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CBeTUMOCTh HOHHOTO KOJUT HJiep

IMomyuen copMyn CBETUMOCTH KOJUT Wuep IpU CTOJIKHOBEHMH JBYX ITy4KOB,
OTJIMY IOLIMXCS, BOOOLIE roBOPs, CBOMMU II P METP MH (« CHMMETPUYHBIE KOJUI M-
aepbl»). PopMynn CHp BEIJIUB UL BCTPEYHBIX U «IIOMYTHBIX» ITyYKOB, UMEIOIIUX CO-
BII /I IOLINE NPOJOJIbHBIE OCH. P cCMOTpeHBI TpH 4 CTHBIX CIIyd 9 (DOPMYIIBI: CTOINK-
HOBEHHE JIBYX UICHTHYHBIX KCU JIBHO-CUMMETPUYHBIX CIYCTKOB CIPYIIIUPOB HHBIX
IIy4KOB, CTOJIKHOBEHUE CTYCTK C P CIIyLIEHHBIM IIy4KOM U CTOJIKHOBEHUE [BYX p C-
MYIIEHHbIX My4KoB. Kp TKO p cCMOTpeH B pu HT Iepecek I0IUXcd My4KoB, U cop-
MYJIUPOB H CIIOCO0 p cUeT HX CBETUMOCTH. P ccMoTpeH mpoOnieM CHHXPOHM3 UM
CTOJIKHOBEHHH CHUMMETPHYHBIX ITY4KOB. IIpefcT BiIeH METOX ONTHUMU3 LHU II P Me-
TPOB LIMKJIMYECKOTO KOJUT HIep H OCHOBE MUHHMMH3 LM 3H YEHHWH CIBHUIOB OeT -
TPOHHBIX 4 CTOT, BbI3B HHBIX JEHCTBUEM IIPOCTP HCTBEHHOIO 3 Pl IIydkKoB. IIpuse-
JEHbI YMCJICHHBIE [IPUMEPBL P CYET CBETUMOCTU HECKOJIBKUX BUIOB CUMMETPUYHBIX
KOJIJT HZIEpOB.

P Gor BbmmosnHeH BJI Gop Topuu (pH3MKH BhICOKUX dHepruil um. B. U. Bekcnep
u A.M.b nuun OMAU.

IMpenpunt OGbeIUHEHHOTO UHCTUTYT SAEPHBIX HcciefnoB Huil. Jy6H , 2019

Meshkov I. N. D1-2019-40
Luminosity of an Ion Collider

A formula is obtained for the luminosity of a collider at the collision of two
beams that differ, generally speaking, by their parameters (‘“asymmetric colliders”).
The formula is valid for counter-propagating and merging beams with coincident
longitudinal axes. Three special cases of the formula are considered: collision of
two identical axially symmetric bunched beams, collision of a bunch with a coasting
beam, and collision of two coasting beams. Collision of intersecting beams is briefly
considered, and the method for calculating their luminosity is formulated. The
synchronization problem is considered for collisions of asymmetric beams. A method
is presented for optimizing parameters of a cyclic collider by minimizing betatron
frequency shifts caused by the action of the space charge of the beams. Numerical
examples of luminosity calculations for several types of asymmetric colliders are
given.

The investigation has been performed at the Veksler and Baldin Laboratory of
High Energy Physics, JINR.
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INTRODUCTION

The problem of collider luminosity calculations has been known since the first
proposals of colliding-beam accelerators*. As yet, nobody has come out with a
sufficiently compact formula that describes the collider luminosity in the general
case of collision of two beams with arbitrary parameters and allows analytical
or numerical calculations to be performed without using mathematical modeling
methods.

The work on the NICA project at the Joint Institute for Nuclear Research [1]
required collisions of different ion beams, including those with different types of
beam particles or different beam structure, e.g., collision of a bunched beam with a
coasting beam, etc. This is how the asymmetric collider came into being. It turned
out that no convenient formulas for analytical calculations of luminosity of these
colliders could be found in the literature, including various reviews. They usually
offered classical formulas suitable only for symmetric colliders with beams having
identical parameters and differing, perhaps, only by the electric charge of the beam
particles — electron—positron and proton—antiproton colliders [2,3]. Sometimes,
simplified formulas are given [4, 5], which do not involve the so-called “hourglass
parameter” (Sec. 1.2 below).

Attempts to derive a formula for a rather general case usually lead to cumber-
some expressions with multiple integrals over six coordinates of the coordinate—
momentum space [6].

The need for this kind of formula persists despite highly developed methods
for numerical modeling of particle dynamics in charged-particle accelerators. This
formula is needed for carrying out calculations at the level of estimates, which is
necessary for selecting initial collider parameters.

Section 1 of this work is an extended version of [7]. The case under consid-
eration is a collision of two beams whose parameters (type of colliding particles,

*The first formula for estimation of luminosity was proposed by D. Kerst in his report presented
in 1956 (Kerst D. W. Properties of an Intersecting-Beam Accelerating System // Proc. Intern. Conf.
on High Energy Accel., Geneva, 1956. P.37): the number of events per unit time for processes with
the cross section in collisions of two bunches with the number of particles N1 and N2 and length [
at the particle velocity v is n = 2N1 Na vl A.



their number in the beam (bunch), and their energy) can be different, as also
can be the size and shape of the collider rings, etc. Detailed consideration is
given to the version of the collider in which axes of the colliding beams coin-
cide in the interaction region (“head-on collisions”) so that the beams can have
common final-focus lenses. The version of the collider with intersecting beams is
briefly presented. The “unavoidable” misprints made in the original version are
corrected.

Section 2 describes a method for optimizing parameters of a cyclic collider
by minimizing betatron frequency shifts caused by the action of the beam space
charge. The author’s first attempt (not quite successful) of this publication was
made in [8]. The recently obtained refined version of the formula for the beam—
beam effect is used.

Section 3 contains numerical examples of luminosity calculations for a few
types of symmetric and asymmetric colliders, including the “equilibrium”-beam
collider [9], which is of interest for modern nuclear physics.

The results are applicable to both counter-propagating and merging beams.

All luminosity formulas and their numerical values are given for one inter-
action point (IP) of a collider.

1. ASYMMETRIC COLLIDING BEAMS

1.1. Luminosity: General Case. The density distribution of the particles of
a bunched beam, Gaussian in all three dimensions (z, y, s), has the form

(t) N exp - v’ + y* + a
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(1.1)

Here N; is the number of particles in a bunch of the ¢th beam; ¢ = 1,2 is the

beam number; and o,; is the Gaussian parameter of the bunch of the a-degree

of freedom of the beam (o = z,y, s). A similar density distribution formula for

a coasting beam with the uniform density distribution over the circumference of

the ring and the number of particles V; is
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To simplify the description of the collision kinematics (Fig. 1), we choose the
time reference and the origin of coordinates so that at t = O the centers of both
bunches are at the origin of coordinates (r =y = s = 0): s{ (0) = s9(0) = 0.

This means that the collision time ¢ is

S1
—0o<t=— < o0.
U1



0

The coordinates of the bunch centers s; vary with time as

s(t) =wit, a¥ =y =0. (1.3)

We restrict ourselves to the case of the so-called head-on collisions, when
the axes of the bunches coincide with each other and with the s axis (Fig. 1). We
also need the coordinates of the colliding particles n; measured from the centers
of their bunches (in the laboratory system!). Then the s; coordinate of the ith
particle in the laboratory system is (Fig. 1)

si(t) = s () + mi. (1.4)

The transverse coordinates of the particle are still measured from the s axis
in the laboratory system. The time dependence of the transverse sizes of the
bunches o; (t), oy (t) arises from their motion in the focusing system

Oai (t) = VeaiBai(si (1), a=zy, i=12, (1.5)
where £,; = const is the beam emittance,

A

(1.6)

is the betatron (beta) function of the focusing system, B}, is its minimum value
usually achieved at the interaction point (IP) s = 0, and s;(t) is the coordinate of
the particle at the time ¢.

Scoll
m

Fig. 1. Collision scheme of two bunches in the y = 0 plane. O;2 are the centers of
the bunches; 71,2 are the distances of the interaction point (IP) of two particles from the
centers of the bunches; scon is the same, from the origin; Bi,2(s) are the envelopes (beta
functions) of the first and second beams



We also assume that dispersion in the beam interaction region is zero, which
occurs in most cases.

Within the collision time of two bunches, the layer of the first-bunch par-
ticles p1 (x,y,m,t) dn; intersects bunch 2, colliding with the particle layer
p2 (x,y,m2,t) dny at each point s(t). The coordinates of this point s(t), s;(t),
s9(t), and n;(t) are related to one another by the equalities (Fig. 1)

s(t)=s1(t) =59 () +m = s2(t) = s (1) + 1o (1.7)

Now we can write down the “obvious” expression for the luminosity at one IP:

o) %) Ilp Ip
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where Nbunch = MIn{7Nbunchi, Pbunch2} i the smallest number of bunches in
beams 1 and 2, and fj is the rotation frequency of the particles of the beam
with the smallest number of bunches. This choice of the npunch and fy values
follows from the collision synchronization condition (Sec. 1.5). Integrals over the
longitudinal coordinates 7; and 7o are approximately taken in finite terms with
the values 4 [p defined below in the comments on formula (1.11).

Considering conditions (1.3) and (1.4), from equalities (1.7) follows the
relation between the coordinates n; and 7s:

mit) =+ (1= 2) 20

U1

Here vy o are the algebraic values for the velocities of particles 1 and 2.

Introducing the designations so(t) = s{(t), n = n1, we write

n2 =1+ Vso, Vzl—Z—;. (1.9)

The parameter V' > 1 is for counter-propagating colliding beams, and V' < 1 is
for merging beams.

Since we introduced the variable sq(t) = v1t¢ and expressed 7 in terms of 7
and sp, integration over the collision time in (1.8) can be replaced by integration
over sg (the coordinate of the center of the first bunch), and integration over the
bunch lengths can be replaced by integration over the variable n. The variable
replacement Jacobian is

D(n1,m2)

=V. 1.10
D(SO777) ( )



As a result, we arrive at the expression
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and 2lp is the longitudinal (s) size of the region where the axes of both beams
coincide and the detector is located. Local luminosity at so = +Ip decreases by
a few orders of magnitude from the maximum value at sy = 0 due to increasing
beta function, as is shown in Sec. 1.5.

The function ,(y, so, 71) is found by replacing the subscript and the
argument x with y.

Integration of 1, over dx gives

\/277
Vo2 (50,7) + 025 (50,1)

(1.13)

/ w.L (I‘, SOanl) dx

The integral [ )y (v, 0,71 ) dy is similarly calculated by replacing = with y.

— 00

Using values (1.5) for o,;, we write

\/051 (50,1) + 023 (50,1) = Vew1Bar (s0,0) + €22Baz (s0,m).  (1.14)

Functions B,; are defined in (1.6). A similar expression for o,; is obtained by
replacing x with y.

Substituting values of integral (1.13) and denominator (1.14) as well as their
y-analogues in (1.11), we arrive at quite a cuambersome expression for the lumi-



nosity of the collider with completely asymmetric bunches
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Note that this is the collider luminosity at one IP. In addition, beta functions
at IPs have different values (B, )12 if particles 1 and 2 differ in at least one
parameter — charge, mass, or energy. Therefore, we can introduce the “parameter
of relative magnetic rigidity” A:

Bi

A= L.
B3

(1.16)

Since the betatron functions B 2 are proportional to the magnetic rigidity of the
colliding particles (similar to focal lengths of magnetic lenses), it can be expected
that the parameter A is described by the expression

p1 L2

A= LLZ22 (1.17)

Z1 p2
Here Z; 5 and p; o are the charge and the momentum of the particles of beams 1
and 2. At equal velocities of particles 1 and 2, expression (1.17) does not depend
on the particle velocity and is

mo Ay Zo
)\0 = T > i
my Zy Ay
where A; 5 are the atomic weights of the particles, and m, 2 are the masses of the
nucleons of colliding particles 1 and 2 (difference of mgo/m; from unity is less
than 1 - 1073 for all nuclei of the Periodic Table). However, values of A (1.17)
and )\g are approximate, since the beta function in the common region of the rings
is greatly affected by the parameters of the focusing systems in the individual
sections.

With beams of different particles, we also have A = 1 if in their common
(interaction) region the focusing systems of two collider rings do not have fo-
cusing elements that govern the beta functions of the collider rings. This takes
place, for example, in colliders with intersecting rings (Sec. 1.6).

Expression (1.15) is substantially simplified in three particular cases consid-
ered below.



1.2. Identical Colliding Beams. For identical counter-propagating colliding
beams we have

_ _ * Dk — D% *

vi=-v, V=2 B=B,=B, B=B,=B8B,
(1.18)

Os1 =052 =05, Eg1 =E&x2 =Ezx, Eyl =¢Ey2 =E~&y.

Taking into account the values of B,,; (1.6) and 1 (1.9), from (1.15) we obtain
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Transforming the numerator of the exponent index
n+ (n+250) =2 [(s0+m)° + s

going from the integration variables sg and 7 to the variables sy and ¢ = sg + 7,
and calculating the transition Jacobian D (so,n)/D (so,¢) = 1, we obtain

lD oo
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Int; =2 / e %% ds / do.
2 2
“In “o0 K K
1 1

Thus, the double integral is transformed to a product of two integrals. When
0s < lp, the first of them, the integral over so, is os1/7. When B} = B; = B*,
we obtain the known expression for the luminosity of a collider with axially
symmetric beams (see [2], formulas (6.134), (6.135))

Nbunch N1V2 fo / —’ dy o
LS e TAN ) P = . (1.19
in e B HG HG ( ==/ (e’ a= 2 (L19)

Here Py () is the hourglass parameter describing luminosity dependence on o
and B*.



1.3. Collision of the Coasting Beam with the Bunched Beam. As before,
we consider the focusing system axially symmetric in the interaction region, but
now the beams have particles of different types and differ, generally speaking, by
energy. Therefore,

By, = B,y = B} # B, = B, = B;. (1.20)

The luminosity formula for the case where one of the colliding beams (N3) is
a coasting beam with uniform density (1.2) over the ring circumference Ching
differs from (1.15) by the expression in the denominator of the fraction in front
of the integral, which is now (27)3/20,Ciing. Here o5 = 041 is the “Gaussian”
length of the beam bunch.

For axially symmetric beams, formula (1.15) takes the form

n un IN N
L= i B < Inty (B, By 03).
sUring

Ip 135)
IHtQZV/dSO/an

—Ip —Ip

1 2
3 5 exp{—%}. (1.21)
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Here npunch and fo are the number of bunches in the bunched beam and the
rotation frequency of its particles. Generally speaking, the parameter V can
differ from 2.
Let us transform variables in the same way as above,
d) = S0 + n, 11[} =1

The transition Jacobian is D (sg,7n)/D (¢,1) = 1. As a result, integral (1.21) is
divided into two independent integrals:

Ip ) 2ip p
Ity = V [exp (—22 ) dy ¢
202 6\ 6\
—Ip —2lp 1B |1+ <B_T> +eoBs (14 (B—§>
Integrating, we obtain
I Nbunch N1 V2 fo Verf < Ip ) "
27chlring \/50'8
BiB;
X 2 arctan ;o (1.22
\/(ele + 8235)(6135 + 823’{) (XD) )



. ElB; + EQBT 2lp
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Under the condition that

Os, BT,Q < lD < Cring; XD > 17 (123)

expression (1.22) takes a more compact form

nbuncthNQfO \/ BTB;

L=

. (1.24
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Expression (1.24) can be simplified using parameter A\ (1.16):

nbunchN1N2f0 A
L= Vv . 1.25
2Cing \/)\(5% +e3) +e1ea(l + A2) (1.25)

And a very simple expression for the luminosity is obtained for the colliding

beams with identical particles, energies, and emittances: A = 1, V = 2, and

€1 =€&9 =6,

nbunchN1N2f0
QCringE '
1.4. Collision of Two Coasting Beams. Under conditions (1.20) and Bj , <

C1,2, in the way similar to (1.21), we obtain luminosity from (1.15),

L= (1.26)
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Here N7 and N, are the numbers of particles in beams 1 and 2, and C; and
C5 are the circumferences of the storage rings. The collision frequency is fy =
IIlElX{Ul/C(l7 1}2/02}.

Integrating as in (1.21)—(1.25), we obtain

NiN2 fo B} Bj
L= Vi 2 arctan , 1.27
7C1Cy D (51B’f + EQB;)(ElB; + EQBT) (xp) ( )
where the parameter xp is defined in (1.22). When B{, < Ip, xp > 1, we
obtain
NiNs fo A
L==a" : 1.28
G0 P\ et (e +e2)) (1.28)



For identical collider rings and colliding beams, there is V = 2 and A = 1,
and formula (1.28) takes the form
N2 fo

L=——1Ip.
c2e P

(1.29)

1.5. Distribution of Luminosity over the Interaction Region Length. Mod-
ulation of collider beta functions (1.6) near the IP inevitably leads to luminosity
variation along the interaction region length. It is most simply demonstrated
for identical colliding beams (Sec. 1.2). Indeed, the derivative of the luminosity
with respect to the coordinate sg is proportional to the integrand function in the
expression for Py («) in (1.19):

dL (dL) e~ (50/04)
dSO B dSo max S_O >
=1+ (5)

Introducing the variable y = so/B*, we obtain the luminosity distribution func-
tion normalized to the maximum

= . 1.30

a= (1.30)

1 The graphs of this func-
J1.00 tion (Fig.2) show that as oy
0.8 (parameter «) increases, the

luminosity distribution func-

tion broadens until its width
reaches saturation (y > 5).

This saturation corresponds

to the collision of two coasting

beams (Sec.1.4). In addition,

075 3 3 2 1 0 1 2 3 4. 5 the results presented in Fig.2

X allow choosing

0.6

0.4

0.2

Fig. 2. Functions (1.30) of the luminosity distribution
over the beam interaction region: o = 10;3;1;0.3

Ip = 3B*. (1.31)

1.6. Collision of Intersecting Beams. To increase luminosity in modern
colliders, a multibunch regime is used, which usually implies that there are two
independent rings to avoid parasitic collisions in the common regions of the
trajectories and collision of beams at an angle. This is called “intersecting beams”.
Outside the interaction region, the beams are separated far enough, so that their
focusing systems do not have common elements, which allows independently
adjusting parameters of two colliding beams in an asymmetric collider. This is
especially important for the electron—ion collider (Sec. 3.3).
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The longitudinal axes of the focusing systems of two rings govern the axes
of the colliding beams, while their local beta functions are still described by
relations (1.6) but in the “intrinsic” coordinates of the rings x,;, whose axes s;
intersect at the IP at the angle of 26 (“full crossing angle”) (Fig. 3). The rings are
arranged so that all three axes s;, so, and sq lie in the same plane. The axes y;
also lie in this plane, and the axes x; coincide and are orthogonal to the (s;, ;)
plane. The directions of the axes are not chosen at random: this choice ensures
the fastest separation of the beams, which is needed if o,; > oy;.

The efficiency of beam separation in the interaction region is usually esti-
mated by the ratio between the y coordinate of the point on the bunch axis as
far as o from the IP (dyg = o5 sin 6, Fig.3) and the projection of the transverse
size of the bunch o, on the yo axis (Ayp = o, cos ). This parameter is referred
to as the Piwinski angle

6= 25 tano. (1.32)
Oy
The length of the interaction region (colored grey in Fig.3) 2Ip can be esti-
mated as o
xT

lg = —, o0,<o0s. (1.33)
sin 6

In the general case, it is
Os

lg = —. 1.34
Note that for ¢ > 1 and 0 < 1, formula (1.34) coincides with (1.33), and for
(Z) < 1,lp = os.

In colliders with intersecting beams, the angle § < 1. For example, in the
LHC the angle 8 referred to as the half crossing angle varies from 0.6 prad
to 0.32 mrad depending on the chosen collider regime and the experimental
requirements [10], and in the KEKB it is 11 mrad [11]. Therefore, to estimate
the luminosity of a collider with intersecting beams, one can use the above

Yo

20, s S0

le T

Fig. 3. Collision scheme of intersecting beams for ¢ > 1; the oval boundaries show the
“1 sigma sizes”; colored grey is the particle interaction region

11



formulas (Secs. 1.1-1.4), replacing o, with o,,/1 + ¢? and using formulas (1.33)
and (1.34) for Ip.

Nevertheless, the scheme of intersecting beams gives rise to two other unde-
sirable effects for compensating which the so-called crab technique is used *.

The first effect is a nonzero collision angle 26 of two counter-propagating
bunches. To eliminate it, the “crab crossing” scheme is used [12]. On the
trajectories of each beam, upstream and downstream of the IP, RF cavities are
installed, which are tuned to the mode with the transverse magnetic field that
reverses its sign during the passage of the bunch and is zero during the passage
of the center. As a result, the “head” and the “tail” get oppositely directed field
kicks, and bunches rotate around the axis (in Fig.3) and arrive at the IP in the
phase with their axes directed towards each other. The cavities downstream of
the IP restore the initial orientation of the bunches.

The purpose of this operation is to suppress synchrobetatron resonances (more
exactly, violate their excitation condition), which arise from bunches colliding at
an angle. Resonances, including those of lower orders, are due to correlation
between the transverse coordinate of the particles in the system of the counter-
propagating beam (that is, the transverse impact) and the longitudinal coordinate.
They are eliminated using the crab crossing scheme.

The other effect is more complicated. When the betatron function is decreased
(for increasing luminosity) to the size of the interaction region, nonlinear beta-
tron resonances are excited due to interaction of the particle with the field of the
counter-propagating bunch (see also the “beam-beam effect”, Sec.3.1). To elim-
inate this effect, P. Raimondi proposed a method called the “crab waist” [13—15].
Special sextupole lenses are mounted in both rings in front of and behind the IP
so that betatron resonances arising from the beam—beam effect are suppressed.

Unfortunately, the crab crossing and crab waist methods are incompatible,
and one has to choose that of the two which gives higher luminosity in a particular
case. The crab technique is an excellent choice for electron—positron colliders but
is not always suitable for ion colliders.

Treating the “crab technique” in more detail is beyond the scope of this paper
(see, for example, [16]).

1.7. Synchronization of Collisions. An asymmetric collider with bunched
colliding beams is the most complicated version in terms of synchronizing colli-
sions of two bunches of the beams. Bunched beams collide in the same region,
common for both rings, if the particle revolution frequency fi 2 and the number
of bunches in the beams (npunch)1,2 satisfy the equality

11 NMbunchl fl = M2 Nphunch2 f2; (135)

*The technique was named by analogy between the motion of a bunch between “crab” resonators
and the motion of a crab, which is known to move sideways (“physicists joking”).
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where nq o are integers. The optimal choices of the ring sizes and the particle
energy are such that ny = ne = 1. In this case, the collision frequency is

fcoll = Mbunchl fl = Mbunch2 f2~ (136)

This is the parameter npyunch fo in the collision of two bunched beams (see (1.8),
(1.11), (1.15), etc.). Synchronization condition (1.35) is only fulfilled for partic-
ular energies (velocities vy, v2) of the colliding particles

"1 Nbuncht G2 (1.37)

2 " T2 Nhunch2 Cl .
Since the parameters 721 2 and npunchi,2 are integers, the minimum change in the
particle energy can only occur stepwise with steps An = 1. Scanning with a
smaller step requires special measures for changing the orbit length of one of the
beams.

Given equal ring circumferences and equal numbers ny = ng and Npynch1 =
Npunch2, particle velocities should obviously be chosen equal, and scanning in
velocity (but not in energy!) can be performed with arbitrary but equal steps. If
one or both beams are coasting, this problem does not exist. The aforesaid is
especially important for colliding beams of moderately relativistic particles, as,
for example, in electron—positron colliders [17].

When a coasting beam collides with a bunched beam, we have f.on =
Nbunch fo, Where npunch and fy are the parameters of the bunched beam; and
when two coasting beams collide, we have

Jeorl = max{ f1, fa},

where f1 o are the revolution frequencies of the particles of the first and second
beams.

2. OPTIMIZATION OF THE CYCLIC COLLIDER LUMINOSITY

2.1. Beam Space Charge Effects. The problem of stable motion of charged
particles in cyclic accelerators is quite well studied, and various methods are de-
veloped for suppressing the destructive effect of instabilities. Among the strongest
and hardest-to-suppress instabilities are space charge effects, which lead to a fre-
quency shift of the particle betatron oscillations under the action of the intrinsic
electromagnetic field of the beam (Laslett effect) and the field of the counter-
propagating beam in the collider (beam—beam effect). The method of choosing
optimum beam parameters to minimize these two effects is considered in this
section.
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Laslett Effect. The charge density distribution of a Gaussian bunch of parti-
cles with charge Ze is described in the laboratory system by the formula

Pz ($7y, S) :Zep(ajayvs)' (21)
Here p(z,y, s) is the bunch particle density distribution (1.1). In what follows, we
consider long bunches o, > o0, oy, for which the electric field of the Gaussian
bunch having an elliptical cross section with the semiaxes o, and o, in the region
r K 0z and y < oy is described by the formula (see, for example, [18])
x

—, X — component,
By () = 222080 ) o oo (5) = 2 o= 1352,
' Oz + 0y Yy — component, V2mos
Ty

(2.2)
The magnetic field of the bunch in the laboratory system is connected to the
electric field by the known relation B = 1/c[v,E]. From here on, all vector
quantities are bold printed; v is the bunch velocity along the s axis.
The force exerted on the bunch particle by the bunch field is described by
the expression

1
F = Ze (E+ ~[v, B]) =Ze(E-B’E.L), (2.3)
c
B =v/c, cis the speed of light. The transverse component of the force F is
Ze -1/2
Fi=3BL y=(0-8) 2.4)

The equation of betatron oscillations of a particle with mass M in the focusing
system of the collider ring with allowance for the action of the bunch field on
this particle is described by the expression
d*x 9 9 ZeE,

yM [W + Qrwix| = o (2.5)
where (), is the number of the particle betatron oscillations along the x coordinate
for one particle turn in the ring (betatron number), and wq is the revolution
frequency. Let us introduce the betatron frequency shift Ag,wq that appears
under the action of the xz-component of force F; (2.4) and transform Eq. (2.5)

into

d*z _ 9 2 Zek,

az =\ 9ot Tar )
Then we express the right-hand side as —(Q,+Ag:)*wiz. If s < 05, Agy < Qs
from equality of two expressions we obtain

Ag. Zek, _ ZQNrp 1 2.6)
o™ QQIVSMw%x N V3 A{ox (0 + Uy)> Qmwg\/27msl '
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Here we used the equalities and the following notation: N is the number of
particles per bunch (or beam); r, = €?/m,c* = 1.535- 10716 cm is the classical
proton (nucleon) radius; m, ~ 938 MeV/c? is proton (nucleon) mass; and A is
the particle mass in atomic mass units. We also used equalities where (B,) is the
circumference-average x-beta function, and ¢, is the z-emittance of the beam.
Ultimately, we obtain (see also [19]) *

Aq _ ZQNTpkbunCh<Bw> _
223 Ao (os + 0y))
B Z%Nr, VB
2B A /2 (/22 (Ba) + /2y (By))
kpunch = ﬁ;
V2o

Ag, is found using the replacement = < y.
At B, = By and €, = £, = ¢, we arrive at the classical Laslett formula [20]

kbunch; (27)

72 rplN

Ag=-—2_Tp¥
1 A 4An3Pe3e

kbunc}r (28)

For coasting beams, it is enough to put kpunch = 1 in (2.7) and (2.8), which can
be ascertained by repeating calculations (2.3)—(2.8) for p(z,y, s) (1.2) at z < 0y,
Yy <L oy.

Beam—Beam Effect. When particle 1 crosses counter-propagating particles of
bunch 2, it gets a momentum increment under the effect of the electromagnetic
field of the bunch,

oo

Apip = /F12(t)dtv

— 00

where (see (2.3))
Fio =Ze (EQ + le [vy [VQ;EQ]]> =Z1e(BEy — (B1,8,)E12).

Here ﬁl’g = vi2/c; Eg is the vector of the electric field of bunch 2 in the
laboratory system at the location of particle 1; and E | 5 is its component transverse
to the s axis.

*This formula is valid for electrons (positrons) at A = 1 with replacement of r, with re, the
classical electron radius.
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The time dependence of the transverse coordinates of particle 1 in the labora-
tory system z,1(t) is found using the invariant (741 (t))?/Ba1(s(t)) (Fig. 1 and
formula (1.6)):

2a1(5(8)) = a1 (011 + <B“)) . 2.9)

The longitudinal coordinate s(t) is defined in (1.7), and BX; = B,1(0) (1.6).
The coordinates of particle 1 with respect to the center of bunch 2 is found using
Fig. 1 and equalities (1.7) and (1.9):

Za2(t) = xa1(t), n2(n,80) =1+ Vso. (2.10)

The particle momentum increment in the (z, s) plane is defined by the x-
component of the force Fo

Fxlg = Zle (1 — (ﬁl?ﬁQ)) Ezg(t) (211)

The component E,5 of the bunch 2 field at the point (x1,0,s(¢)) is found
from (2.2):

_ 223y o (B
) = e eV () n0 e

The transverse “o sizes” of bunch 2 on the coordinate s(t), o42(t) and oy2(t), are
defined in (1.5) and (1.6) for the beta functions B,2(s) of the bunch 2 particles
at the point (x1(t), 0, s(t)), and z1(¢) is the coordinate of particle 1 (2.9) at the
same point. Note that particles 2 and 1 are at the point s(¢) at the time

s—1n

t(s,n) = o

This equality allows time dependence of the parameters to be transformed to their
s dependence.

In one collision, particle 1 receives a transverse momentum (average over
many revolutions (!))

to

Apara(n) = / Fors (s(2)) dt =

_tl

471 Z5¢*Ny 1 — (B4, By)

052 510

®(n),
(2.13)

lp
1 r1(s) ex _l L(n,s) : S
®(n) = \/ﬁl/ 022(8)(022(8) + Ty2(5)) P [ 2 ( 052 ) ] o

The coordinate x1(s) is defined in (2.9); and the parameters oa2(s), in (1.5)
and (1.6).
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Multiple intersection of bunch 2 by particle 1 results in a betatron oscillation
frequency shift £12 (conventional designation). This is known as a parameter of
the beam—beam effect (BB), or, briefly, the beam—beam tune shift.

The quantity £12 can be found in the thin lens approximation by calculating
the transition matrix for a particle revolution in the collider ring with allowance
for perturbation of the particle motion by the electromagnetic field of counter
bunch 2 (see Appendix). Knowing the transverse increment of the transverse
component of particle 1 momentum Ap,12 (2.13) and ignoring the change in the
x1 coordinate after one passage through bunch 2, one can replace bunch 2 by a
thin lens with the focal length fpp

1 1 Ap,
== _SPm2 0 (0) = \/em B, (2.14)

fes x1(0) p1

Here Bj, is the betatron function at the IP in the absence of the perturbing
thin lens. The phase shift of betatron oscillations after each intersection is (for-
mula (A.3) in Appendix)
B*

Ap = 2L,
7 2fps
To this phase shift of betatron oscillations there corresponds their frequency tune
shift

(2.15)

A‘Pf B 1 Apzi2

21 4r z1(0) p1
Substituting fpp (2.14) and Ap,12 (2.13), we obtain
_ Z1Zy mpN2 1= (B4, B5) By

© = ——o, , 2.16
5 12("7) Al 271_51-2 ﬁ%ryl B;Q 12 (77) ( )

5&:12 =

Du12(n) =

s\ 2
l 1
_ / “(53) )
CVer 2 2 * 2
“le 1+<S) 1+<8)+ LI P
By By €x2B7y By
2
1
Xexp{__(mm,s)) }d_
2 052 052

We underline that formula (2.16) describes the absolute value of the BB
parameter. The choice of its sign is discussed at the beginning of Sec.2.2.
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The parameter ®,12(n), unlike ®(n) (2.13), is here transformed to a dimen-
sionless form. In addition, it is written in terms of emittances and beta functions
of beams, which is convenient for numerical calculations. This parameter is an
analogue of the known hourglass parameter (1.19) in luminosity formulas. The
beam-beam effect parameters for the y-degree of freedom &1 and &2 are
obtained from (2.16) using the replacement = < y. To estimate the beam—beam
effect, it is sufficient to consider the case of 1 < 0. In this case, the parameter
®,12 does not depend on 7 and becomes constant. Here, as in the luminosity
formulas in Sec. 1, one should set I[p = 3B* (1.31) for coaxial beams and (1.33)
and (1.34) for intersecting beams.

Note that formula (2.16) differs from those encountered in the literature: they
lack the parameter ®,1o (at least, the author failed to find formulas that involve
it) (see, for example, [21]).

In the case of identical counter-propagating axially symmetric beams with
particles of equal velocities and with equal emittances in the axially symmetric
focusing system of the collider

Iy=Zo=4, Ai=Ay=A vi=—-v, Bi=-0B,=6, V=2
2.17)

_ _ * * * * *
El‘l :E.'L'Q :Eyl :57 081 :0'52 :0‘57 Bl’l :Byl :BCEQ :By2 :B 3

expressions (2.15) and (2.16) are greatly simplified: the parameters ¢ for both
beams coincide and are

Z2r,Na 1 2
1) = &) = 220, (),

Ip/B*
1 1 1 .
Py, y12(n =0) = ——= / — ¢ 2X/0) dx =
’ o /21 1+ 2
e VIEX
Ilp/os (2.18)
1 1 ou?
= T ——e " du,
V2m 1+ (au)?
—Ilp/os
Os S0 S0
a=— =29 =22
B X7 B s

When o, — 0, we have @ — 0 and accordingly obtain

oo

1 2
P, =0) > — e 2% du=1.
,y12(77 ) \/ﬂ /

— 00

As the emittance increases, the function ®, ,1o monotonically decreases, being
0913 at « = 1 and 0.554 at o = 5.
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The beam-beam effect in the collision of a particle with a coasting beam is
described by expressions (2.16) and (2.18), in which the bunch length o is taken
to be equal to the ring circumference Ching (see Sec.3.2).

Note that the betatron tune shifts Ag and £ depend on the particle energy
through the Lorentz factors (3 and .

2.2. Optimization of the Collider Luminosity. In ion colliders the betatron
tune shifts, both Ag and £, have a negative value. This fact has a simple ex-
planation: particles of both counter-propagating bunches have a positive charge
(except for an exotic case of negatively charged ions of one of the beams).
Therefore, the forces of the space charge of both the reference and the counter-
propagating bunches are directed outward of the axis. This determines the signs
of the betatron tune shifts (see formulas (2.5), (2.6)). The effect is different in
electron—ion, electron—positron, and proton—antiproton colliders: the force of the
counter-propagating beam is attractive, and the £-parameter is positive. Neverthe-
less, both effects influence independently on particle dynamics, and the process
of beam instability development when the particle betatron frequency approaches
the resonance value is rather complicated. Therefore, for simple estimates, the
criterion of betatron oscillation stability can be the requirement that the sum of
the moduli of the tune shifts does not exceed a certain maximum value:

Further we use, for brevity, the symbols Aq = |Aq| and £ = |¢].
It is known from practice that an intense beam is stable (with all other
conditions fulfilled) if
AQ < 0.05. (2.19)

It is the first optimization criterion. When choosing optimal parameters of collider
beams, it is enough to ensure fulfillment of this condition for the largest of two
pairs of parameters Ag,, £, and Ag,, &. We will consider the x-parameters as
having the largest values (when o, < 0y) and will thus concern ourselves with
the problem of optimizing these very parameters.

Let us write the parameters of the first beam Ag; (2.7) and &12 (2.15),
(2.16) as

7Z? VAV
_N xl, x ==
A, 1021 f 12 A,

_ rp <Ba:1>kbunch1
o1 = 2 ; (2.20)
71—/8171 VExrl (\/511<le> + \/5y1<By1>)

T (81, By) Bi
27’(812 /B%’}/l B;Q

Ale = N2bzla

bwl

®12(n)
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and do the same for the parameters of the second beam Agy and &5, making the
replacement 1 < 2. Then we write two equations:

AQJ:I + E.’L‘l? = Alea
Agr2 + Ex21 = AQgo.

Now it would seem possible, on demanding that condition (2.19) be fulfilled
for both beams (AQ12 < 0.05) and writing the parameters Ag and £ in the
form (2.20), to obtain a system of two algebraic equations in N7 and No:

(2.21)

72 YAV
LNy + 22220, Ny = AQu,
A A
. (2.22)
72 717,
—Z 0Ny + —bo N1 = AQyo.
AQG 2N + 4, 24V1 Qa2

Note that these equations are interrelated through the BB effect in terms of
the parameters &,12 and &,2;. However, an attempt to straightforwardly solve
this system of equations reveals that at particular energies the determinant of
the system vanishes, which means that there is no solution. Therefore, the
beam parameters have to be optimized on the basis of physical and obvious
mathematical considerations.

Let us assume that both the collider rings and colliding beams 1 and 2 are
tuned so that their Laslett shifts are equal (the second optimization condition):

Then the number of particles in the bunches of these beams satisfies the condition
(see (2.20))
N Ay Z2 a,
Lo 2122 a2 (2.24)
N2 Z1 A2 Qa1
Substituting N1 /N2 (2.24) into the ratio of the parameters Ag/¢, we obtain
A " A 1 a;
fe _ pgoz2 e _ - Jot (2.25)
5112 bzl 5121 >\0 sz
These relations allow the parameters £,12 and £;21 to be eliminated from equa-
tions (2.21), and system of equations (2.22) involves only three unknowns —
AQIa AQIL and AQIQ:

bwl

A0Gz2

(2.26)
Aobs
Aqgc (1 + g) = AQIQ

(]
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It follows that the shifts AQ,; and AQ,2 are not independent parameters. Choos-
ing, for example, the value AQ .1, we unambiguously determine the values Agq,
and AQ g o:

AoGz2 az1 + Aobz2 Aoag2
e = ——————AQz1, AQu2 = AQ 1. 2.27
)\00@2 + bwl Q ! Q 2 )\00@2 + ba:l Azl Q ! ( )

Aq

Then we find &,15 and &;2; from (2.25) and N7 and Ny from (2.20). Thus, all
parameters needed for luminosity calculations are determined.

Generally speaking, the first criterion can be violated so that the function
AQz2(Fion) grows above the limiting value (e.g., 0.05). In this case, AQ;1 has
to be decreased until AQ 2 drops below 0.05.

The presented method for optimization of collider parameters imposes limits
on the intensity of the colliding beams and thus on the collider luminosity. But
this does not mean that there is no way to increase luminosity. Indeed, the
above optimization was performed for the chosen values of the focusing system
parameters (B*), beam emittances (£), and longitudinal bunch sizes (o) for
bunched beams. Actually, three sets of these parameters remain free. Their
choice determines the luminosity after the optimization. And they have their own
limits.

Let us begin with the emittance. As follows from general formula for lumi-
nosity (1.15) and its particular cases, luminosity is proportional to a product of
the numbers of particles in the colliding beams (or their bunches) /N7 and N» and
inversely proportional to the beam emittances. The maximum number of particles
is in turn directly proportional to the emittance, as follows from (2.20). As a
result, luminosity is also directly proportional to the emittance:

N1 N:
Lo =22 x¢

(2.28)

Thus, luminosity can be increased by increasing emittances of colliding beams
and accordingly the number of particles in them (!). But sooner or later the
intensity in the injection system of the collider complex comes to its limit.

Influence of two other parameters is less obvious. Luminosity (1.15) is in-
versely proportional to the beta function at the interaction point B* and depends
on the relation o = o5/ B*, the so-called hourglass effect. This effect is particu-
larly manifested for two identical bunched beams (1.19). The function Py ()
monotonically decreases from 1 at « = 0 to 0.287 at o = 5, and it thus follows
that longitudinal compression of the bunch at the constant number of particles in
the beams (bunches) does not give a considerable increase in the luminosity at
os < B*. For example, Py (1) = 0.7578.

At the same time, the maximum number of particles in bunched beams
is proportional to the bunch length (1/kbunch). Consequently, dependence of
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luminosity on the longitudinal bunch size is similar to its dependence on the
emittance: increasing the bunch length, one can increase luminosity proportionally
to the bunch length o, simultaneously increasing the number of particles in a
bunch. However, in addition to “technical” limits of intensity, there arises a
bunch length limit due to the requirement of localization of the beam collision
region (see Sec. 1.5 and Fig.2). In fact, one has to choose between the amount
of luminosity and the acceptance of the detector.

Examples of the application of the presented method for optimization of
collider parameters are given in Sec. 3.

3. EXAMPLES OF OPTIMIZATION
OF THE CYCLIC COLLIDER LUMINOSITY

In this section we give four examples of choosing optimal parameters for
different versions of cyclic ion colliders, including the electron—ion and merging-
beam colliders. The parameters of the collider and its beams are formulated in
each example.

3.1. NICA Ion Collider in the Symmetric Mode. The symmetric mode of
the ion phase of the NICA collider implies collision of two bunches of 97 Au™+
nuclei at one IP (Table 1).

In this section the parameter A is unity due to the symmetry of both the
beams and the focusing system.

As the calculations show (Fig. 4, a), the effect that governs the beam intensity
and consequently the luminosity is the Laslett effect (Aq (2.7), (2.8)). The BB
effect (¢ (2.16), (2.18)) becomes noticeable at an energy above 3 GeV/u. The sum
of the betatron frequency shifts Aq and £ remains constant, AQ; = AQ2 = 0.05.
The parameter @15 (2.16) is 0.457.

The maximum luminosity calculated by formula (1.19) (Fig. 4, b) amounts to
5.7-10%7 cm~2-s~1! at the energy of 4.5 GeV/nucleon. But this requires a rather
high beam intensity with 6.9 - 10° ions per bunch.

Table 1. Parameters of the NICA collider at the collision of gold nuclei (symmetric
mode)

Parameter Rings 1 and 2

Ring circumference, m 503.04
Ions 197 Ay 79+
Ion energy, GeV/nucleon 1.0-4.5
Minimum beta function at IP B*, cm 60

Ton bunch emittance, 7 - mm - mrad 1.1
Bunch length o, cm 60
Betatron tune Q. 9.44
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Fig. 4. Dependence of the parameters of the ion collider with the bunched °” Au™" beams
on the ion energy E;; AQ = 0.05: a) Laslett parameter Ag (solid curve) and the BB
parameter £ (dashed curve); b) collider luminosity L;; (solid curve) and the number of
particles per bunch /N; (dashed curve)

As the energy of colliding particles increases, the space charge effects reverse
the roles: the parameter of the space charge effect is larger than the Laslett
parameter. This is demonstrated in collisions of proton beams, which are planned
in the NICA project [1], with polarized protons and deuterons (Fig. 5).

The symmetric mode of two identical coasting beams (Fig.6) convincingly
shows how their being unbunched affects the luminosity: it (formula (1.29))
decreases by a few orders of magnitude. This is an almost obvious result. Less
obvious is that the main limitation is the BB effect (Fig. 6, a).

The luminosity is calculated by formulas (1.28) and (1.29). Here the emit-
tance of the coasting beams was increased to 11 7 - mm - mrad, which, in accor-
dance with (2.28), led to a proportional 10-fold increase in the luminosity.

As compared to the previous case of bunched *”Au”* jon beams (Fig.4),
the parameters of the BB effect and the Laslett effect changed places, and now
the beam intensity limits the BB effect.

0.05 1033 T 10,

0.04 7, 103 b 101"
7003 fﬁE 103! H1013
< 0.02 S10°0F e 41012
0.01 $102 H10m
10%] BN I TR T

E,, GeV

Fig. 5. Dependence of the parameters of the proton—proton collider on the proton energy
Ep; AQ = 0.05: a) Laslett parameter Ag (solid curve) and the BB parameter £ (dashed
curve); b) collider luminosity Ly, (solid curve) and the number of particles per bunch N,
(dashed curve)
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Fig. 6. Dependence of the parameters of the ion—ion collider with the coasting %7 Au™"

beams on the ion energy E;; beam emittances are 11 7 - mm - mrad. a) Laslett parameter
Agq (solid curve) and the BB parameter £ (dashed curve); b) collider luminosity L;; (solid
curve) and the number of particles in a beam NN; (dashed curve)

3.2. NICA Collider in the Asymmetric Mode. As an example of an asym-
metric collider, we consider the NICA collider with colliding proton and deuteron
beams. This problem appears in the nucleon spin physics studies, when it is pos-
sible to discriminate between proton—proton and proton—neutron collisions. Of
interest are both the cases of the resting center of mass (c.m.) of two colliding
nucleons (pp or pn) and the case of the c.m. of the proton—deuteron system. In
the first case, the proton and deuteron velocities are equal, and in the second case
the deuteron velocity is lower than the proton velocity:

- 5,
On = .
Az + 82 (1— 42)

Here Bx and 3, are the velocities of the nucleus (deuteron) and the proton in
units of the speed of light, A, = nAny, p is the ratio of the nuclear nucleon mass
to the proton mass, and Ay is the atomic weight of the nucleus. This mode is
of interest for studying possible tensor polarization in pd collisions. To calculate
these collision modes, one should insert

(3.1)

Vo1

BN
into the corresponding luminosity formulas and write 1+ 3x/3, instead of 1+ 32
in (2.16) and (2.18). In addition, in this proton—nucleus collision mode, when
one of the beams is coasting, synchronization is optimal due to the difference in
the proton and deuteron velocities.

The results of the calculations for proton-nucleon collisions (i.e., in the
proton and nuclear nucleon center-of-mass systems) at the NICA collider with
the bunched deuteron and proton beams are given below (Fig.7). Luminosity
in proton—nucleon collisions is calculated by formula (1.19). The beams have
equal emittances of 1.1 7-mm-mrad. The particle energy in the collider is
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Fig. 7. Dependence of the parameters of the ion collider with the bunched deuteron and
proton beams on the proton energy F,; beam emittances are 1.1 7 - mm - mrad, B* = 3 m:
a) Laslett parameter Agq (solid curve), the total betatron tune shift for protons AQ,, (dotted
curve), and the BB parameter for protons on a deuteron bunch £,4 (dashed curve) and
deuterons on a proton bunch &g, (dash-dotted curve); b) collider luminosity L,q (solid
curve) and the number of particles in a deuteron bunch N, (dashed curve) and a proton
bunch NN, (dotted curve)

1-6 GeV/nucleon, and /syn = 3.87—13.87 GeV. The other parameters are
the same as in Table 1. The parameter A\ is put equal to unity because the
NICA collider is supposed to have a unique beam convergence system, where
convergence magnets are placed closer to the IP than the final focus lenses, which
allows their independent tuning. In this example, the main limitation for the beam
intensities and thus for the luminosity is also the Laslett effect.

3.3. Electron-Ion Collider with an Equilibrium Ion Beam. The electron—
ion collider with coasting and bunched beams can become an important nuclear-
physics tool for studying rare and radioactive isotopes. This collider is likely to
feature a very low ion beam intensity. It was proposed to solve its luminosity
problem by using the so-called crystalline, or ordered, ion beam.

The idea of this beam was proposed by V.V.Parkhomchuk in 1985 after
successful experiments on suppression of the proton beam noise and compression
of the proton beam in the NAP-M electron-cooled storage ring at the Institute
of Nuclear Physics (Novosibirsk). In the 1990s, the experiments were repeated
at several laboratories around the world, and the beam compression process was
thoroughly investigated. Soon the first proposals of colliders with crystalline
beams were put forward [22,23]. However, further analysis showed that the
intensity of the crystalline beams was quite low, and the luminosity of this collider
would consequently be very low (see [9] for details). In a few independent
experiments it was found that the crystalline (ordered) beam, which was a chain
of ions circulating in a storage ring, has a linear density

Ni n .
(d o ) < 3-10° ions/m. (3.2)

ds
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The main advantages of the ordered beams are their very low emittance and
particle momentum spread

e~01-1.8nm, Ap/p~ (1-5)-107° (10).

Transition of the beam to the ordered state occurs abruptly as the beam
density drops down to the critical value of about 90 ions/m. The transverse
size of the beam and the momentum spread decrease by almost an order of
magnitude. This is a sort of phase transition from the quasi-ordered state to the
ordered one (Fig. 8).

For bunched ordered beams, condition (3.2) is also fulfilled, but it is now the
linear bunch density and not the average beam density. Therefore, it makes sense
to use the bunched beam when there is a considerable deficit of ions.
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Fig. 8. Dependence of the momentum spread (1) on the number of beam particles in the
electron-cooled storage rings: a) 2*¥U%" in the ESR [24], b) '?°Xe3®" in CRYRING [25],
¢) protons in the S-LSR [26]
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Of practical interest is another property of these deep cooled ion beams: in
the supercritical state the transverse size and the momentum spread increase from
value (3.2) with increasing linear density in compliance with the law

Ntransition

N 1/3
oL (Nz) = Otransition (7> . 3.3)

This law is valid up to the maximal linear density of about 5 - 10° ions/m [9].
And it is the result of the equilibrium between the external cooling of ions by the
electron beam and the internal heating by the so-called intrabeam scattering —
Coulomb scattering of beam ions off one another. Law (3.3) was experimentally
verified for coasting beams.

It is planned to use the equilibrium ion beam (3.3) in the electron—ion col-
lider of the DERICA project (Dubna Electron—Radioactive Isotope Collider fAcil-
ity) [27]. Table 2 presents possible parameters of the collider and its luminosity
at collisions of electron bunches with the equilibrium ion beam (see [9] for de-
tails). It is assumed that the scheme of intersecting beams is used in the collider
(Sec. 1.6). Therefore, A = 1. The angle ¢ (1.32) is taken to be negligibly small.
The luminosity is calculated by formula (1.25).

The estimates (Fig.9) show that the equilibrium beam has a slightly higher
luminosity than the bunched beam with a constant emittance until their trans-

Table 2. Parameters of the electron—ion collider

Particles of collider beams ZBU9Y jons Electrons
Beam Equilibrium coasting Bunched
Ring circumference, m 18.56" 16.0
Particle energy, MeV/u, MeV 300 500
Revolution frequency, MHz 10.547 18.75
Number of particles in beam, bunch|  1-103-1-107 1010
Number of bunches — 9
Bunch length, cm — 4
Beam emittance, nm 0.01-170 50
Transverse bunch size, ym <220 220
Laslett tune shift Ag <0.004 7.6-107°
BB tune shift &ie, Ees 0.08 <0.01
Beta function B* at IP, m 1.0 1.0
Luminosity, cm™2 -5~ ! 7.5-10%-1.7-10%"

*The ring circumference is chosen so that synchronization condition (1.35) necessary for the
bunched ion beam is fulfilled.
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Fig. 9. Dependence of the luminosity (a) and the transverse beam size o, (b) on the number
of ion beam particles: the cooled coasting ion beam below and above the phase transition
(solid curves), the bunched ion beam with a constant emittance equal to the electron beam
emittance (50 nm) (dashed curves), and the bunched ion beam with an emittance limited
by the space charge (Laslett parameter) (dotted curves)

verse sizes become equal and is “outplayed” by the latter when the size of the
equilibrium ion beam exceeds the transverse size of the electron beam.

There are different causes why the ion and electron beam intensities are
limited in this collider. The maximum number of particles in the ion beam
is determined by the condition of maintaining the small transverse size of the
bunch (3.3). The electron bunch intensity is dictated by the BB effect produced
by this bunch on ions. In the numerical example, the parameter &;. has the value
that can be achieved only at the effective electron cooling of the ion beam. This,
by the way, is also necessary for formation of an equilibrium ion beam.

The necessity to use a coasting ion beam is caused by the collision syn-
chronization requirements, which are fundamental in this case. Velocities of
relativistic electrons and ions are considerably different, as is demanded by the
experiment itself set up at this kind of collider [17]. Therefore, condition (1.35)
can be satisfied for the bunched electron and ion beams only at strictly determined
(discrete) particle parameters and ring sizes. But this rules out a possibility of
smooth particle energy scanning, which is usually needed in nuclear-physics in-
vestigations. The problem is eliminated in ultrarelativistic electron—ion colliders,
where velocities of electrons and heavy particles almost do not differ from the
speed of light. These colliders are under development at CERN (LHeC) and two
US laboratories, BNL (eRHIC) and JLab (MEIC).

Low intensity of equilibrium beams limits the area of their application to
physics of rare (exotic) and radioactive isotopes [27].

3.4. Merging Ion Beams. The first proposal to use storage rings with electron
cooling in nuclear-physics experiments [28] appeared in the late 1970s as the
electron cooling method was under development at the Institute of Nuclear Physics
(Novosibirsk). These experiments were started almost ten years later, when
electron-cooled storage rings were built in several nuclear-physics laboratories.
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Table 3. Parameters of the collider with merging beams

Beam particles 28892+ w5yt
Beam Coasting Coasting
Ring circumference, m 76.22 62.86
Particle energy, MeV/u 785 500
Magnetic field of dipoles, T 1.5 1.5
Number of particles in a beam | 4.9-10'° | 2.35.10*°
Beam emittance, 7 - mm - mrad 1.1 1.1
Laslett tune shift Ag 0.043 0.043
BB tune shift &12, {21 0.007 0.002
Beta function B* at IP, m 2.0 2.0
Interaction region length, m 6.0
Luminosity, cm~2.¢7t 2.4.10%

The most extensive investigations were carried out at the Experimental Storage
Ring (ESR) at the GSI (Darmstadt, Germany). At that time, it was proposed [29]
to set up experiments at a collider with merging beams, whose particles move in
the interaction region in the same direction at different velocities (energies). An
experiment set up in this way opens up new possibilities for structure studies of
radioactive nuclei.

One of the possible applications of a merging-beam collider proposed in [30]
is the study of vacuum physics in collisions of heavy nuclei, which give rise
to a “supercritical” electric field that separates particles of a virtual electron—
positron pair. This problem has been discussed for a long time. In a particular
experimental scheme (Table 3), colliding particles are nuclei of two uranium
isotopes 23%U%2+ and 235U%2% with their total center-of-mass energy chosen to
be 6 MeV/u. This is enough to pass over the Coulomb barrier. It is also proposed
to use the intersecting-beam scheme (Sec. 1.6) or the NICA collider scheme with
colliding deuteron—proton beams (see above).

The collision synchronization problem is solved, as in the previous section,
by using two coasting beams.

The collider luminosity is limited by the Laslett effect, which is due to
relatively low energy of heavy nuclei. It is calculated by formulas (1.28) and
(1.29), and, as assumed in [30], it is quite sufficient for the proposed experiment.

CONCLUSIONS

The above collider luminosity formulas for three different collision modes —
two bunched beams, two coasting beams, and a bunched and a coasting beam —
describe all possible applications of cyclic colliders. The proposed method for
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optimization of the ion collider parameters allows their limiting values to be deter-
mined and thus the maximum possible collider luminosity to be found. The main
criteria limiting the luminosity, which are suggested and used in the numerical
examples, are two space charge effects of the colliding beams, the frequency shift
of the transverse (betatron) particle oscillations under the action of the intrinsic
electromagnetic field of the bunch (Laslett effect) and the frequency shift of the
counter bunch field (BB effect). Collision synchronization conditions are formu-
lated, which show the advantage of the coasting beam for the asymmetric collider
(Sec.3.2). The numerical examples demonstrate the cases where the Laslett effect
is crucial (Secs.3.1, 3.2 for bunched ion beams, Sec.3.3 for an electron beam,
and Sec. 3.4 for coasting ion beams) and the cases where luminosity is limited
by the BB effect (Sec. 3.1, coasting ion beams, and Secs.3.2, 3.3). In Sec.3.1,
an intermediate case with colliding proton beams is shown, where the BB effect
prevails at high energies.

Acknowledgements. The author is grateful to V. A. Lebedev, S. S. Nagaitsev,
and E. B. Levichev for helpful discussions, D. Jovett and S. Yamaguchi for provid-
ing valuable information, D.N. Shatilov and A.O. Sidorin for numerous critical
comments and recommendations on the manuscript, Zh. L. Mal’tseva for valuable
advice during numerical calculations, and S. A. Melnikov for careful check of the
the calculations and proper corrections.

The work was performed in connection with the implementation of the
NICA [1] and DERICA [27] projects at JINR. The author thanks his colleagues
for working together on these projects.

Appendix
THIN LENS APPROXIMATION

The frequency shift of betatron oscillations £12 due to the beam—beam effect
can be found by multiplying the transition matrix for the particle revolution in
the collider ring (so-called Twiss matrix)

cos g + asin g [sin g
Mring = ( . . ) y Yo = 27TQ)
—7y sin Yo COS o — (rS1N Qg
by the thin lens matrix
1 0
My = L]
f

where the focal length f of the thin lens must be related to the phase shift of the
betatron oscillations.
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Considering the perturbation introduced by the thin lens, we find the transition
matrix M™ by multiplying the matrices M,ing and M:

M* = Mrinng =

. Bo . .
COs g + ag sin g — — sin g Bo sin g
_ f
= 1 o . (AD)
—p sin g — — cos Yo + =0 gin (o COS Py — ayp Sin g

f f

Representing the terms of the matrix M* as
P =wo+Ap, Ap<Lpo; B=p0+AB a=at+Aa, 7= +AY,

where Ay, Aa, AfS, A~ are the perturbations introduced by the thin lens, we
write the matrix M™ as

(A.2)

cos * + arsin p* sin *
M*MA< 2 ¢ Bsing )

—~y sin * cos * — arsin ™

Equating the corresponding terms of matrices (A.1) and (A.2), we obtain in the
linear A-term approximation

mi, =mo — —% sin g = —Agp (sin g — ap cos g) + Aasin o,

miy = m1A2 — 0 = By cos pgAp + ASsin ¢y,

% cospg  psing )
my, = mQA1 — — 7 7 = v0Apcos pg — A~y sin pg,
ms, = mQA2 — 0= —Ap (sinpg + apcos pp) — Aasin ¢g.

Thus, we obtained four equations in the unknowns Ay, Aa, AS, and A~y:

Ay (sin pg — ap cos pp) — Aasin pg = % sin ¢y,

Apfy cos pg + ABsinpg =0,
1

— Apypcospg — Aysinpg = w7 (cos o — ag sin o),

Ay (sin g 4 ag cos pg) + Aasin g = 0.

Solving this system of linear equations by the known determinant calculation
method, we find the determinant of the system Deta = —2sint@y and the
determinant with the replacement of the first column in Deta by the coefficients
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of the right-hand side of the system Det, = —(f3y/f)sin*pg. Their ratio yields
the desired phase shift ¢ in the presence of the thin lens:

Det<p ﬂ()

? = Dets = 3f" (A.3)

This expression for Ay exactly coincides with (2.15), since 5y = Bj, is the
betatron function at the location of the “perturbing” thin lens (when it is not
there), and the focal length is f = fpp.
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