (324)

Under constraints g, = 0, k = 2,3,...,n — 1 this polynomial has been reduced
to the form

QW) =go+Ug. (3.25)

Then the solution of equation Q(U) = 0 turns out to be the solution (3.23) to
the n-order Riccati equation (3.22). This observation prompts us an idea that
the roots of the polynomial Q(U) = 0 free of the constraints (3.21) will obey a
system of “Riccati-type” equations.

As an example, consider the case n = 3. We have to resolve the following
problem: it is necessary to derive differential equations for roots of the polynomial
Q) (u) making use of differential equations (3.13). Roots of polynomial Q(u) are
denoted by U and V. The following Proposition 3.1 holds true.



Let U,V be solutions of the quadratic equation
u? + G12(¢>)u + Gog(d)) =0, (3.26)

where G12(¢) = g1/92, Go2(¢) = go/ge. Then the functions U(¢),V (¢) obey
the following system of differential equations:

d d
U-V)=U=f(U V-U)—V =f(V). 3.27
( )d¢ f), ( )d¢ fV) (3.27)
These equations are readily obtained from the following system of linear algebraic
equations:

dG12 dG12 dG12 @
d d d d
O I B o (3.28)
dG02 dG02 dGOQ ﬂ
d¢o au dv do

Each of equations of the system (3.27) coincides with the Abel equation of the
second kind [2].

Proposition 3.1 is a particular case of the general theorem. In the general case,
we have to derive a system of differential equations for roots of the polynomial

QW) =go(¢) + Ugi(¢) + U?ga(¢) + ...+ U™ 'gn_1(9), (3.29)

where ¢ means a set of (n — 1) parameter: ¢1, ¢2,...,dp_1.

4. TRUNCATED POLYNOMIALS AND THEIR PROPERTIES

The aim of this section is to recall some properties of the truncated polyno-
mials which (in Sec.5) we shall use in proofs of Theorem 5.1.
Introduce n-dimensional vector v, by definition

vi=[1,U,U%..., U], (4.1)

and form scalar products of this vector with vectors v9, vg, and v{, which possess
the following properties:
Property 4.1

n—1
QU) = Z Ulgj = (vu - vg) (4.2)
§=0
Property 4.2
(vt v =U". (4.3)



Lemma 4.3
Let x be one of the roots of polynomial f(X). Then, the following formula
holds true:
" = (EPVE-vT) = (Vi - vT). (4.4)

Proof.
On making use of formulation of eigenvalue problem for companion matrix
E in (2.13) and (2.14), we get
" = (v{-vT), 2"t = (EvS-v®), 2" = (EPv{.-v®) = (v;;_|r1 -v7). (4.5)
a

Lemma 4.4
The following formulae hold true:

tevi) =U" = f(U), (4.6)

(V') =UPU™ = fU) + fU)Y URVHy Vi jor)s P> 1. (47)

Proof.
Since v, is not an eigenvector of E, then instead of Eq. (4.5) we have
Etv* =Uv" + f(U)V)_, (4.8)
where v0_, =1[0,0,0...,1]T. The set of Eqs. (4.5) are extended as follows:
(vi-v") =U" - f(U),
(v -v*") =UU" - (U))+f(U)( 1)
(V5 v") = (ViET -v") = (v§ - B “) = (4.9)
= (v§ - (UV" + v, 1)) f(U) =
=UWs v+ (v§ vy ) f(U) =
=U (UWU" = fU)) + FU)(vi V% 1)+ (VEvh ) =
=U*(U" = f(U) + U(fU)(vV] - V1) ) + FU) (VS - vy y).

At the final step of this algorithm, we come to the general formula of the form

(v ve) =UPU" = f(U)+ fU)Y UFVO - ve 1) (4.10)

d

10



Lemma 4.5
Let U be one of the roots of polynomial Q(U), then the following formula
holds true:

(V- EPvy) = —f(U) U™ 2 + GpoU™ 3 + .+ G UM 4 L+ Gy),
4.11)

Proof.
Let us begin with the case p = 1. In that case, formula (4.11) is reduced to
(v -Ev9)=-U"+ (v*-v}]) = —f(U). (4.12)

From definition of the companion matrix F in the basis of vectors vg (see, (2.11),
(2.12)), it follows that the vector F'v9 can be presented as a sum of the following
vectors:

Ev? =[Gy +viGy + ...+ V2 G, o]+ [VY]. (4.13)

Form a scalar product of this vector with vector v*, then
(v (VG + VG + ...+ V2 1 G2)) + (V- VY). (4.14)
By taking into account (4.3), this series is transformed as follows:
(V' Ev9) = ( GoU + GrU? 4+ ...+ G 2U" 1) + (v - V). (4.15)

Since U is one of the roots of the polynomial Q(U), equation Q(U) = 0 can be
written in the form

GoU + GLU? + ...+ G, xU" 1 =
=U(GoU + GLU* + ...+ G pU" % = —U" 1) = —U". (4.16)

By using this formula in (4.15), we obtain
(v Ev9)=-U"+ (v* - v}). (4.17)
Now take into account that
(Vv =a U™ —aU" 2 4 dan(—1)" = —f(U)+U".  (4.18)

Hence, in the final formula, the term U™ is removed, and the right-hand side of
Eq. (4.17) takes the form

(v Ev9)=-U"+ (v*-v{) = = f(U). (4.19)

11



Now, consider the general case when p > 1. Write the following series:
EPvY9 = [vggo + v2+1g1 oAV g1 F VGt Vpgn-1]. (4.20)

Divide both sides of this equation by g,,—1 # 0 and form a scalar product of this
vector with v,, which we present as a sum of two brackets:

(v*- (ngO + vnglGl +...+ nglGn—p—l)) +((v* - v])Grp+...). (4.21)

On making use of formula
(v*- Vg) =UP,
the series inside the first brackets in (4.21) is presented by the following polyno-
mial:
UPGo+ G UPT + .+ Gy UM =
=UP(Go+ G U+ ...+ U PG, _, ). (4.22)

Since U satisfies equation Q(U) = 0, the following identity is true:

Go+GiU+ ...+ Gpp U P =
= (G pU" P+ Gy UM PP 4 U™, (4.23)

By using this identity, we get

UP(Go+GiU+...+ Un_p_lGnipil) =
= —UP (G pU" P+ Gpp UV P4 4 U™, (4.24)

Now evaluate the series inside the second brackets in (4.21)

(v V) Gnpt...) = (V' V])Gnpt+ (V" V5)Gnpi1+.. .+ (V*v]). (4.25)
By using formulae (4.6), (4.7) and by collecting together the resulting expressions
of both brackets, we come to the following expression:

(V' EPvy) = —f(U) U™ 2 + GpoU" 3 + .+ G UM 4 L+ Gh).
- (4.26)
To proceed, it is necessary to recall some features of the following m-degree

polynomial
m—1

BY)=Y"+ Y Y. (4.27)
k=0

12



Lemma 4.6
Let yi, k = 1,..,m be a set of roots of B(Y'). Define the following truncated
polynomials:

m—p—1

Bp() =" "+ > yfbpap i=1,...m-1; p=1,2...,m—1 (4.28)
k=0

The truncated polynomial By (y) implicitly is independent of y; and equals to

By(y) = by yi=0- (4.29)
Proof.
Since y; satisfies the equation B(Y') = 0, then
m—2
ui(uzm*l + ufbkﬂ +b1) = —bo. (4.30)
k=2

According to Vieta’s formula, coefficient by is given by the product of the roots

bo=(=1)" 192 Yi- - Ym- (4.31)

Use this expression instead of by which admits to remove the factor y; from both
the sides of Eq.(4.29). In this way, we come to the equation which does not
contain y;,

m—2
<Z/im1 + Z Yrbry1 + 51) =Y Yim1Yir - Ym(—D)™ (4.32)
k=1

In the right-hand side, we have the coefficient b; with y; = 0, hence,

m—2
(yzml + >yl + b1> =b

k=1

0. (4.33)

Next, re-write this equation as follows:

m—3
vi <ym2 + D Y b + b2> = bi|ys—0 — br. (4.34)
k=2
Notice that
bily;=0 — b1 = yiba2|y,=o, (4.35)

and remove the factor y; from the identity. We get,

m—3
<ym2 + Z Y br 2 + b2> =by

(4.36)
k=2

13



By continuing this process at the pth step, we arrive to the following equation:

m—p—1
yrr Z Y bty +bp | = bply=o.
k=p
O
Lemma 4.7

(4.37)

Derivative of polynomial B(Y) at Y = y; is equal to polynomial of the form

m—1
dB(Y) . -
|y = U D (ko)
0 k=1
Proof.
Differentiate B(Y") with respect to Y,
dB(Y) m 1 = k—1
—1) b
dY ‘Y:yi + 1; y k-

This polynomial can be presented as a sum of polynomials as follows:

-1

dB(Y) K 1 k1
= m= b
v ‘Y:yi 2 \v Z Yi Ok
7=0 k=1+j

By applying Lemma 1 for all polynomials inside brackets, we obtain

dB Y) m—1 B m—2 B
R SR U W
i =0 k=1+j
m—1
=y + >y (brly—o0)-
k=1
O
Lemma 4.8

Consider triangle matrix M;; of the form

n/2—1
M;j = dij + § —1 0 VE)Oitkjs

Mij:O, 1< J.

14
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4.41)

(4.42)



The matrix inverse to M;; has the form:

MY =6+ Sijir(=)ar, i>j,
k=1
(4.43)

Mt =0, i<j.

5. SYSTEM OF n-ORDER RICCATI DIFFERENTIAL EQUATIONS FOR
ROOTS OF THE POLYNOMIAL

The aim of this section is to derive differential equations for roots of the
polynomial Q(U) through the agency of system of differential equations for its
coefficients.

Theorem 5.1

Let the set of functions up(¢), k=1,2,3,...,n=1; ¢ = (d1, P2, -+, Prn—1)
be a set of the roots of the polynomial

n—1
QU) =) U'g;(9). (5.1)
§=0
where coefficients g;(¢),j = 0,1,2,...,n—1 are solutions of evolution equations:
n
0igj=> (BEN'gm-1, i=1,...,n— L (5.2)
m=1
Then, the functions ur(¢),k = 1,...,n—1 obey the following system of nonlinear
equations:
n—p
F(um) Z An—t—pOk Um = Ap flum), m=1,...,n—1, (5.3)
k=1

where F(uy,) is (n — 2)-degree truncated polynomial of the form

dQ(U) 2 N
F(um) - dU ‘U:um = Uy, ©F kz::oumAk(m) = k]‘_];[#m(um - uk)v (5~4)

and A,(m) is p-th coefficient of the polynomial F(uy,).

15



Proof.
The calculations are essentially simplified if the generating polynomial f(X)
is taken in a reduced form, i.e.,

fX)=X"4+(-1)"tap 1 X + (=1)"a,, ar=0,k=1,2,....,n—2. (5.5)

Firstly, let us proceed the proofs with the reduced polynomial.
Step 1.

Differentiate equation Q(U) = 0 with respect to parameters ¢y,
k=1,...,n—1:
n—1
QW) =0k | gnaU" 1+ > U/ g1 | = O(va - vg) = 0.
j=1

Here U is one of the roots of polynomial Q(U). Equation is presented as a sum
of two parts,

Q) = ((vy - va)) + <vu : %vg> —0. (5.6)

Divide this equation by g,—1 # 0 and denote fractions by

Gi=-2 j=01,2...n-2
In—1

For pth root U = w; the first part is written as follows (see, Lemma 4.7):

((n—1)U" 2+ z_: (j — DUI2G_1 )oRU = F(w)orU,  (5.7)
where .
F(u) = H (ug — ). (5.8)
m=1,m##l

The second part contains derivations of the g-functions

n—1
(Vi - Opvy) = (Orgn-0)U" "+ > U (Okgj—1) | - (5.9)
In—1 In—1 =
Step 2.

Let us start with differential equation with respect to variable ¢;. The
derivatives of g-functions with respect to ¢, are given by formula

(v - OvI) = (v - EvY). (5.10)

16



According to formula (2.11), we write
v = EvI = [VIGo + V3G + ...+ V2 G, a] +[v]].
Form a scalar product with vector v, as
(v (VIGo + V3G + ...+ V2 Gh)) + (V- v, (5.11)
and take into account formula (4.3) (see, Property 4.2 ). In this way we obtain
(V' Ev9) = (GoU + GLU?* + ... 4 G 2U" 1 ) + (v - v§) =

=-U"+ (v*-vY). (5.12)
Now recall formula (4.6) (see, Lemma 4.4)
(Vo - v]) = a U — U2 4+ .. Fan(-1)" = —f(U)+ U™
By taking into account this formula, we come to conclusion that
(v -ovI) = (v'-EvI9)=-U"+ (v*-v]) = —f(U). (5.13)
Finally, we come to the following equation:
F(w)Opw = f(w), (5.14)
with F(u;) defined in (5.8).
Step 3.
Next, consider the case p > 1. On making use of formula
Ep = [V27V2+1; ceey V?zflﬂ thla ng s 7vg]a
the derivatives of g-functions with respect to ¢, can be represented as follows:

Opvy = EPv, = [vggo —|—vg+1gl +.. .+v2_1gn_p_1 +vign—p+... +vggn_1].

Divide this equation by g,_1 # 0 and calculate the scalar product (5:15)
(v (9,v9)) = (V- EPvY).
The result includes two parts, Pr and Prj:
Pr+ P, Pr=(vy - (v0Go+ v 1Gi+ ...+ V) 1Gup1)), 516

Prr = (Vu . V?Gn,p =+ .. )

17



The first part is calculated by taking into account formula (4.6). We get
Pr=UPGo+GiUP™ + .. 4Gy U =

:Up(GQ+G1U+...+Un7p71Gn_p_1). (517)

Since U is one of the roots of equation Q(U) = 0, the following equation holds
true:

Go+GiU+ ...+ Gpp U P =
= —(GrpU" P+ Gpp UM P4 4 U™ D). (5.18)
Hence, the expression for P; takes the form
Pr=—(GnpU" + Gppt U™ + .+ G UMTPTY), (5.19)
Now calculate the second part of the sum, Py, which has the form
Prr=(vu - v])Gnp+ (Vu - v3)Gnpy1 + ..+ (V- vp). (5.20)

Firstly, let us consider the most simple case when polynomial f(X) has the
form defined in (5.1) with ax = 0,k = 1,2,3,...,n — 2. In that case, from
formulae (4.6), (4.7) of Lemma 4.4 it follows:

(Vu - Vi) =U" = f(U),
AN n+l v — gyntp—1 _ (521)
(v vy)=U Uf(U), s (Vu-vy) =U F(U).

By replacing scalar products (v, - v§) in (5.20) according to these equations, we
get

Prp = (U" = f(U))Gnp+ (U™ = Uf(U))Grops1 +...+ U= f(U)).
(5.22)
Now join the results of two calculations:

Pr+ P = —(Gn_pUn =+ Gn_p+1Un+1 + ...+ Un+p—1)+
+(U™ = f(U)Gp—p + (U —Uf(U)Gp—pi1 + ... (UTP™E — f(U)) =
=(—fU)Gn—p+ (UfU))Gn—pr1+ ...+ (=f(U)) = =f(U)Ap, (5.23)

where by A, we denoted the polynomial (see, Lemma 4.6)

Ay(U)= UP 4+ UP 3Gy 9+ ...+ UGp_pi1 + Gryp. (5.24)

18



Notice, for p = 1, A;(U) = 1. Joining obtained equations into unique system,
we arrive to the following system of equations for function U(¢):

0
H(U - uk)%U FUX urt+ Up72Gn72 +.. .+ UGh—pt1 + Gn*p)~
k p

(5.25)
In notations introduced in (5.8) and (5.24), this system of equations is written as
0
F(ul)wul =fU) Ap(w), ,p=1,2,3,...,n—1. (5.26)
p

From formula (5.8) for function F'(u;) it follows that

[[O—w) =Y 0P (UP +UP2Ga+ ...+ UGn py1+Gny) =
k p

=3 U4, ). (5.27)
p

In this way we come to the following equation:

n—1
S U, U = f(U). (5.28)
p=1

Step 4.

In the general case when ay # 0,k = 1,2,...,n, we have to use general

formulae for the scalar product v, with v§. In the general case instead of
formulae
(Vo vy) =U"P7 = f(U), ar =0

fork=1,2,...,an—2, and a,_1 # 0,a, # 0, we have to use the formula

(v ve) = =UP"HU" = f(U)) + f(O)UP 2 (vy_y -vf) + ...+
F+UPTFLQO o)+ (00 ). (5.29)

By using these formulae in
(Vu : V%)Gn—p + (Vu : Vg)Gn—p-i-l +...t (Vu : Vg)v (530)

we come to the following system of equations for function U(¢):

FU)oRU = f(U ZMklAl (5.31)
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where matrix My, is defined in (4.42). The matrix inverse to M;; according to
Lemma 4.8 has the form

MGt =6+ Y Sigan(=)as, i >,
k=1

M;'=0,i<j. (5.32)

By applying the inverse matrix to the system of equations (5.24), we come to the
following set of equations:

n—p
FU) > anrp0s U=A4, fU), p=1,2,3,...,n—1. (5.33)
k=1

To proceed, multiply pth equation by function U? and summarize into one equa-
tion

FU) Y U i an—k—pOk U =Y _ A, f(U). (5.34)
k k=1 P

By using the identity
> AUP =F(U),
P

we arrive to the following equation:

n—2
Z Un72fk(
k=0

which also can be written in the form

Il
el

(—1)" aiOks1-:) U= f(U), (5.35)

(3

Il
o

(2 (D)ManyiaUN0 U = f(U). (5.36)

6. THE SYSTEM OF EQUATIONS INVERSE TO THE SYSTEM OF
n-ORDER RICCATI EQUATIONS

The n-order Riccati equation

U

e fU), (6.1)
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with constant coefficient, is directly integrated with respect to inverse function

¢ = ¢(U) by
dU

o)y
Thus, in order to integrate the Riccati equation, one has to construct an inverse
equation [14]. The system of n-order Riccati equations also admits an inverse

dg = (6.2)

system of equations, where the set of variables ¢,k = 1,2,3,...,n — 1 are
functions of the roots ug, k = 1,2,3,...,n — 1. Define a mapping ur — Y
given by the following Jacobian matrix:
Our Oy
o T O,
Du 1 n—1
5‘un,1 aunfl
awl o 8wn—1
The differential of w; is given by
n—1
Ou; :
du; = Y e, i =1,2,.. . n—1. (6.4)
= Oy,

Firstly, let us consider the most simple case of the reduced polynomial f(X) de-
fined in (5.5). In that case, we have to use the reduced evolution equations (5.26),

Ou; = flus) Apl] J(wi —u)) ™", i,p=1,2,3,...,n— 1. (6.5)
Op ki

The right-hand sides of these equations are denoted by
Agp = Ap[[ [ (wi = wi)] . (6.6)
ki
In the Jacobian matrix (6.3), replace derivatives according to equations (6.5),

flu1)Ar e fu1)Ar,n—1

D . .

D—Z): . (67)
f(un—l)An—l,l <o f(un—l)An—l,n—l

It is seen, if in this matrix we put f(u;) = 1, then the inverse matrix is nothing
else than the Vandrmonde matrix

J(

uy~? up 3

v — e 6.8
ul e Up—1 ( )
1.1

21



Consequently, the inverse matrix has the following form:

iy S
fluw) 7 flun—1)
JH =) =J(=) == U1 Un—1 . (6.9)
Dy Du F) T Pl

flur) 0 flun—1)
In this way, we come to the following system of equations for function ¢y (u;):

n=1_ n_fk—1

Uy
dwkzzmdui,kzl,l...,n—l. (6.10)
=1

In the general case, elements of Jacobian matrix in (6.3) are defined by
equations (5.31). We have

Du
J(H7) =
Dy
1 My
A Aqpo oo Arn 0 all a1 M;n 1
_ Ag g Aso ... Aspg ' e
e . . . 0 0 a
Anfl,l An71,2 cee An71,3 0 0 11
(6.11)
Jacobian of inverse transformation is defined by matrix
8U1 ¢1 811,2 (bl s 8u,,_1¢1
Du Dy ... .. ... ...
J =)= (=) =
(DQ/J) ( Du ) aul ¢n72 auz ¢n72 cee 8un71¢)n72
aul d)nfl auzd)nfl cee 8un71¢n71
On making use of Lemma 4.8 and formulae (6.7) and (6.8), we get
Dy
J — ) =
1 —a1 ... ap—2o(—1)" e T
0 1 cor ps(—1)"71 Uff_l ug_l . uﬁj
0 0 o —aq U1 Uo cee Up—1
0 0 1 1 1 e 1
(6.12)
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7. EXAMPLE

It is useful to illustrate the method in the case of evolution equation generated
by polynomial given in an explicit form. Let us consider an evolution generated
by the polynomial of sixth order. The generating polynomial of n = 6 order is
written in the form

F(X) =X —ay X% 4+ aa X? — a3 X3 + as X? — a5 X + ag. (7.1)

Let U be one of the roots of the polynomial Q(U). Then the function U obeys
the following system of equations:

F(U)0U = Ay f(U), (7.2)
F(U)0,U = (A2 + a1 A1) f(U),
F(U)0sU = (A3 + Asay + (a? — a2) Ay) f(U),
F(U)04U = (Ay + a1 A3 + (a7 — a2) Az + (a3 — 2a1az + a3) Ay) f(U),
F(U)35U = (As + Asar + (a] — az) Az + (a3 — 2a1a2 + a3) A+
+ (—a4 + 2a1a3 — 361%@2 + a% + a%)Al)f(U%

where
Al =1, —Ay=V+WHY+Z, As=VW+VY+VZ+WY +WZ+YZ,

— Ay =WVY+WVZ+WYZ+VYZ, A5 =WVYZ, (7.3)
and polynomial F'(U) is defined by
FU)=(U-V)U-W)U-Y)U~-Z) = AU+ AU3 + A3U? + AU + As.

(7.4)
The system (7.2) is written in the matrix form as follows:

5
F(U) 0y U= My Aj, k=1,2,3,4,5, (7.5)

j=1

with matrix

J
1 a1 —as+ a% asz — 2a1a9 + a? —aq4 + 2a1a3 — 3a%a2 + a% + a‘l1
0 1 a —ag + a% asz — 2a1a2 + a?
=10 O 1 a —ag + a%
0 0 0 1 aq
0 0 0 0 1

(7.6)
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Notice that the inverse matrix has a more simple form:

1 —aq as —as Q4
0 1 —ay ag —as
M;'=10 0 1 —a1 ax |. (7.7)
0 0 0 1 —a
0 0 0 0 1

By using the inverse matrix, the system of Eqgs.(7.5) is transformed to
F(U) (05 — a104 + 203 — a302 + a401)U = As f(U),

F(U) (04 — a103 + a20s — a30,)U = Ay f(U),
F(U) (93 — 102 + a20,)U = Az f(U),
F(U)(0y — a100)U = Ay f(U),
FU)OU = A, f(U). (7.8)

Now, we collect these equations into one equation by taking into account the
identity (7.4). In this way we come to the equation containing unique unknown
U:

1 —a1 a9 —a3 a4 05
0 1 —a1 a2 —as 04
(1 u uv? us U4) 0 o0 1 —a1 a9 03 U=fU)
0 o0 0 1 —ai 02
0 o0 0 0 1 o1
(7.9)
This matrix equation can be written in the form either
(U0 + U3(0g — a101) + U? (93 — a102 + a01 )+
+U (04 — a103 + 203 — az01)+
+(85 —a104 + ag03 —a382—|—a481)) U = f(U), (710)
or
( (U4 — a1U3 + Clg[]2 —azU + a4)81—|—
+(U3 — a1U2 + aU — a3)5‘2+
+(U2 — alU + a2)83+
—l—(U — a1)84 + 85) U= f(U) (7.11)
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The Jacobian of inverse mapping is defined by the matrix

au¢1 av¢1 a11)(7751 ay¢1 az¢1

au¢2 av¢2 a11)(7752 ay¢2 az¢2
T = Oubs Ouds Ouds Oyds Dugy | =

8u ¢4 81) ¢4 8’w ¢4 8@/ ¢4 82 ¢4

8u¢5 8U¢5 8w¢5 8y¢5 8z¢5

1 —ai a9 —as ay
0 1 —ay a2 —as
= 0 0 1 —a1 as X
0 O 0 1 —a1
0 O 0 0 1

U'/f(w) VA/F() W) YO/f(y) Z0/f(2)
US/f(u) VE/F(0) W3/F(w) YP/F(y) Z°/f(2)
< | U VR WERw) Y2/ Z2fG) | (712)
U/f(w) V/F@) W/fw) Y/f(y) Z/i(:)
Vi) Ufe)  1fw)  1Fw 15

By using the notations w1 = u, us = v, uz = w, uqg = Y, us = 2, the
matrix equation is reduced to

0 1
8? — o (u;l — aluf’ + aguz2 — asu; + aq),
K3 (3
0 1
8;:? = o (u? — a1u? + agu; + asz),
0 1
0ds _ _1 (u; —aq)
dui — flug)
dos 1
= ) 7.13
bu; ~ Fun) (7:19)
Matrix form of this system of equations is
b1 1 —a1 ax —asz ag uf
9 2 1 0 1 —a1 a2 —as u}
ou ¢3 = f( ) 0 0 1 —ax a2 uf (714)
il g, YWlo o o 1 - u;
¢ 0 0 0 0 1 1
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