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Longitudinal Tension and Mechanical Stability
of a Pressurized Straw Tube

When developing charged particle detectors based on straw tubes working in
vacuum, a special technique is needed for their mechanical properties evaluation.
An experimental method of strained pressurized straw tube mechanical properties
study is presented. The performed measurement results are in agreement with the
approximate calculations taking into account the known uncertainties of the wall
material parameters. It is shown that the difference between the tube wall longitudinal
tension and the pressure force applied to the tube cross section area deˇnes both the
straw tube transverse stability and the lowest value of its oscillation frequency.

The investigation has been performed at the Veksler and Baldin Laboratory of
High Energy Physics, JINR.
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INTRODUCTION

During the last decades, a series of experiments in high energy physics have
been designed in order to investigate very rare decay modes that require precision
measurement of charged particles momenta and positions (see, for example, [1, 2].
It stimulates further development of gaseous particle detectors based on straw
tubes (straw trackers) containing gas under pressure (typically under atmospheric
one) and working in vacuum. In particular, the purpose of NA62 experiment [1]
is to measure K+ → π+νν̄ decay branching ratio, that requires an unprecedented
precision of charged pion momentum measurement.

The problem of straw tubes strength and stability becomes especially im-
portant when drift tubes of particle detectors are placed into vacuum in order to
minimize the multiple scattering of detected particles. In such a case, both the
ˇlling gas pressure P and the external longitudinal tension force T are applied
simultaneously, and their combined effect should be understood at least in the
simplest approximation.

Only two coordinate directions related to straw tube geometry are essential
for the problem of a strained straw under pressure: the axial direction along
the straw axis (‖) and the circumferential direction (⊥) tangent to the straw
cylindrical surface in the plane normal to the axis. Radial dependence of wall
stress is negligible when the straw wall thickness h is much smaller than the
straw radius R.

For a pressurized tube with a very thin wall glued into a rigid frame by
means of a rigid plug, one can derive an approximate equation for the radius as
a function of distance Z from the gluing place:

TR′′

2π
− Eh

(
R

R0
− 1

)
+ PR = 0, (1)

where E is the wall Young's module and R0 is the nominal straw radius that
remains ˇxed at the end glued into the frame. The ˇrst term of (1) represents
a force that is caused by the wall longitudinal curvature, the second one is an
effect of circumferential stress, and the last term is a pressure effect. The solution
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satisfying the boundary condition R(0) = R0 is

R = R0 +
PR2

0

Eh − PR0

(
1 − e−Z

√
2π(Eh/R0−P )/T

)
. (2)

For the typical straw characteristics (see below) one can calculate that a usual
radius transition zone is much shorter (of the order of 1 mm) than a typical straw
length L of 2 m. So we can ignore the presence of the transition zone and
assume that the straw radius is uniformly increased by the applied pressure for
the complete straw tube. Also, one can show that the pressure force applied to the
end plug may be calculated for the increased radius R(∞) in order to take into
account the axial component of the pressure applied to the transition zone, that
otherwise should be subtracted from the axial wall tension applied to the plug.

Straw circumferential (hoop) stress caused by the inner pressure P can be
evaluated as [3]

σ⊥ =
PR

h
. (3)

This is a general relation for a straw with inner pressure, as no other forces appear
in transverse directions (circumferential or radial). However, R in (3) may be
deviated from R0 due to the pressure and tension effects.

Straw axial stress may be caused by different reasons depending on the
conditions at the ends. For example, if the pressure acts not only on the cylindrical
shell but also on the free ends closed by airtight end plugs, one can write a simple
relation between hoop and axial stress values:

σP
‖ =

PπR2

2πRh
=

PR

2h
=

σ⊥
2

. (4)

Hoop stress leads to the transverse strain for straw cross section perimeter
deˇning the ˇrst contribution to the radius relative change: ε1⊥ = ΔR1/R =
σ⊥/E = PR/Eh. As a consequence, the Poisson effect gives a negative contri-
bution to the axial strain: εR

‖ = ΔLR/L = −μ(ΔR/R) = −μ(PR/Eh). It is

added to the other contribution to elongation ε1‖ = σP
‖ /E caused by the pressure

force applied to the end plugs. A similar derivation may be done for the hoop
strain, also taking into account the Poisson effect. So for a straw with free closed
ends we have

ε‖ =
PR

2hE
(1 − 2μ), (5)

ε⊥ =
PR

2hE
(2 − μ). (6)

In [4], the straw elongation according to formula (5) has been studied, and it is
found to be precise enough within our knowledge about the material properties.
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The hoop strain formula (6) has been derived for the pressure vessel example
in [3].

But in the typical experimental setup exploiting straws in vacuum (like [1]),
the straw ends are ˇxed by means of gluing into the rigid frame. In this case,
the above formulae are irrelevant, as the pressure force applied to the ˇxed end
plug is compensated by the rigid frame rather than by the axial stress of the tube.
Moreover, the end plug with a gas supply channel even does not feel any pressure
force, as the pressures inside the straw and behind the plug are equalized.

Usually it is difˇcult to investigate the straw mechanical state when the tube
ends are glued into the rigid frame, as in this case no directly measurable straw
characteristics like elongation or individual straw tension are easily available. So
one needs an auxiliary installation for this purpose.

1. TESTBENCH FOR STUDIES OF A STRAINED STRAW
UNDER PRESSURE

A special testbench (see Fig. 1) has been built in order to study straw mechan-
ical properties under the inner pressure excess that simulates an effect of vacuum
outside the straw in some real particle detector setup. The testbench is used in
order to test straws subjected to both a preliminary external tension T0 and an
inner pressure excess P (that is applied afterwards). The resulting longitudinal
force applied to straw TP is measured by means of tensometer Tm based on
the single-point aluminium load cell (Tedea-Huntleigh, model 1022) [5] with a
maximum measured force of 10 kgf.

A straw specimen is closed on the tensometer side by the end plug e1 with
the end cap C using glue for rigid sealing. End cap C is connected with the
tensometer Tm by means of two 	exible joints and a rigid rod. The other straw
end contains a plug e2 with a gas supply channel. This straw end is glued into
the solid support that may be moved along the rigid basement B and ˇxed on
a speciˇc place in order to create a preliminary straw tension prior to the test.

Fig. 1. The testbench scheme: B Å rigid basement; Tm Å tensometer; e1 Å closed
end plug; e2 Å end plug with a gas supply channel; C Å end cap with a sealing; P Å
pressure supply; S Å straw; O Å optical coupler; A Å ampliˇer
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Fig. 2. Straw effective tensions TP versus the pressure excess P for the different initial
tensions TP (0) for the straw A. Circles Å measurements; solid lines Å result of the ˇt
by formula (12) with a common set of ˇt parameters

Then the pressure supply is opened, and the changing pressure values P (at) are
recorded together with the corresponding values of tensometer measurements TP

(in gf) (see experimental points in Figs. 2 and 3, a).
Straw oscillations are studied by means of the optical coupler O (see Fig. 1)

that emits constant intensity infrared radiation and registers the radiation re	ected
from the straw wall. When the straw oscillations are mechanically excited, the
registered radiation intensity is modulated by the changing distance to the wall.
The obtained signal is ampliˇed and sent to the oscilloscope with a Fast Fourier
Transform function. In the resulting frequency spectrum the lowest peak position
is regarded as a straw lowest frequency.

In general, end cap C may be shifted down due to its weight of 10 − 20 gf.
But for the horizontal force TP > 300 gf (assuming the cap weight of 25 gf)
it has been estimated that the cup vertical shift is below 4 mm. It leads to the
relative elongation of two-meter straw at the level of 10−4, that is much less
than the minimum straw elongation caused by the preliminary tension (10−3).
So the straw ends may be considered as the ˇxed ones after the application of
preliminary tension. For TP < 300 gf, the condition of ˇxed straw ends may be
violated, and for a limit of free straw ends the measured TP on the testbench is
deˇned mainly by the cap weight.
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Fig. 3. a) Straw effective tensions TP versus the pressure excess P for the different
initial tensions TP (0); b) straw lowest oscillation frequency for the corresponding TP

and P . Filled circles Å straw A, open circles Å straw B (see the text). Solid curves Å
calculations with the μ⊥(E‖/E⊥) and k values from the Table. Error bars represent an
estimation of uncertainty (1 Hz) for the frequency measurement

Straw example properties and measurement results

Property Straw A Straw B

Diameter, mm 9.8 18.0
Length, m 2.1 1.9
Wall thickness, μm 36 54.44
Linear density, g/m 1.55 4.31
E‖, N /mm2 [6] 4500 4000
E⊥, N /mm2 [6] 5000 5500

k, μm2/N 4.0 ± 0.5 −2.9 ± 14.5

μ⊥(E‖/E⊥) 0.305 ± 0.016 0.296 ± 0.020

μ⊥ 0.34 ± 0.04 0.41 ± 0.04

Two straw specimens have been tested (see the Table). The ˇrst one (straw A)
is the NA62 straw with the length of 2.1 m. It has been produced at the Joint
Institute for Nuclear Research (Dubna) together with nearly 7000 straws mounted
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in the NA62 Spectrometer [1]. The tubes are made of 36 μm thin polyethylene
terephthalate (PET) foils (Hostaphan R© [6]), coated inside the tube with two thin
metal layers (0.05 μm of Cu and 0.02 μm of Au) in order to provide electrical
conductivity on the cathode and to improve the straw tube gas impermeability.
The material density of 1.4 g/cm3 [6] was used to estimate the straw A linear
density from its radius and wall thickness.

The second tube specimen (straw B) is the straw 18 mm in diameter made
of more thick Hostaphan R© ˇlm. For the specimen B, a linear density has been
measured by means of weighting (with the result of 4.31(6) g/m), as the wall
thickness is not strictly deˇned in the ˇlm speciˇcation.

2. STRAW EFFECTIVE TENSION CALCULATION
AND MEASUREMENT

Hostaphan R© producer reports quite different values for the transverse (Trans-
verse Direction, TD) and longitudinal (Machine Direction, MD) Young's mod-
uli [6] (see the Table). So the ˇlm material is not isotropic due to the sophisticated
production process, and we should distinguish the transverse (hoop) and longitu-
dinal (axial) straw properties. In particular, the ˇrst contribution to the transverse
relative radius change is ε1⊥ = ΔR1/R = σ⊥/E⊥ = PR/(E⊥h).

Due to the Poisson effect, the hoop strain causes an axial strain of the opposite
sign, so the straw would become shorter if the ends were not ˇxed. This virtual
small relative change of length is

εR
‖ =

ΔLR

L
= −μ⊥

ΔR1

R
= −μ⊥

PR

(E⊥h)
,

where μ⊥ is the transverse Poisson's ratio for the loading applied transversely
with respect to the straw axis.

But in our case the straw ends are ˇxed, that means an appearance of com-
pensatory tension force ΔT (and corresponding axial stress ΔT/(2πRh)) that
returns straw length to its initial value

ΔT

2πRh
= E‖

ΔLR

L
= μ⊥P

R

h

E‖
E⊥

. (7)

So we have an additional straw wall axial tension caused by the supplied pressure
ΔT = μ⊥(E‖/E⊥)P2πR2.

But on the present testbench the value measured by tensometer is an effective
tension TP , that is, the straw wall tension minus the pressure force applied to the
end plug from inside of the straw:

TP = T0 + 2μ⊥
E‖
E⊥

PπR2 − PπR2 = T0 −
(

1 − 2μ⊥
E‖
E⊥

)
PπR2. (8)
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We know that Poisson's ratio μ for plastics is typically less than 0.5, so in total
the increase of straw pressure leads to the decreasing of measured TP in spite of
the true straw tension T growth

T = T0 + ΔT = T0 + 2μ⊥
E‖
E⊥

PπR2. (9)

For a particle detector like NA62 Spectrometer [1], one can calculate the full
force applied to the frame by a gas-ˇlled straw using (8), if the effect of external
atmospheric pressure applied to the frame is calculated just ignoring all the holes
made for the straws. In such a case, the true wall tension value (9) is needed
only to control the straw tensile strength.

One could note that on the present testbench the special case of zero effective
tension (TP = 0) means that straw ends are free. As mentioned above, in these
conditions (for TP < 300 gf) the ˇxed-ends formulae become irrelevant for
the given testbench due to gravitation effect. Nevertheless, just in order to
check the formulae consistency we can derive a free-ends straw elongation using
TP = 0 condition. From (8) for this case T0 = (1− 2μ⊥(E‖/E⊥))PπR2. Initial
elongation of the ˇxed straw due to the preliminary tension T0 is equal to free
straw elongation under the pressure, ensuring TP = 0 for the ˇxed-ends straw.
So for the free straw ends we have

ΔL

L
=

T0

E‖2πRh
=

(
1 − 2μ⊥

E‖
E⊥

)
PR

(2E‖h)
,

that is equivalent to (5) for isotropic material.
Finally, a small correction for the straw radius change is taken into account.

Two effects contribute to the straw radius change on the testbench. One term is
the radius relative decrease due to the initial axial tension applied: ΔRL/R =
−μ‖ΔL/L = −μ‖T0/E‖2πRh, where μ‖ is the longitudinal Poisson's ratio
deˇned for the loading along the straw axis.

Another term is the radius relative increase due to the pressure applied from
inside. First-order effect is just σ⊥/E⊥ = PR/E⊥h, but if one takes into
account the additional tension applied from the ˇxed ends that compensates the
tube shortening which could be caused by the radius increase, the term becomes
(1− μ‖μ⊥)(PR/E⊥h). So the radius dependence on pressure and initial tension
looks like

R = R0

(
1 + (1 − μ‖μ⊥)

PR0

E⊥h
−

μ‖T0

E‖2πR0h

)
. (10)

For this small correction we will assume μ‖ = μ⊥, but we should remember that
in the main formula (8) we have a transverse Poisson's ratio.

It is known that any material becomes nonlinear with respect to large applied
force, while the material linear properties are deˇned for zero-force limit. But on
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the testbench a precision measurement becomes problematic for the low effective
tensions TP . So we need to take into account the possible nonlinearity in such
a way that the resulting μ⊥ could be easily extracted for the limit of low wall
tension and low pressure.

For this purpose, we can postulate a weak linear dependence of Poisson's
ratio as a function of transverse stress. We introduce the value

ν = μ⊥
E‖
E⊥

− kT

2πRh
(11)

instead of just μ⊥(E‖/E⊥) into all the related expressions. Apart from the
real material nonlinearity, k coefˇcient also absorbs an effect of small setup
deformation under tension as well as next-order effects ignored in the formulae.
So the coefˇcient is regarded here as a technical value that vanishes from the
ˇnal result for T = 0.

But T and R entering (11) in turn depend on the running Poisson's ratio value.
So we implement an iterative approach starting with a tension T = T0, nominal
straw radius R = R0, and the starting Poisson's ratio value of ν = μ⊥(E‖/E⊥).
On each iteration new T, ν, R values were calculated, three iterations were quite
enough for the calculation precision.

We have two free parameters (μ⊥(E‖/E⊥) and k), that is enough to describe
our data on the measured tensions and pressures. Figure 2 shows the measured
effective tensions for the NA62 straw together with the result of their ˇt with the
formula

TP = T0 − (1 − 2ν)PπR2. (12)

MINUIT [7] package called from ROOT [8] interface has been used in order to
obtain the resulting ˇt parameter values and their ˇt errors.

The ˇt is done with the same assumed error for all the experimentally
measured TP values related to the given straw. These measured errors (straw A:
±3.6 gf, straw B: ±20.47 gf) are deˇned in such a way that a resulting
χ2/ndf = 1 in order to obtain some sensible ˇt errors that are considered as the
statistical uncertainties for the extracted free parameters.

Straw A two-parameter ˇt results are: μ⊥(E‖/E⊥) = 0.3051 ± 0.0005stat;
k = (3.98 ± 0.16stat) μm2/N . Fit results for the straw B are: μ⊥(E‖/E⊥) =
0.2961±0.0150stat; k = (−2.89±14.34stat) μm2/N . So for the second specimen
the nonzero term k presence is not conˇrmed, may be due to the limited available
interval of measured tensions and pressures in this case.

The systematic uncertainty due to the limited knowledge of Young's moduli
with a ˇxed ratio E‖/E⊥ is estimated as the effect of the radius correction (10)
removal that corresponds to the limit of inˇnitely large Young's moduli. Almost
the same absolute change of the results (in opposite direction) is caused by the
halving of both E‖ and E⊥ in (10), so we take the largest change (related to the
radius correction switching off) as the contribution to the systematic error.
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The Gaussian width of the NA62 straw diameter distribution can be estimated
as 0.03 mm, and the systematic shift of the central value from the nominal number
may have the same size [1]. So taking conservatively the possible diameter
systematic uncertainty of 0.1 mm for the tested specimens, we have obtained the
radius related contribution to systematic error.

Apart from that, an effect of 5% systematic scale change both in the mea-
sured effective tension and pressure are taken as independent contributions to the
systematic errors.

Combining all the above statistic and systematic contributions in quadrature,
we have ˇnally the μ⊥(E‖/E⊥) results shown in the Table. Taking into account
the producer's information about Young's moduli ratio, we extract the μ⊥ central
values shown in the Table. Finally, μ⊥ uncertainties depend essentially on the
moduli errors that may be roughly estimated from the provided signiˇcant digits:
δ(E⊥/E‖) ≈ 0.1.

Typically, the reported longitudinal Poisson's ratio values μ‖ for oriented
PET ˇlms are 0.37Ä0.44 [9, 10], so the obtained transverse Poisson's ratios look
reasonable in comparison with the usually measured longitudinal ones.

Results of the effective tension comparison for the two straw specimens are
shown in Fig. 3, a. The observed strong dependence of TP (P ) slope on the straw
radius is well reproduced by formula (12).

3. TRANSVERSE STABILITY AND OSCILLATIONS
OF THE STRAINED STRAW UNDER PRESSURE

Let us consider a very short cylindrical element of an almost straight tube
(Fig. 4) limited by its two cross sections. If a small curvature appears, in the
ˇrst approximation all the local cross sections conserve their shape and slightly
rotate to remain perpendicular with respect to the curved tube axis. The total
longitudinal tension |TAB| = |TCD| = |T | remains almost stable in spite of the
stress difference on the tube sides.

Fig. 4. Forces applied to the curved tube element subjected both to inner pressure and
axial tension
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But the area of the arched side of the wall (upper side in Fig. 4) becomes
larger than the area of the concave part (lower side in the same ˇgure) due to
the wall extension and compression. As a result, the summary nonzero pressure
force applied to the wall FW appears, that is directed towards the arched side
of the wall. So the pressure excess in the tube always tries to increase the tube
curvature.

In order to estimate FW , let us imagine an absolutely rigid shell that consists
of the curved cylinder-like wall with two additional transverse plugs that close
tightly the cross sections AB and CD. A summary force applied by inner pressure
to the closed rigid shell is always zero. So the total pressure force applied to the
curved wall is equal, with the opposite sign, to the vector sum of pressure forces
applied to the end plugs.

Returning to the soft tube element, one can conclude that the pressure force
FW applied to the wall of the element is equal to the vector sum of two forces
PπR2, each of them is directed against TAB or TCD which are not collinear.

So the transverse dynamics of the curved tube element is deˇned by the
difference between the wall longitudinal tension and the PπR2 term, that is the
effective tension (8) to be measured on the testbench described above.

The straw curvature tends to eliminate itself only for the positive effective
tension TP = (T − PπR2) > 0. If this difference is negative, the summary
transverse force pushes the curved element towards the arched side, and the
curvature increases until the tension (increased due to the elongation of the curved
tube) becomes equal to the pressure-related force everywhere along the tube:
T = PπR2. So the minimum preliminary longitudinal tension for the straw T0

in the detector frame may be evaluated from the condition TP = T0 − (1 −
2μ⊥(E‖/E⊥))PπR2 > 0. One can conclude that the very minimum preliminary
tension should be

T0 =
(

1 − 2μ⊥
E‖
E⊥

)
PπR2, (13)

where P = 1 at for straws ˇlled with gas under atmospheric pressure and sur-
rounded by vacuum. For safety the preliminary tensile force is usually made few
times higher, as one needs to take into account the tension variance for different
straws and some possible time-dependent loss of tension. It is limited mainly by
straw strength as well as by rigidity of the frame.

Earlier the stability condition (13) has been derived for isotropic material
in [11] using the analogy with an elastic rod buckling. The author of [11]
considered a straw with free straw ends closed by airtight end plugs as an elastic
rod. For the conditions of experiment [1], when straw ends are ˇxed, such a rod
is compressed from the ends in order to eliminate its elongation (5). And the
compressing force must be compensated by the preliminary straw tensile stress:
T0/(2πRhE) = (1 − 2μ)PR/(2hE), otherwise the compressed rod becomes
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transversely unstable and a buckling happens. But our present derivation of (13)
is more general as it does not depend on any analogy.

Another consequence of the transverse force deˇned by the effective tension
TP is the prediction of oscillation lowest frequency for a long straw with some
relatively small radius that may be regarded as a string. For transverse dynamics
of a straw under pressure, the effective tension TP plays the role of the usual
string tension force. So one can derive the wave equation for a long straw with
a pressure inside:

d2y

dt2
=

TP

ρ

d2y

dx2
, (14)

where ρ is the straw linear density; x is the longitudinal coordinate along the
straw; and y is the transverse deviation of its axis.

Usual solution with the boundary conditions at the ˇxed ends gives the
frequencies f spectrum:

f =
n

2L

√
T0 − (1 − 2μ⊥

E‖
E⊥

)PπR2

ρ
. (15)

Here n is a positive integer value and L is the straw length. So the lowest
frequency oscillations of the tube under inner pressure are deˇned by the standard
string formula with a usual tension replaced by the pressure-dependent effective
tension TP . The length of the tube on the testbench is deˇned by the movable
support position as well as by the end cup C place. End cup mass is big enough
to almost ˇx the straw end for the transverse oscillations.

Results of the lowest frequency measurements and their predictions (15) for
n = 1 are shown in Fig. 3, b. The straw elongation factor (1 + T0/E‖2πRh)
deˇned by the initial tension, that was applied during the support positioning, is
taken into account both for L and ρ.

The prediction based on (15) seems to be deviated from the measurement
results by up to 1 Hz. But the measurement uncertainty is not better than
1 Hz due to the observed widths of the spectrum peaks. Moreover, even for
the tested small frequencies the testbench may be not rigid enough, and extra
degrees of freedom (for example, end cup oscillations) may distort the simple
straw oscillations spectrum. But the qualitative description seems to be achieved.
So in practice, after the proper calibration, the frequency measurement procedure
may be used for the straw effective tension diagnostics.

CONCLUSIONS

A new technique of mechanical properties study for straw tubes subjected
both to inner pressure and longitudinal tension has been tested by means of the
simple testbench that may be improved in future in order to avoid the transverse
effect of gravitation.
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A combination of parameters μ⊥(E‖/E⊥) for Hostaphan R© ˇlm is measured
for two different straw specimens. Formulae derived to describe the observed
experimental results may be used in order to predict the tension of gas-ˇlled tube
in vacuum.

It is found that a reaction of straw tube to a small local curvature is deˇned by
the effective tension, that is the difference between the longitudinal wall tension
and the pressure force applied to the cross section area of the tube. In particular,
straw conserves its straightness only if this difference is positive. This deˇnes a
theoretical minimum axial tension that should be applied to the straw tube prior
to air evacuation from the surrounding volume. Measurement of straw oscillation
spectrum may be used for a straw tube effective tension estimation.
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