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Luminosity of an Ion Collider

A formula is obtained for the luminosity of a collider at the collision of two
beams that differ, generally speaking, by their parameters (©asymmetric collidersª).
The formula is valid for counter-propagating and merging beams with coincident
longitudinal axes. Three special cases of the formula are considered: collision of
two identical axially symmetric bunched beams, collision of a bunch with a coasting
beam, and collision of two coasting beams. Collision of intersecting beams is brie	y
considered, and the method for calculating their luminosity is formulated. The
synchronization problem is considered for collisions of asymmetric beams. A method
is presented for optimizing parameters of a cyclic collider by minimizing betatron
frequency shifts caused by the action of the space charge of the beams. Numerical
examples of luminosity calculations for several types of asymmetric colliders are
given.

The investigation has been performed at the Veksler and Baldin Laboratory of
High Energy Physics, JINR.
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INTRODUCTION

The problem of collider luminosity calculations has been known since the ˇrst
proposals of colliding-beam accelerators∗. As yet, nobody has come out with a
sufˇciently compact formula that describes the collider luminosity in the general
case of collision of two beams with arbitrary parameters and allows analytical
or numerical calculations to be performed without using mathematical modeling
methods.

The work on the NICA project at the Joint Institute for Nuclear Research [1]
required collisions of different ion beams, including those with different types of
beam particles or different beam structure, e.g., collision of a bunched beam with a
coasting beam, etc. This is how the asymmetric collider came into being. It turned
out that no convenient formulas for analytical calculations of luminosity of these
colliders could be found in the literature, including various reviews. They usually
offered classical formulas suitable only for symmetric colliders with beams having
identical parameters and differing, perhaps, only by the electric charge of the beam
particlesÅ electronÄpositron and protonÄantiproton colliders [2, 3]. Sometimes,
simpliˇed formulas are given [4, 5], which do not involve the so-called ©hourglass
parameterª (Sec. 1.2 below).

Attempts to derive a formula for a rather general case usually lead to cumber-
some expressions with multiple integrals over six coordinates of the coordinateÄ
momentum space [6].

The need for this kind of formula persists despite highly developed methods
for numerical modeling of particle dynamics in charged-particle accelerators. This
formula is needed for carrying out calculations at the level of estimates, which is
necessary for selecting initial collider parameters.

Section 1 of this work is an extended version of [7]. The case under consid-
eration is a collision of two beams whose parameters (type of colliding particles,

∗The ˇrst formula for estimation of luminosity was proposed by D. Kerst in his report presented
in 1956 (Kerst D. W. Properties of an Intersecting-Beam Accelerating System // Proc. Intern. Conf.
on High Energy Accel., Geneva, 1956. P. 37): the number of events per unit time for processes with
the cross section in collisions of two bunches with the number of particles N1 and N2 and length l
at the particle velocity v is n = 2N1N2 vlA.
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their number in the beam (bunch), and their energy) can be different, as also
can be the size and shape of the collider rings, etc. Detailed consideration is
given to the version of the collider in which axes of the colliding beams coin-
cide in the interaction region (©head-on collisionsª) so that the beams can have
common ˇnal-focus lenses. The version of the collider with intersecting beams is
brie	y presented. The ©unavoidableª misprints made in the original version are
corrected.

Section 2 describes a method for optimizing parameters of a cyclic collider
by minimizing betatron frequency shifts caused by the action of the beam space
charge. The author's ˇrst attempt (not quite successful) of this publication was
made in [8]. The recently obtained reˇned version of the formula for the beamÄ
beam effect is used.

Section 3 contains numerical examples of luminosity calculations for a few
types of symmetric and asymmetric colliders, including the ©equilibriumª-beam
collider [9], which is of interest for modern nuclear physics.

The results are applicable to both counter-propagating and merging beams.
All luminosity formulas and their numerical values are given for one inter-

action point (IP) of a collider.

1. ASYMMETRIC COLLIDING BEAMS

1.1. Luminosity: General Case. The density distribution of the particles of
a bunched beam, Gaussian in all three dimensions (x, y, s), has the form

ρi(t) =
Ni

(2π)3/2
σxi (t)σyi (t) σsi

exp

{
−1

2

(
x2

σ2
xi (t)

+
y2

σ2
yi (t)

+
s2

σ2
si

)}
.

(1.1)
Here Ni is the number of particles in a bunch of the ith beam; i = 1, 2 is the
beam number; and σαi is the Gaussian parameter of the bunch of the α-degree
of freedom of the beam (α = x, y, s). A similar density distribution formula for
a coasting beam with the uniform density distribution over the circumference of
the ring and the number of particles Ni is

ρi(t) =
Ni

2πσxi (t)σyi (t)Cring
exp

{
−1

2

(
x2

σ2
xi (t)

+
y2

σ2
yi (t)

)}
. (1.2)

To simplify the description of the collision kinematics (Fig. 1), we choose the
time reference and the origin of coordinates so that at t = 0 the centers of both
bunches are at the origin of coordinates (x = y = s = 0): s0

1 (0) = s0
2(0) = 0.

This means that the collision time t is

−∞ < t =
s1

v1
< ∞.
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The coordinates of the bunch centers s0
i vary with time as

s0
i (t) = vit, x0

i = y0
i = 0. (1.3)

We restrict ourselves to the case of the so-called head-on collisions, when
the axes of the bunches coincide with each other and with the s axis (Fig. 1). We
also need the coordinates of the colliding particles ηi measured from the centers
of their bunches (in the laboratory system!). Then the si coordinate of the ith
particle in the laboratory system is (Fig. 1)

si (t) = s0
i (t) + ηi. (1.4)

The transverse coordinates of the particle are still measured from the s axis
in the laboratory system. The time dependence of the transverse sizes of the
bunches σxi (t), σyi (t) arises from their motion in the focusing system

σαi (t) =
√

εαiBαi(si (t)), α = x, y, i = 1, 2, (1.5)

where εαi = const is the beam emittance,

Bαi (si(t)) = B∗
αi +

s2
i (t)
B∗

αi

(1.6)

is the betatron (beta) function of the focusing system, B∗
αi is its minimum value

usually achieved at the interaction point (IP) s = 0, and si(t) is the coordinate of
the particle at the time t.

Fig. 1. Collision scheme of two bunches in the y = 0 plane. O1,2 are the centers of
the bunches; η1,2 are the distances of the interaction point (IP) of two particles from the
centers of the bunches; scoll is the same, from the origin; B1,2(s) are the envelopes (beta
functions) of the ˇrst and second beams
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We also assume that dispersion in the beam interaction region is zero, which
occurs in most cases.

Within the collision time of two bunches, the layer of the ˇrst-bunch par-
ticles ρ1 (x, y, η1, t) dη1 intersects bunch 2, colliding with the particle layer
ρ2 (x, y, η2, t) dη2 at each point s(t). The coordinates of this point s(t), si(t),
s0

i (t), and ηi(t) are related to one another by the equalities (Fig. 1)

s (t) = s1 (t) = s0
1 (t) + η1 = s2 (t) = s

0
2 (t) + η2. (1.7)

Now we can write down the ©obviousª expression for the luminosity at one IP:

L = nbunchf0

∞∫
−∞

dx

∞∫
−∞

dy

lD∫
−lD

dη1

lD∫
−lD

dη2ρ1(x, y, η1(t))ρ2(x, y, η2(t)), (1.8)

where nbunch = min{nbunch1, nbunch2} is the smallest number of bunches in
beams 1 and 2, and f0 is the rotation frequency of the particles of the beam
with the smallest number of bunches. This choice of the nbunch and f0 values
follows from the collision synchronization condition (Sec. 1.5). Integrals over the
longitudinal coordinates η1 and η2 are approximately taken in ˇnite terms with
the values ± lD deˇned below in the comments on formula (1.11).

Considering conditions (1.3) and (1.4), from equalities (1.7) follows the
relation between the coordinates η1 and η2:

η2(t) = η1 +
(

1 − v2

v1

)
s0
1(t).

Here v1,2 are the algebraic values for the velocities of particles 1 and 2.
Introducing the designations s0(t) ≡ s0

1(t), η ≡ η1, we write

η2 = η + V s0, V ≡ 1 − v1

v2
. (1.9)

The parameter V � 1 is for counter-propagating colliding beams, and V � 1 is
for merging beams.

Since we introduced the variable s0(t) = v1t and expressed η2 in terms of η
and s0, integration over the collision time in (1.8) can be replaced by integration
over s0 (the coordinate of the center of the ˇrst bunch), and integration over the
bunch lengths can be replaced by integration over the variable η. The variable
replacement Jacobian is

D(η1, η2)
D(s0, η)

= V. (1.10)
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As a result, we arrive at the expression

L =
nbunchN1N2f0

(2π)3 σs1σs2

V

lD∫
−lD

ds0

∞∫
−∞

dη

∞∫
−∞

ψx (x) dx

∞∫
−∞

ψy (y) dy×

× exp

[
−1

2

(
η2

σ2
s1

+
(η + V s0)

2

σ2
s2

)]
, (1.11)

where

ψx (x, s0, η1) =
1

σx1 (s0, η)σx2 (s0, η)
×

× exp
[
−
(

1
σ2

x1 (s0, η)
+

1
σ2

x2 (s0, η)

)
x2

2

]
, (1.12)

and 2lD is the longitudinal (s) size of the region where the axes of both beams
coincide and the detector is located. Local luminosity at s0 = ±lD decreases by
a few orders of magnitude from the maximum value at s0 = 0 due to increasing
beta function, as is shown in Sec. 1.5.

The function ψy(y, s0, η1) is found by replacing the subscript and the
argument x with y.

Integration of ψx over dx gives

∞∫
−∞

ψx (x, s0, η1) dx =
√

2π√
σ2

x1 (s0, η) + σ2
x2 (s0, η)

. (1.13)

The integral
∞∫

−∞
ψy (y, s0, η1) dy is similarly calculated by replacing x with y.

Using values (1.5) for σxi, we write

√
σ2

x1 (s0, η) + σ2
x2 (s0, η) =

√
εx1Bx1 (s0, η) + εx2Bx2 (s0, η). (1.14)

Functions Bxi are deˇned in (1.6). A similar expression for σyi is obtained by
replacing x with y.

Substituting values of integral (1.13) and denominator (1.14) as well as their
y-analogues in (1.11), we arrive at quite a cumbersome expression for the lumi-
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nosity of the collider with completely asymmetric bunches

L =
nbunchN1N2f0

(2π)2 σs1σs2

V

lD∫
−lD

ds0

∞∫
−∞

dη×

×
exp

{
−1

2

[
η2

σ2
s1

+
(

η + V s0

σs2

)2
]}

√
(εx1Bx1 (s0, η) + εx2Bx2 (s0, η)) (εy1By1 (s0, η) + εy2By2 (s0, η))

.

(1.15)

Note that this is the collider luminosity at one IP. In addition, beta functions
at IPs have different values (Bx,y)1,2 if particles 1 and 2 differ in at least one
parameter Å charge, mass, or energy. Therefore, we can introduce the ©parameter
of relative magnetic rigidityª λ:

λ =
B∗

1

B∗
2

. (1.16)

Since the betatron functions B1,2 are proportional to the magnetic rigidity of the
colliding particles (similar to focal lengths of magnetic lenses), it can be expected
that the parameter λ is described by the expression

λ =
p1

Z1

Z2

p2
. (1.17)

Here Z1,2 and p1,2 are the charge and the momentum of the particles of beams 1
and 2. At equal velocities of particles 1 and 2, expression (1.17) does not depend
on the particle velocity and is

λ0 =
m2

m1

A1

Z1

Z2

A2
,

where A1,2 are the atomic weights of the particles, and m1,2 are the masses of the
nucleons of colliding particles 1 and 2 (difference of m2/m1 from unity is less
than 1 · 10−3 for all nuclei of the Periodic Table). However, values of λ (1.17)
and λ0 are approximate, since the beta function in the common region of the rings
is greatly affected by the parameters of the focusing systems in the individual
sections.

With beams of different particles, we also have λ = 1 if in their common
(interaction) region the focusing systems of two collider rings do not have fo-
cusing elements that govern the beta functions of the collider rings. This takes
place, for example, in colliders with intersecting rings (Sec. 1.6).

Expression (1.15) is substantially simpliˇed in three particular cases consid-
ered below.
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1.2. Identical Colliding Beams. For identical counter-propagating colliding
beams we have

v1 = −v2, V = 2, B∗
x1 = B∗

x2 ≡ B∗
x, B∗

y1 = B∗
y2 ≡ B∗

y ,

σs1 = σs2 ≡ σs, εx1 = εx2 ≡ εx, εy1 = εy2 ≡ εy.
(1.18)

Taking into account the values of Bαi (1.6) and η (1.9), from (1.15) we obtain

L =
nbunchN1N2f0

8π2σ2
s

√
εxεyB∗

xB∗
y

× Int1 (Bx, By, σs) ,

Int1 = 2

lD∫
−lD

ds0

∞∫
−∞

dη
1√√√√[1 +

(
s0 + η

B∗
x

)2
][

1 +
(

s0 + η

B∗
y

)2
] ×

× exp

[
−η2 + (η + 2s0)

2

2σ2
s

]
.

Transforming the numerator of the exponent index

η2 + (η + 2s0)
2 = 2

[
(s0 + η)2 + s2

0

]
,

going from the integration variables s0 and η to the variables s0 and φ = s0 + η,
and calculating the transition Jacobian D (s0, η)/D (s0, φ) = 1, we obtain

Int1 = 2

lD∫
−lD

e−s2
0σ2

s ds0

∞∫
−∞

e−φ2/σ2
s√√√√[1 +

(
φ

B∗
y

)2
][

1 +
(

φ

B∗
x

)2
] dφ.

Thus, the double integral is transformed to a product of two integrals. When
σs � lD, the ˇrst of them, the integral over s0, is σs

√
π. When B∗

x = B∗
y ≡ B∗,

we obtain the known expression for the luminosity of a collider with axially
symmetric beams (see [2], formulas (6.134), (6.135))

L =
nbunchN1N2f0

4π
√

εxεyB∗ ΦHG, ΦHG (α) =
2√
π

∞∫
0

e−u2
du

1 + (αu)2
, α =

σs

B∗ . (1.19)

Here ΦHG(α) is the hourglass parameter describing luminosity dependence on σs

and B∗.
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1.3. Collision of the Coasting Beam with the Bunched Beam. As before,
we consider the focusing system axially symmetric in the interaction region, but
now the beams have particles of different types and differ, generally speaking, by
energy. Therefore,

B∗
x1 = B∗

y1 ≡ B∗
1 �= B∗

x2 = B∗
y2 ≡ B∗

2 . (1.20)

The luminosity formula for the case where one of the colliding beams (N2) is
a coasting beam with uniform density (1.2) over the ring circumference Cring

differs from (1.15) by the expression in the denominator of the fraction in front
of the integral, which is now (2π)3/2σsCring. Here σs ≡ σs1 is the ©Gaussianª
length of the beam bunch.

For axially symmetric beams, formula (1.15) takes the form

L =
nbunchN1N2f0

(2π)3/2σsCring
× Int2 (B1, B2, σs) ,

Int2 = V

lD∫
−lD

ds0

lD∫
−lD

dη×

× 1

ε1B∗
1

[
1 +
(

s0 + η

B∗
1

)2
]

+ ε2B∗
2

[
1 +
(

s0 + η

B∗
2

)2
] exp

{
− η2

2σ2
s

}
. (1.21)

Here nbunch and f0 are the number of bunches in the bunched beam and the
rotation frequency of its particles. Generally speaking, the parameter V can
differ from 2.

Let us transform variables in the same way as above,

φ = s0 + η, ψ = η.

The transition Jacobian is D (s0, η)/D (φ, ψ) = 1. As a result, integral (1.21) is
divided into two independent integrals:

Int2 = V

lD∫
−lD

exp
(
− ψ2

2σ2
s

)
dψ

2lD∫
−2lD

dφ

ε1B∗
1

[
1 +
(

φ

B∗
1

)2
]

+ ε2B∗
2

[
1 +
(

φ

B∗
2

)2
] ·

Integrating, we obtain

L =
nbunchN1N2f0

2πCring
V erf

(
lD√
2σs

)
×

×
√

B∗
1B∗

2

(ε1B∗
1 + ε2B∗

2)(ε1B∗
2 + ε2B∗

1 )
2 arctan (χD), (1.22)
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χD =

√
ε1B∗

2 + ε2B∗
1

ε1B∗
1 + ε2B∗

2

2lD√
B∗

1B∗
2

.

Under the condition that

σs, B∗
1,2 � lD � Cring, χD � 1, (1.23)

expression (1.22) takes a more compact form

L =
nbunchN1N2f0

2Cring
V

√
B∗

1B∗
2

(ε1B∗
1 + ε2B∗

2)(ε1B∗
2 + ε2B∗

1)
. (1.24)

Expression (1.24) can be simpliˇed using parameter λ (1.16):

L =
nbunchN1N2f0

2Cring
V

√
λ

λ(ε2
1 + ε2

2) + ε1ε2(1 + λ2)
. (1.25)

And a very simple expression for the luminosity is obtained for the colliding
beams with identical particles, energies, and emittances: λ = 1, V = 2, and
ε1 = ε2 ≡ ε,

L =
nbunchN1N2f0

2Cringε
. (1.26)

1.4. Collision of Two Coasting Beams. Under conditions (1.20) and B∗
1,2 �

C1,2, in the way similar to (1.21), we obtain luminosity from (1.15),

L =
N1N2f0

2C1C2
× Int3,

Int3 = V

lD∫
−lD

ds0

lD∫
−lD

dη
1

ε1B∗
1

[
1 +
(

s0 + η

B∗
1

)2
]

+ ε2B∗
2

[
1 +
(

s0 + η

B∗
2

)2
] .

Here N1 and N2 are the numbers of particles in beams 1 and 2, and C1 and
C2 are the circumferences of the storage rings. The collision frequency is f0 =
max{v1/C1, v2/C2}.

Integrating as in (1.21)Ä(1.25), we obtain

L =
N1N2f0

πC1C2
V lD

√
B∗

1B∗
2

(ε1B∗
1 + ε2B∗

2 )(ε1B∗
2 + ε2B∗

1)
2 arctan (χD), (1.27)

where the parameter χD is deˇned in (1.22). When B∗
1,2 � lD, χD � 1, we

obtain

L =
N1N2f0

C1C2
V lD

√
λ

(ε1λ + ε2)(ε1 + ε2λ)
. (1.28)
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For identical collider rings and colliding beams, there is V = 2 and λ = 1,
and formula (1.28) takes the form

L =
N2f0

C2ε
lD. (1.29)

1.5. Distribution of Luminosity over the Interaction Region Length. Mod-
ulation of collider beta functions (1.6) near the IP inevitably leads to luminosity
variation along the interaction region length. It is most simply demonstrated
for identical colliding beams (Sec. 1.2). Indeed, the derivative of the luminosity
with respect to the coordinate s0 is proportional to the integrand function in the
expression for ΦHG(α) in (1.19):

dL

ds0
=
(

dL

ds0

)
max

e−(s0/σs)2

1 +
( s0

B∗

)2 .

Introducing the variable χ = s0/B∗, we obtain the luminosity distribution func-
tion normalized to the maximum

fL (χ) =
e−(χ/α)2

1 + χ2
, α =

σs

B∗ . (1.30)

Fig. 2. Functions (1.30) of the luminosity distribution
over the beam interaction region: α = 10; 3; 1; 0.3

The graphs of this func-
tion (Fig. 2) show that as σs

(parameter α) increases, the
luminosity distribution func-
tion broadens until its width
reaches saturation (χ > 5).

This saturation corresponds
to the collision of two coasting
beams (Sec. 1.4). In addition,
the results presented in Fig. 2
allow choosing

lD = 3B∗. (1.31)

1.6. Collision of Intersecting Beams. To increase luminosity in modern
colliders, a multibunch regime is used, which usually implies that there are two
independent rings to avoid parasitic collisions in the common regions of the
trajectories and collision of beams at an angle. This is called ©intersecting beamsª.
Outside the interaction region, the beams are separated far enough, so that their
focusing systems do not have common elements, which allows independently
adjusting parameters of two colliding beams in an asymmetric collider. This is
especially important for the electronÄion collider (Sec. 3.3).
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The longitudinal axes of the focusing systems of two rings govern the axes
of the colliding beams, while their local beta functions are still described by
relations (1.6) but in the ©intrinsicª coordinates of the rings xαi, whose axes si

intersect at the IP at the angle of 2θ (©full crossing angleª) (Fig. 3). The rings are
arranged so that all three axes s1, s2, and s0 lie in the same plane. The axes yi

also lie in this plane, and the axes xi coincide and are orthogonal to the (si, yi)
plane. The directions of the axes are not chosen at random: this choice ensures
the fastest separation of the beams, which is needed if σxi � σyi.

The efˇciency of beam separation in the interaction region is usually esti-
mated by the ratio between the y coordinate of the point on the bunch axis as
far as σs from the IP (δy0 = σs sin θ, Fig. 3) and the projection of the transverse
size of the bunch σy on the y0 axis (Δy0 = σy cos θ). This parameter is referred
to as the Piwinski angle

φ =
σs

σy
tan θ. (1.32)

The length of the interaction region (colored grey in Fig. 3) 2lD can be esti-
mated as

lθ =
σx

sin θ
, σx � σs. (1.33)

In the general case, it is

lφ =
σs√

1 + φ2
. (1.34)

Note that for φ � 1 and θ � 1, formula (1.34) coincides with (1.33), and for
φ � 1, lD ≈ σs.

In colliders with intersecting beams, the angle θ � 1. For example, in the
LHC the angle θ referred to as the half crossing angle varies from 0.6 μrad
to 0.32 mrad depending on the chosen collider regime and the experimental
requirements [10], and in the KEKB it is 11 mrad [11]. Therefore, to estimate
the luminosity of a collider with intersecting beams, one can use the above

Fig. 3. Collision scheme of intersecting beams for φ � 1; the oval boundaries show the
©1 sigma sizesª; colored grey is the particle interaction region
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formulas (Secs. 1.1Ä1.4), replacing σy with σy

√
1 + φ2 and using formulas (1.33)

and (1.34) for lD.
Nevertheless, the scheme of intersecting beams gives rise to two other unde-

sirable effects for compensating which the so-called crab technique is used ∗.
The ˇrst effect is a nonzero collision angle 2θ of two counter-propagating

bunches. To eliminate it, the ©crab crossingª scheme is used [12]. On the
trajectories of each beam, upstream and downstream of the IP, RF cavities are
installed, which are tuned to the mode with the transverse magnetic ˇeld that
reverses its sign during the passage of the bunch and is zero during the passage
of the center. As a result, the ©headª and the ©tailª get oppositely directed ˇeld
kicks, and bunches rotate around the axis (in Fig. 3) and arrive at the IP in the
phase with their axes directed towards each other. The cavities downstream of
the IP restore the initial orientation of the bunches.

The purpose of this operation is to suppress synchrobetatron resonances (more
exactly, violate their excitation condition), which arise from bunches colliding at
an angle. Resonances, including those of lower orders, are due to correlation
between the transverse coordinate of the particles in the system of the counter-
propagating beam (that is, the transverse impact) and the longitudinal coordinate.
They are eliminated using the crab crossing scheme.

The other effect is more complicated. When the betatron function is decreased
(for increasing luminosity) to the size of the interaction region, nonlinear beta-
tron resonances are excited due to interaction of the particle with the ˇeld of the
counter-propagating bunch (see also the ©beamÄbeam effectª, Sec. 3.1). To elim-
inate this effect, P. Raimondi proposed a method called the ©crab waistª [13Ä15].
Special sextupole lenses are mounted in both rings in front of and behind the IP
so that betatron resonances arising from the beamÄbeam effect are suppressed.

Unfortunately, the crab crossing and crab waist methods are incompatible,
and one has to choose that of the two which gives higher luminosity in a particular
case. The crab technique is an excellent choice for electronÄpositron colliders but
is not always suitable for ion colliders.

Treating the ©crab techniqueª in more detail is beyond the scope of this paper
(see, for example, [16]).

1.7. Synchronization of Collisions. An asymmetric collider with bunched
colliding beams is the most complicated version in terms of synchronizing colli-
sions of two bunches of the beams. Bunched beams collide in the same region,
common for both rings, if the particle revolution frequency f1,2 and the number
of bunches in the beams (nbunch)1, 2 satisfy the equality

n1 nbunch1 f1 = n2 nbunch2 f2, (1.35)

∗The technique was named by analogy between the motion of a bunch between ©crabª resonators
and the motion of a crab, which is known to move sideways (©physicists jokingª).
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where n1, 2 are integers. The optimal choices of the ring sizes and the particle
energy are such that n1 = n2 = 1. In this case, the collision frequency is

fcoll = nbunch1 f1 = nbunch2 f2. (1.36)

This is the parameter nbunch f0 in the collision of two bunched beams (see (1.8),
(1.11), (1.15), etc.). Synchronization condition (1.35) is only fulˇlled for partic-
ular energies (velocities v1, v2) of the colliding particles

v2 = v1
n1 nbunch1

n2 nbunch2

C2

C1
. (1.37)

Since the parameters n1,2 and nbunch1,2 are integers, the minimum change in the
particle energy can only occur stepwise with steps Δn = 1. Scanning with a
smaller step requires special measures for changing the orbit length of one of the
beams.

Given equal ring circumferences and equal numbers n1 = n2 and nbunch1 =
nbunch2, particle velocities should obviously be chosen equal, and scanning in
velocity (but not in energy!) can be performed with arbitrary but equal steps. If
one or both beams are coasting, this problem does not exist. The aforesaid is
especially important for colliding beams of moderately relativistic particles, as,
for example, in electronÄpositron colliders [17].

When a coasting beam collides with a bunched beam, we have fcoll =
nbunchf0, where nbunch and f0 are the parameters of the bunched beam; and
when two coasting beams collide, we have

fcoll = max{f1, f2},

where f1, 2 are the revolution frequencies of the particles of the ˇrst and second
beams.

2. OPTIMIZATION OF THE CYCLIC COLLIDER LUMINOSITY

2.1. Beam Space Charge Effects. The problem of stable motion of charged
particles in cyclic accelerators is quite well studied, and various methods are de-
veloped for suppressing the destructive effect of instabilities. Among the strongest
and hardest-to-suppress instabilities are space charge effects, which lead to a fre-
quency shift of the particle betatron oscillations under the action of the intrinsic
electromagnetic ˇeld of the beam (Laslett effect) and the ˇeld of the counter-
propagating beam in the collider (beamÄbeam effect). The method of choosing
optimum beam parameters to minimize these two effects is considered in this
section.
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Laslett Effect. The charge density distribution of a Gaussian bunch of parti-
cles with charge Ze is described in the laboratory system by the formula

ρZ (x, y, s) = Zeρ(x, y, s). (2.1)

Here ρ(x, y, s) is the bunch particle density distribution (1.1). In what follows, we
consider long bunches σs � σx, σy, for which the electric ˇeld of the Gaussian
bunch having an elliptical cross section with the semiaxes σx and σy in the region
x � σx and y � σy is described by the formula (see, for example, [18])

Ex,y (s) =
2ρ0 (s)
σx + σy

×
{ x

σx
, x Å component,

y

σy
, y Å component,

ρ0 (s) =
ZeN√
2πσs

e−s2
/2σ2

s .

(2.2)
The magnetic ˇeld of the bunch in the laboratory system is connected to the
electric ˇeld by the known relation B = 1/c [v,E]. From here on, all vector
quantities are bold printed; v is the bunch velocity along the s axis.

The force exerted on the bunch particle by the bunch ˇeld is described by
the expression

F = Ze

(
E +

1
c
[v, B]

)
= Ze

(
E − β2E⊥

)
, (2.3)

β = v/c, c is the speed of light. The transverse component of the force F is

F⊥ =
Ze

γ2
E⊥, γ =

(
1 − β2

)−1/2
. (2.4)

The equation of betatron oscillations of a particle with mass M in the focusing
system of the collider ring with allowance for the action of the bunch ˇeld on
this particle is described by the expression

γM

[
d2x

dt2
+ Q2

xω2
0x

]
=

ZeEx

γ2
, (2.5)

where Qx is the number of the particle betatron oscillations along the x coordinate
for one particle turn in the ring (betatron number), and ω0 is the revolution
frequency. Let us introduce the betatron frequency shift Δqxω0 that appears
under the action of the x-component of force F⊥ (2.4) and transform Eq. (2.5)
into

d2x

dt2
= −

(
Q2

xω
2

0x − ZeEx

γ3M

)
.

Then we express the right-hand side as −(Qx+Δqx)2ω2
0x. If s � σs, Δqx � Qx,

from equality of two expressions we obtain

Δqx ≈ − ZeEx

2Qxγ3Mω2
0x

= − Z2Nrp

γ3A〈σx(σx + σy)〉
1

Qxω2
0

√
2πσs

. (2.6)
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Here we used the equalities and the following notation: N is the number of
particles per bunch (or beam); rp = e2/mpc

2 = 1.535 · 10−16 cm is the classical
proton (nucleon) radius; mp ≈ 938 MeV/c2 is proton (nucleon) mass; and A is
the particle mass in atomic mass units. We also used equalities where 〈Bx〉 is the
circumference-average x-beta function, and εx is the x-emittance of the beam.
Ultimately, we obtain (see also [19]) ∗

Δqx =− Z2Nrpkbunch〈Bx〉
2πβ2γ3A〈σx(σx + σy)〉 =

=
Z2Nrp

2πβ2γ3A

√
Bx√

εx(
√

εx〈Bx〉 +
√

εy〈By〉)
kbunch; (2.7)

kbunch ≡ Cring√
2πσs

;

Δqy is found using the replacement x ↔ y.
At Bx = By and εx = εy = ε, we arrive at the classical Laslett formula [20]

Δq = −Z2

A

rpN

4πβ2γ3ε
kbunch. (2.8)

For coasting beams, it is enough to put kbunch = 1 in (2.7) and (2.8), which can
be ascertained by repeating calculations (2.3)Ä(2.8) for ρ(x, y, s) (1.2) at x � σx,
y � σy.

BeamÄBeam Effect. When particle 1 crosses counter-propagating particles of
bunch 2, it gets a momentum increment under the effect of the electromagnetic
ˇeld of the bunch,

Δp12 =

∞∫
−∞

F12(t) dt,

where (see (2.3))

F12 = Z1e

(
E2 +

1
c2

[v1[v2,E2]]
)

= Z1e (E2 − (β1, β2)E⊥2) .

Here β1,2 = v1,2/c; E2 is the vector of the electric ˇeld of bunch 2 in the
laboratory system at the location of particle 1; and E⊥2 is its component transverse
to the s axis.

∗This formula is valid for electrons (positrons) at A = 1 with replacement of rp with re, the
classical electron radius.

15



The time dependence of the transverse coordinates of particle 1 in the labora-
tory system xα1(t) is found using the invariant (xα1(t))2/Bα1(s(t)) (Fig. 1 and
formula (1.6)):

xα1(s(t)) = xα1(0)

√
1 +
(

s(t)
B∗

α1

)2

. (2.9)

The longitudinal coordinate s(t) is deˇned in (1.7), and B∗
α1 = Bα1(0) (1.6).

The coordinates of particle 1 with respect to the center of bunch 2 is found using
Fig. 1 and equalities (1.7) and (1.9):

xα2(t) = xα1(t), η2(η, s0) = η + V s0. (2.10)

The particle momentum increment in the (x, s) plane is deˇned by the x-
component of the force F12

Fx12 = Z1e (1 − (β1, β2))Ex2(t). (2.11)

The component Ex2 of the bunch 2 ˇeld at the point (x1, 0, s(t)) is found
from (2.2):

Ex2(t) =
2Z2eN2

σx2(t) (σx2(t) + σy2(t))
√

2πσs2

exp
(
−η2

2(t)
2σ2

s2

)
x1(t). (2.12)

The transverse ©σ sizesª of bunch 2 on the coordinate s(t), σx2(t) and σy2(t), are
deˇned in (1.5) and (1.6) for the beta functions Bα2(s) of the bunch 2 particles
at the point (x1(t), 0, s(t)), and x1(t) is the coordinate of particle 1 (2.9) at the
same point. Note that particles 2 and 1 are at the point s(t) at the time

t (s, η) =
s − η

v1
.

This equality allows time dependence of the parameters to be transformed to their
s dependence.

In one collision, particle 1 receives a transverse momentum (average over
many revolutions (!))

Δpx12(η) =

t2∫
−t1

Fx12 (s(t)) dt =
4Z1Z2e

2N2

σs2

1 − (β1, β2)
β1c

Φ(η),

(2.13)

Φ(η) =
1√
2π

lD∫
−lD

x1(s)
σx2(s)(σx2(s) + σy2(s))

exp

[
−1

2

(
η2(η, s)

σs2

)2
]

ds.

The coordinate x1(s) is deˇned in (2.9); and the parameters σα2(s), in (1.5)
and (1.6).
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Multiple intersection of bunch 2 by particle 1 results in a betatron oscillation
frequency shift ξ12 (conventional designation). This is known as a parameter of
the beamÄbeam effect (BB), or, brie	y, the beamÄbeam tune shift.

The quantity ξ12 can be found in the thin lens approximation by calculating
the transition matrix for a particle revolution in the collider ring with allowance
for perturbation of the particle motion by the electromagnetic ˇeld of counter
bunch 2 (see Appendix). Knowing the transverse increment of the transverse
component of particle 1 momentum Δpx12 (2.13) and ignoring the change in the
x1 coordinate after one passage through bunch 2, one can replace bunch 2 by a
thin lens with the focal length fBB

1
fBB

=
1

x1(0)
Δpx12

p1
, x1(0) =

√
εx1B∗

x1. (2.14)

Here B∗
x1 is the betatron function at the IP in the absence of the perturbing

thin lens. The phase shift of betatron oscillations after each intersection is (for-
mula (A.3) in Appendix)

Δϕ =
B∗

x1

2fBB
. (2.15)

To this phase shift of betatron oscillations there corresponds their frequency tune
shift

ξx12 =
Δϕ

2π
=

B∗
x1

4π

1
x1(0)

Δpx12

p1
.

Substituting fBB (2.14) and Δpx12 (2.13), we obtain

ξx12(η) =
Z1Z2

A1

rpN2

2πεx2

1 − (β1, β2)
β2

1γ1

B∗
x1

B∗
x2

Φx12(η), (2.16)

Φx12(η) =

=
1√
2π

lD∫
−lD

√
1 +
(

s

B∗
x1

)2

√
1 +
(

s

B∗
x2

)2
⎛
⎝
√

1 +
(

s

B∗
x2

)2

+

√
εy2B

∗
y2

εx2B∗
x2

√√√√1 +

(
s

B∗
y2

)2
⎞
⎠

×

× exp

{
−1

2

(
η2(η, s)

σs2

)2
}

ds

σs2
.

We underline that formula (2.16) describes the absolute value of the BB
parameter. The choice of its sign is discussed at the beginning of Sec. 2.2.
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The parameter Φx12(η), unlike Φ(η) (2.13), is here transformed to a dimen-
sionless form. In addition, it is written in terms of emittances and beta functions
of beams, which is convenient for numerical calculations. This parameter is an
analogue of the known hourglass parameter (1.19) in luminosity formulas. The
beamÄbeam effect parameters for the y-degree of freedom ξy12 and Φy12 are
obtained from (2.16) using the replacement x ↔ y. To estimate the beamÄbeam
effect, it is sufˇcient to consider the case of η � σs. In this case, the parameter
Φx12 does not depend on η and becomes constant. Here, as in the luminosity
formulas in Sec. 1, one should set lD = 3B∗ (1.31) for coaxial beams and (1.33)
and (1.34) for intersecting beams.

Note that formula (2.16) differs from those encountered in the literature: they
lack the parameter Φx12 (at least, the author failed to ˇnd formulas that involve
it) (see, for example, [21]).

In the case of identical counter-propagating axially symmetric beams with
particles of equal velocities and with equal emittances in the axially symmetric
focusing system of the collider

Z1 = Z2 = Z, A1 = A2 = A, v1 = −v2, β1 = −β2 ≡ β, V = 2,

(2.17)
εx1 = εx2 = εy1 ≡ ε, σs1 = σs2 ≡ σs, B∗

x1 = B∗
y1 = B∗

x2 = B∗
y2 ≡ B∗,

expressions (2.15) and (2.16) are greatly simpliˇed: the parameters ξ for both
beams coincide and are

ξx(η) = ξy(η) =
Z2

A

rpN2

4πε

1 + β2

β2γ
λ0Φx(η),

Φx, y12(η = 0) =
1
α

1√
2π

lD/B∗∫
−lD/B∗

1√
1 + χ2

e−2(χ/α)2 dχ =

(2.18)

=
1√
2π

lD/σs∫
−lD/σs

1√
1 + (αu)2

e−2u2
du,

α =
σs

B∗ , χ =
s0

B∗ , u =
s0

σs
.

When σs → 0, we have α → 0 and accordingly obtain

Φx,y12(η = 0) → 1√
2π

∞∫
−∞

e−2u2
du = 1.

As the emittance increases, the function Φx,y12 monotonically decreases, being
0.913 at α = 1 and 0.554 at α = 5.
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The beamÄbeam effect in the collision of a particle with a coasting beam is
described by expressions (2.16) and (2.18), in which the bunch length σs is taken
to be equal to the ring circumference Cring (see Sec. 3.2).

Note that the betatron tune shifts Δq and ξ depend on the particle energy
through the Lorentz factors β and γ.

2.2. Optimization of the Collider Luminosity. In ion colliders the betatron
tune shifts, both Δq and ξ, have a negative value. This fact has a simple ex-
planation: particles of both counter-propagating bunches have a positive charge
(except for an exotic case of negatively charged ions of one of the beams).
Therefore, the forces of the space charge of both the reference and the counter-
propagating bunches are directed outward of the axis. This determines the signs
of the betatron tune shifts (see formulas (2.5), (2.6)). The effect is different in
electronÄion, electronÄpositron, and protonÄantiproton colliders: the force of the
counter-propagating beam is attractive, and the ξ-parameter is positive. Neverthe-
less, both effects in	uence independently on particle dynamics, and the process
of beam instability development when the particle betatron frequency approaches
the resonance value is rather complicated. Therefore, for simple estimates, the
criterion of betatron oscillation stability can be the requirement that the sum of
the moduli of the tune shifts does not exceed a certain maximum value:

|Δq| + |ξ| � ΔQmax.

Further we use, for brevity, the symbols Δq ≡ |Δq| and ξ ≡ |ξ|.
It is known from practice that an intense beam is stable (with all other

conditions fulˇlled) if
ΔQ � 0.05. (2.19)

It is the ˇrst optimization criterion. When choosing optimal parameters of collider
beams, it is enough to ensure fulˇllment of this condition for the largest of two
pairs of parameters Δqx, ξx and Δqy, ξy. We will consider the x-parameters as
having the largest values (when σx � σy) and will thus concern ourselves with
the problem of optimizing these very parameters.

Let us write the parameters of the ˇrst beam Δq1 (2.7) and ξ12 (2.15),
(2.16) as

Δqx1 =
Z2

1

A1
N1ax1, ξx12 =

Z1Z2

A1
N2bx1,

ax1 =
rp

πβ2
1γ3

1

√
〈Bx1〉kbunch1

√
εx1

(√
εx1〈Bx1〉 +

√
εy1〈By1〉

) , (2.20)

bx1 =
rp

2πεx2

1 − (β1, β2)
β2

1γ1

B∗
x1

B∗
x2

Φx12(η)
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and do the same for the parameters of the second beam Δq2 and ξ21, making the
replacement 1 ↔ 2. Then we write two equations:

Δqx1 + ξx12 = ΔQx1,
(2.21)

Δqx2 + ξx21 = ΔQx2.

Now it would seem possible, on demanding that condition (2.19) be fulˇlled
for both beams (ΔQ1,2 � 0.05) and writing the parameters Δq and ξ in the
form (2.20), to obtain a system of two algebraic equations in N1 and N2:

Z2
1

A1
ax1N1 +

Z1Z2

A1
bx1N2 = ΔQx1,

(2.22)
Z2

2

A2
ax2N2 +

Z1Z2

A2
bx2N1 = ΔQx2.

Note that these equations are interrelated through the BB effect in terms of
the parameters ξx12 and ξx21. However, an attempt to straightforwardly solve
this system of equations reveals that at particular energies the determinant of
the system vanishes, which means that there is no solution. Therefore, the
beam parameters have to be optimized on the basis of physical and obvious
mathematical considerations.

Let us assume that both the collider rings and colliding beams 1 and 2 are
tuned so that their Laslett shifts are equal (the second optimization condition):

Δqx1 = Δqx2 ≡ Δqx. (2.23)

Then the number of particles in the bunches of these beams satisˇes the condition
(see (2.20))

N1

N2
=

A1

Z2
1

Z2
2

A2

ax2

ax1
. (2.24)

Substituting N1/N2 (2.24) into the ratio of the parameters Δq/ξ, we obtain

Δqx

ξx12
= λ0

ax2

bx1
,

Δqx

ξx21
=

1
λ0

ax1

bx2
. (2.25)

These relations allow the parameters ξx12 and ξx21 to be eliminated from equa-
tions (2.21), and system of equations (2.22) involves only three unknowns Å
Δqx, ΔQx1, and ΔQx2:

Δqx

(
1 +

bx1

λ0ax2

)
= ΔQx1,

(2.26)

Δqx

(
1 +

λ0bx2

ax1

)
= ΔQx2.
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It follows that the shifts ΔQx1 and ΔQx2 are not independent parameters. Choos-
ing, for example, the value ΔQx1, we unambiguously determine the values Δqx

and ΔQx2:

Δqx =
λ0ax2

λ0ax2 + bx1
ΔQx1, ΔQx2 =

ax1 + λ0bx2

λ0ax2 + bx1

λ0ax2

ax1
ΔQx1. (2.27)

Then we ˇnd ξx12 and ξx21 from (2.25) and N1 and N2 from (2.20). Thus, all
parameters needed for luminosity calculations are determined.

Generally speaking, the ˇrst criterion can be violated so that the function
ΔQx2(Eion) grows above the limiting value (e.g., 0.05). In this case, ΔQx1 has
to be decreased until ΔQx2 drops below 0.05.

The presented method for optimization of collider parameters imposes limits
on the intensity of the colliding beams and thus on the collider luminosity. But
this does not mean that there is no way to increase luminosity. Indeed, the
above optimization was performed for the chosen values of the focusing system
parameters (B∗), beam emittances (ε), and longitudinal bunch sizes (σs) for
bunched beams. Actually, three sets of these parameters remain free. Their
choice determines the luminosity after the optimization. And they have their own
limits.

Let us begin with the emittance. As follows from general formula for lumi-
nosity (1.15) and its particular cases, luminosity is proportional to a product of
the numbers of particles in the colliding beams (or their bunches) N1 and N2 and
inversely proportional to the beam emittances. The maximum number of particles
is in turn directly proportional to the emittance, as follows from (2.20). As a
result, luminosity is also directly proportional to the emittance:

L ∝ N1N2

ε
∝ ε. (2.28)

Thus, luminosity can be increased by increasing emittances of colliding beams
and accordingly the number of particles in them (!). But sooner or later the
intensity in the injection system of the collider complex comes to its limit.

In	uence of two other parameters is less obvious. Luminosity (1.15) is in-
versely proportional to the beta function at the interaction point B∗ and depends
on the relation α = σs/B∗, the so-called hourglass effect. This effect is particu-
larly manifested for two identical bunched beams (1.19). The function ΦHG(α)
monotonically decreases from 1 at α = 0 to 0.287 at α = 5, and it thus follows
that longitudinal compression of the bunch at the constant number of particles in
the beams (bunches) does not give a considerable increase in the luminosity at
σs < B∗. For example, ΦHG(1) = 0.7578.

At the same time, the maximum number of particles in bunched beams
is proportional to the bunch length (1/kbunch). Consequently, dependence of
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luminosity on the longitudinal bunch size is similar to its dependence on the
emittance: increasing the bunch length, one can increase luminosity proportionally
to the bunch length σs, simultaneously increasing the number of particles in a
bunch. However, in addition to ©technicalª limits of intensity, there arises a
bunch length limit due to the requirement of localization of the beam collision
region (see Sec. 1.5 and Fig. 2). In fact, one has to choose between the amount
of luminosity and the acceptance of the detector.

Examples of the application of the presented method for optimization of
collider parameters are given in Sec. 3.

3. EXAMPLES OF OPTIMIZATION
OF THE CYCLIC COLLIDER LUMINOSITY

In this section we give four examples of choosing optimal parameters for
different versions of cyclic ion colliders, including the electronÄion and merging-
beam colliders. The parameters of the collider and its beams are formulated in
each example.

3.1. NICA Ion Collider in the Symmetric Mode. The symmetric mode of
the ion phase of the NICA collider implies collision of two bunches of 197Au79+

nuclei at one IP (Table 1).
In this section the parameter λ is unity due to the symmetry of both the

beams and the focusing system.
As the calculations show (Fig. 4, a), the effect that governs the beam intensity

and consequently the luminosity is the Laslett effect (Δq (2.7), (2.8)). The BB
effect (ξ (2.16), (2.18)) becomes noticeable at an energy above 3 GeV/u. The sum
of the betatron frequency shifts Δq and ξ remains constant, ΔQ1 = ΔQ2 = 0.05.
The parameter Φ12 (2.16) is 0.457.

The maximum luminosity calculated by formula (1.19) (Fig. 4, b) amounts to
5.7 · 1027 cm−2 · s−1 at the energy of 4.5 GeV/nucleon. But this requires a rather
high beam intensity with 6.9 · 109 ions per bunch.

Table 1. Parameters of the NICA collider at the collision of gold nuclei (symmetric
mode)

Parameter Rings 1 and 2

Ring circumference, m 503.04

Ions 197Au79+

Ion energy, GeV/nucleon 1.0Ä4.5

Minimum beta function at IP B∗, cm 60

Ion bunch emittance, π ·mm ·mrad 1.1

Bunch length σs, cm 60

Betatron tune Qx 9.44
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Fig. 4. Dependence of the parameters of the ion collider with the bunched 197Au79+ beams
on the ion energy Ei; ΔQ = 0.05: a) Laslett parameter Δq (solid curve) and the BB
parameter ξ (dashed curve); b) collider luminosity Lii (solid curve) and the number of
particles per bunch Ni (dashed curve)

As the energy of colliding particles increases, the space charge effects reverse
the roles: the parameter of the space charge effect is larger than the Laslett
parameter. This is demonstrated in collisions of proton beams, which are planned
in the NICA project [1], with polarized protons and deuterons (Fig. 5).

The symmetric mode of two identical coasting beams (Fig. 6) convincingly
shows how their being unbunched affects the luminosity: it (formula (1.29))
decreases by a few orders of magnitude. This is an almost obvious result. Less
obvious is that the main limitation is the BB effect (Fig. 6, a).

The luminosity is calculated by formulas (1.28) and (1.29). Here the emit-
tance of the coasting beams was increased to 11 π ·mm ·mrad, which, in accor-
dance with (2.28), led to a proportional 10-fold increase in the luminosity.

As compared to the previous case of bunched 197Au79+ ion beams (Fig. 4),
the parameters of the BB effect and the Laslett effect changed places, and now
the beam intensity limits the BB effect.

Fig. 5. Dependence of the parameters of the protonÄproton collider on the proton energy
Ep; ΔQ = 0.05: a) Laslett parameter Δq (solid curve) and the BB parameter ξ (dashed
curve); b) collider luminosity Lpp (solid curve) and the number of particles per bunch Np

(dashed curve)
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Fig. 6. Dependence of the parameters of the ionÄion collider with the coasting 197Au79+

beams on the ion energy Ei; beam emittances are 11π ·mm ·mrad. a) Laslett parameter
Δq (solid curve) and the BB parameter ξ (dashed curve); b) collider luminosity Lii (solid
curve) and the number of particles in a beam Ni (dashed curve)

3.2. NICA Collider in the Asymmetric Mode. As an example of an asym-
metric collider, we consider the NICA collider with colliding proton and deuteron
beams. This problem appears in the nucleon spin physics studies, when it is pos-
sible to discriminate between protonÄproton and protonÄneutron collisions. Of
interest are both the cases of the resting center of mass (c.m.) of two colliding
nucleons (pp or pn) and the case of the c.m. of the protonÄdeuteron system. In
the ˇrst case, the proton and deuteron velocities are equal, and in the second case
the deuteron velocity is lower than the proton velocity:

βN =
βp√

A2
μ + β2

p

(
1 − A2

μ

) . (3.1)

Here βN and βp are the velocities of the nucleus (deuteron) and the proton in
units of the speed of light, Aμ = μAN , μ is the ratio of the nuclear nucleon mass
to the proton mass, and AN is the atomic weight of the nucleus. This mode is
of interest for studying possible tensor polarization in pd collisions. To calculate
these collision modes, one should insert

V = 1 +
βp

βN

into the corresponding luminosity formulas and write 1+βNβp instead of 1+β2

in (2.16) and (2.18). In addition, in this protonÄnucleus collision mode, when
one of the beams is coasting, synchronization is optimal due to the difference in
the proton and deuteron velocities.

The results of the calculations for protonÄnucleon collisions (i.e., in the
proton and nuclear nucleon center-of-mass systems) at the NICA collider with
the bunched deuteron and proton beams are given below (Fig. 7). Luminosity
in protonÄnucleon collisions is calculated by formula (1.19). The beams have
equal emittances of 1.1 π ·mm ·mrad. The particle energy in the collider is
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Fig. 7. Dependence of the parameters of the ion collider with the bunched deuteron and
proton beams on the proton energy Ep; beam emittances are 1.1 π ·mm ·mrad, B∗ = 3 m:
a) Laslett parameter Δq (solid curve), the total betatron tune shift for protons ΔQp (dotted
curve), and the BB parameter for protons on a deuteron bunch ξpd (dashed curve) and
deuterons on a proton bunch ξdp (dash-dotted curve); b) collider luminosity Lpd (solid
curve) and the number of particles in a deuteron bunch Nd (dashed curve) and a proton
bunch Np (dotted curve)

1Ä6 GeV/nucleon, and
√

sNN = 3.87−13.87 GeV. The other parameters are
the same as in Table 1. The parameter λ is put equal to unity because the
NICA collider is supposed to have a unique beam convergence system, where
convergence magnets are placed closer to the IP than the ˇnal focus lenses, which
allows their independent tuning. In this example, the main limitation for the beam
intensities and thus for the luminosity is also the Laslett effect.

3.3. ElectronÄIon Collider with an Equilibrium Ion Beam. The electronÄ
ion collider with coasting and bunched beams can become an important nuclear-
physics tool for studying rare and radioactive isotopes. This collider is likely to
feature a very low ion beam intensity. It was proposed to solve its luminosity
problem by using the so-called crystalline, or ordered, ion beam.

The idea of this beam was proposed by V.V. Parkhomchuk in 1985 after
successful experiments on suppression of the proton beam noise and compression
of the proton beam in the NAPÄM electron-cooled storage ring at the Institute
of Nuclear Physics (Novosibirsk). In the 1990s, the experiments were repeated
at several laboratories around the world, and the beam compression process was
thoroughly investigated. Soon the ˇrst proposals of colliders with crystalline
beams were put forward [22, 23]. However, further analysis showed that the
intensity of the crystalline beams was quite low, and the luminosity of this collider
would consequently be very low (see [9] for details). In a few independent
experiments it was found that the crystalline (ordered) beam, which was a chain
of ions circulating in a storage ring, has a linear density(

dN ion

ds

)
� 3 · 105 ions/m. (3.2)
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The main advantages of the ordered beams are their very low emittance and
particle momentum spread

ε ∼ 0.1−1.8 nm, Δp/p ∼ (1−5) · 10−6 (1σ).

Transition of the beam to the ordered state occurs abruptly as the beam
density drops down to the critical value of about 90 ions/m. The transverse
size of the beam and the momentum spread decrease by almost an order of
magnitude. This is a sort of phase transition from the quasi-ordered state to the
ordered one (Fig. 8).

For bunched ordered beams, condition (3.2) is also fulˇlled, but it is now the
linear bunch density and not the average beam density. Therefore, it makes sense
to use the bunched beam when there is a considerable deˇcit of ions.

Fig. 8. Dependence of the momentum spread (1σ) on the number of beam particles in the
electron-cooled storage rings: a) 238U92+ in the ESR [24], b) 129Xe36+ in CRYRING [25],
c) protons in the S-LSR [26]

26



Of practical interest is another property of these deep cooled ion beams: in
the supercritical state the transverse size and the momentum spread increase from
value (3.2) with increasing linear density in compliance with the law

σ⊥(Ni) = σtransition

(
N

Ntransition

)1/3

. (3.3)

This law is valid up to the maximal linear density of about 5 · 105 ions/m [9].
And it is the result of the equilibrium between the external cooling of ions by the
electron beam and the internal heating by the so-called intrabeam scattering Å
Coulomb scattering of beam ions off one another. Law (3.3) was experimentally
veriˇed for coasting beams.

It is planned to use the equilibrium ion beam (3.3) in the electronÄion col-
lider of the DERICA project (Dubna ElectronÄRadioactive Isotope Collider fAcil-
ity) [27]. Table 2 presents possible parameters of the collider and its luminosity
at collisions of electron bunches with the equilibrium ion beam (see [9] for de-
tails). It is assumed that the scheme of intersecting beams is used in the collider
(Sec. 1.6). Therefore, λ = 1. The angle φ (1.32) is taken to be negligibly small.
The luminosity is calculated by formula (1.25).

The estimates (Fig. 9) show that the equilibrium beam has a slightly higher
luminosity than the bunched beam with a constant emittance until their trans-

Table 2. Parameters of the electronÄion collider

Particles of collider beams 238U92+ ions Electrons

Beam Equilibrium coasting Bunched

Ring circumference, m 18.56∗ 16.0

Particle energy, MeV/u, MeV 300 500

Revolution frequency, MHz 10.547 18.75

Number of particles in beam, bunch 1 · 103Ä1 · 107 1010

Number of bunches Å 9

Bunch length, cm Å 4

Beam emittance, nm 0.01Ä170 50

Transverse bunch size, μm � 220 220

Laslett tune shift Δq � 0.004 7.6 · 10−5

BB tune shift ξie, ξei 0.08 � 0.01

Beta function B∗ at IP, m 1.0 1.0

Luminosity, cm−2 · s−1 7.5 · 1023Ä1.7 · 1027

ÅÅÅÅÅÅÅÅÄ
∗The ring circumference is chosen so that synchronization condition (1.35) necessary for the

bunched ion beam is fulˇlled.
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Fig. 9. Dependence of the luminosity (a) and the transverse beam size σx (b) on the number
of ion beam particles: the cooled coasting ion beam below and above the phase transition
(solid curves), the bunched ion beam with a constant emittance equal to the electron beam
emittance (50 nm) (dashed curves), and the bunched ion beam with an emittance limited
by the space charge (Laslett parameter) (dotted curves)

verse sizes become equal and is ©outplayedª by the latter when the size of the
equilibrium ion beam exceeds the transverse size of the electron beam.

There are different causes why the ion and electron beam intensities are
limited in this collider. The maximum number of particles in the ion beam
is determined by the condition of maintaining the small transverse size of the
bunch (3.3). The electron bunch intensity is dictated by the BB effect produced
by this bunch on ions. In the numerical example, the parameter ξie has the value
that can be achieved only at the effective electron cooling of the ion beam. This,
by the way, is also necessary for formation of an equilibrium ion beam.

The necessity to use a coasting ion beam is caused by the collision syn-
chronization requirements, which are fundamental in this case. Velocities of
relativistic electrons and ions are considerably different, as is demanded by the
experiment itself set up at this kind of collider [17]. Therefore, condition (1.35)
can be satisˇed for the bunched electron and ion beams only at strictly determined
(discrete) particle parameters and ring sizes. But this rules out a possibility of
smooth particle energy scanning, which is usually needed in nuclear-physics in-
vestigations. The problem is eliminated in ultrarelativistic electronÄion colliders,
where velocities of electrons and heavy particles almost do not differ from the
speed of light. These colliders are under development at CERN (LHeC) and two
US laboratories, BNL (eRHIC) and JLab (MEIC).

Low intensity of equilibrium beams limits the area of their application to
physics of rare (exotic) and radioactive isotopes [27].

3.4. Merging Ion Beams. The ˇrst proposal to use storage rings with electron
cooling in nuclear-physics experiments [28] appeared in the late 1970s as the
electron cooling method was under development at the Institute of Nuclear Physics
(Novosibirsk). These experiments were started almost ten years later, when
electron-cooled storage rings were built in several nuclear-physics laboratories.
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Table 3. Parameters of the collider with merging beams

Beam particles 238U92+ 235U92+

Beam Coasting Coasting

Ring circumference, m 76.22 62.86

Particle energy, MeV/u 785 500

Magnetic ˇeld of dipoles, T 1.5 1.5

Number of particles in a beam 4.9 · 1010 2.35 · 1010

Beam emittance, π ·mm ·mrad 1.1 1.1

Laslett tune shift Δq 0.043 0.043

BB tune shift ξ12, ξ21 0.007 0.002

Beta function B∗ at IP, m 2.0 2.0

Interaction region length, m 6.0

Luminosity, cm−2 · s−1 2.4 · 1025

The most extensive investigations were carried out at the Experimental Storage
Ring (ESR) at the GSI (Darmstadt, Germany). At that time, it was proposed [29]
to set up experiments at a collider with merging beams, whose particles move in
the interaction region in the same direction at different velocities (energies). An
experiment set up in this way opens up new possibilities for structure studies of
radioactive nuclei.

One of the possible applications of a merging-beam collider proposed in [30]
is the study of vacuum physics in collisions of heavy nuclei, which give rise
to a ©supercriticalª electric ˇeld that separates particles of a virtual electronÄ
positron pair. This problem has been discussed for a long time. In a particular
experimental scheme (Table 3), colliding particles are nuclei of two uranium
isotopes 238U92+ and 235U92+ with their total center-of-mass energy chosen to
be 6 MeV/u. This is enough to pass over the Coulomb barrier. It is also proposed
to use the intersecting-beam scheme (Sec. 1.6) or the NICA collider scheme with
colliding deuteronÄproton beams (see above).

The collision synchronization problem is solved, as in the previous section,
by using two coasting beams.

The collider luminosity is limited by the Laslett effect, which is due to
relatively low energy of heavy nuclei. It is calculated by formulas (1.28) and
(1.29), and, as assumed in [30], it is quite sufˇcient for the proposed experiment.

CONCLUSIONS

The above collider luminosity formulas for three different collision modes Å
two bunched beams, two coasting beams, and a bunched and a coasting beam Å
describe all possible applications of cyclic colliders. The proposed method for
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optimization of the ion collider parameters allows their limiting values to be deter-
mined and thus the maximum possible collider luminosity to be found. The main
criteria limiting the luminosity, which are suggested and used in the numerical
examples, are two space charge effects of the colliding beams, the frequency shift
of the transverse (betatron) particle oscillations under the action of the intrinsic
electromagnetic ˇeld of the bunch (Laslett effect) and the frequency shift of the
counter bunch ˇeld (BB effect). Collision synchronization conditions are formu-
lated, which show the advantage of the coasting beam for the asymmetric collider
(Sec. 3.2). The numerical examples demonstrate the cases where the Laslett effect
is crucial (Secs. 3.1, 3.2 for bunched ion beams, Sec. 3.3 for an electron beam,
and Sec. 3.4 for coasting ion beams) and the cases where luminosity is limited
by the BB effect (Sec. 3.1, coasting ion beams, and Secs. 3.2, 3.3). In Sec. 3.1,
an intermediate case with colliding proton beams is shown, where the BB effect
prevails at high energies.
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Appendix

THIN LENS APPROXIMATION

The frequency shift of betatron oscillations ξ12 due to the beamÄbeam effect
can be found by multiplying the transition matrix for the particle revolution in
the collider ring (so-called Twiss matrix)

Mring =

(
cosϕ0 + α sin ϕ0 β sin ϕ0

−γ sin ϕ0 cosϕ0 − α sinϕ0

)
, ϕ0 = 2πQ,

by the thin lens matrix

Mf =

⎛
⎜⎝

1 0

− 1
f

1

⎞
⎟⎠ ,

where the focal length f of the thin lens must be related to the phase shift of the
betatron oscillations.
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Considering the perturbation introduced by the thin lens, we ˇnd the transition
matrix M∗ by multiplying the matrices Mring and Mf :

M∗ = MringMf =

=

⎛
⎜⎜⎝

cosϕ0 + α0 sin ϕ0 −
β0

f
sinϕ0 β0 sin ϕ0

−γ0 sin ϕ0 −
1
f

cosϕ0 +
α0

f
sinϕ0 cosϕ0 − α0 sin ϕ0

⎞
⎟⎟⎠. (A.1)

Representing the terms of the matrix M∗ as

ϕ∗ = ϕ0 + Δϕ, Δϕ � ϕ0; β = β0 + Δβ; α = α0 + Δα, γ = γ0 + Δγ,

where Δϕ, Δα, Δβ, Δγ are the perturbations introduced by the thin lens, we
write the matrix M∗ as

M∗ ≡ MΔ =

(
cosϕ∗ + α sinϕ∗ β sinϕ∗

−γ sin ϕ∗ cosϕ∗ − α sin ϕ∗

)
. (A.2)

Equating the corresponding terms of matrices (A.1) and (A.2), we obtain in the
linear Δ-term approximation

m∗
11 = mΔ

11 → −β0

f
sin ϕ0 = −Δϕ (sin ϕ0 − α0 cosϕ0) + Δα sin ϕ0,

m∗
12 = mΔ

12 → 0 = β0 cosϕ0Δϕ + Δβ sin ϕ0,

m∗
21 = mΔ

21 → −cosϕ0

f
+

α0 sin ϕ0

f
= γ0Δϕ cos ϕ0 − Δγ sin ϕ0,

m∗
22 = mΔ

22 → 0 = −Δϕ (sinϕ0 + α0 cosϕ0) − Δα sin ϕ0.

Thus, we obtained four equations in the unknowns Δϕ, Δα, Δβ, and Δγ:

Δϕ (sin ϕ0 − α0 cosϕ0) − Δα sinϕ0 =
β0

f
sinϕ0,

Δϕβ0 cosϕ0 + Δβ sin ϕ0 = 0,

− Δϕγ0 cosϕ0 − Δγ sin ϕ0 = − 1
f

(cosϕ0 − α0 sin ϕ0) ,

Δϕ (sin ϕ0 + α0 cosϕ0) + Δα sinϕ0 = 0.

Solving this system of linear equations by the known determinant calculation
method, we ˇnd the determinant of the system DetΔ = −2 sin4ϕ0 and the
determinant with the replacement of the ˇrst column in DetΔ by the coefˇcients
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of the right-hand side of the system Detϕ = −(β0/f)sin4ϕ0. Their ratio yields
the desired phase shift ϕ in the presence of the thin lens:

Δϕ =
Detϕ

DetΔ
=

β0

2f
. (A.3)

This expression for Δϕ exactly coincides with (2.15), since β0 ≡ B∗
x1 is the

betatron function at the location of the ©perturbingª thin lens (when it is not
there), and the focal length is f ≡ fBB.
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