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First-Order Phase Transition from Hypernuclear Matter to Deconfined
Quark Matter Obeying New Constraints from Compact Star Observations

We reconsider the problem of the “hyperon puzzle” and its suggested solution by
quark deconfinement within the two-phase approach where the hypernuclear equation
of state is obtained from the lowest-order constrained variational method and a
rigid quark matter equation of state based on the color superconducting nonlocal
Nambu—Jona-Lasinio model with constant coefficients (model A) and with density-
dependent coefficients (model B). With model B we introduce for the first time an
equation of state of hybrid stars with an intermediate hypernuclear phase between the
nuclear and the color superconducting quark matter phases, for which the maximum
mass of compact stars reaches 2.2M in accordance with the latest observations
for PSR J0740 4+ 6620. We discuss phase transition solutions in symmetric matter
with possible applications in future energy scan programs in heavy-ion collisions at
CERN, RHIC, NICA and FAIR.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
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INTRODUCTION

The structure and properties of nuclear matter at supersaturation densities
n > ng ~ 0.16 m~3 are still open questions affecting nuclear physics, particle
physics and astrophysics. Such a state of matter is realized in the core of a neutron
star (NS) and its mechanical properties, encoded in the equation of state (EoS), are
uniquely related to the corresponding mass—radius relationship via the Tolman—
Oppenheimer—Volkoff equations. Theoretically, one can infer from mass—radius
measurements the NS EoS, see Ref. [1] for an early attempt. Because of the
absence of reliable radius measurements, however, we may speak at present only
about direct constraints on the EoS from observations of masses and radii of
compact stars (CS). Of particular importance are constraints on the maximum
mass as one characteristics of the EoS. The recent measurement of the mass
2.1470 00 My, for the millisecond pulsar PSR J0740 + 6620 [2] has renewed the
requirement of a sufficient stiffness of the EoS at supersaturation densities. On
the other hand, the compact star radii should be in accord with the bounds
on tidal deformabilities derived from the gravitational waves detected by the
LIGO and Virgo Collaboration (LVC) from the inspiral phase of the binary
neutron star merger GW170817 [3], for instance, Ri6n, > 10.7 km [4] and
Ri.4pm, < 13.6 km [5]. These new observational data for masses and radii
(compactness) provide more stringent constraints for the behavior of the neutron
star EoS.

One of the key questions concerns the composition of NS interiors. As early
as 1960 it was proposed by Ambartsumyan and Saakyan [6] that hyperons may
occur in the core of an NS. This work, still before the discovery of pulsars,
considered noninteracting particles. In modern calculations with realistic two-
particle and three-particle interactions it was found that the appearance of hyperons
softens the EoS to the extent that even the mass of typical binary radio pulsars
(~ 1.35My) could not be described [7-9] (weak hyperon puzzle). The more
severe “strong” hyperon puzzle consists in the fact that the observational lower
bound on the value of the CS maximum mass is nowadays well above 2M¢.*

*There are recent works suggesting many-body forces at short distances based on multi-pomeron
exchange which not only improve the description of nuclear saturation properties and elastic nucleus—
nucleus scattering data but also allow for an NS mass above 2\ when including hyperons, see [10]
and references therein. In relativistic mean field approaches to hypernuclear matter, the repulsive
¢-meson mean field provides a sufficient stiffening to avoid a severe problem with the “hyperon
puzzle”, see [11,12] and [13] for a recent review.



Besides hypernuclear matter, there are other non-nucleonic forms of matter
possible in CS interiors, in particular for the most massive stars with highest
central densities, e.g., hadronic matter with A isobars [14], dibaryons [15] and
parity doubled states [16—18] as well as deconfined quark matter, which all may
occur in the normal but also in the superconducting/superfluid state with pairing
gaps in the dispersion relations. Moreover, there are meson condensates possible,
see [19] and references therein. As for the change in the composition of dense
NS matter, the question arises whether it will be favorable to first excite heavier
hadronic species and only at still higher densities to dissociate them into a state of
deconfined quark matter or whether deconfinement can occur at sufficiently low
densities to circumvent the occurrence of hyperons. The latter alternative has been
suggested as a possible solution to the weak hyperon puzzle in [20,21]. Since an
equilibrium phase transition (PT) leads to a softening of the EoS and would have
worsened the problem with the insufficient maximum mass, a strongly density-
dependent stiffening of the EoS after the transition had to be introduced. To this
end, in [20,21] a density-dependent bag pressure was suggested but maximum
masses stayed still well below 2M .

There is an old controversy whether the observation of a CS with M > 2M,
would not rule out hybrid stars with quark matter cores and thus would remove
the quark deconfinement as a solution of the strong hyperon puzzle, but as could
be shown, e.g., in [22], a sufficiently strong vector meson coupling would allow
maximum masses of quark-hadron hybrid stars above 20/, and the occurrence of
a diquark condensate can induce a lowering of the deconfinement transition so that
indeed problems with the high-density behavior of hadronic EoS like the hyperon
puzzle and the direct Urca problem can be solved. Using the same three-flavor
color superconducting NJL model [23] as in [22] and an extension of the density-
dependent relativistic mean field model DD2 [24] to include A hyperons and an
additional repulsive ¢-meson mean field, it has been shown in [25] that with this
setting a CS structure with a hypernuclear shell and color superconducting quark
matter in the core under fulfillment of the 20 mass constraint is possible. For
this solution it was essential to add a medium-dependent bag pressure contribution,
see also [26] where a different version of a relativistic mean field theory with
hyperons [27,28] is used.

In this work, we use the lowest-order constrained variational (LOCV) method
to provide an EoS for baryonic matter for different asymmetry parameters x =
(pn — pp)/pp and hyperon fractions x5 = pa/pp. The LOCV approach allows
us to study the PT for arbitrary isospin asymmetries.

We shall consider here the deconfinement to a recently developed stiff EoS for
deconfined quark matter [29,30], i.e., the nonlocal Nambu—Jona-Lasinio (nINJL)
model which is a modern approach to describe quark matter including color
superconductivity. The PT as obtained by a Maxwell construction predicts a
jump in energy density which, depending on its size, may even lead to an unstable



branch in the CS mass-radius diagram which eventually is followed by a third
family branch [31] of stable hybrid stars, disconnected from the second family
of pure neutron or moderate hybrid stars [32]. As an observable feature the third
family leads to the mass twin phenomenon [33] which has recently been shown to
be possible also for high-mass pulsars [34-36]. We will employ the interpolation
method on the basis of the nINJL EoS [30] which is a powerful and flexible tool
to construct a strong PT and answer the question of the possible existence of a
third family of CSs which would require a strong PT in dense matter.

In Sec.1 we present the theoretical formulation based on the LOCV method
and nINJL model. Section 2 is devoted to the results and discussion for the
properties of hypernuclear matter and hadron-quark matter PT. In Sec.3 the
properties of PT for isospin-symmetric matter as well as a comparative study on
model dependence of PT are presented. This includes a discussion of the PT onset
in symmetric matter that would follow from the hybrid EoS model constrained
by modern NS observations. The summary and conclusions are given in the final
section.

1. HYBRID STAR EOS WITH HYPERONS
AND QUARK DECONFINEMENT

In this work we use a two-phase description in order to construct a transition
from hadronic to the quark phase. The theoretical approaches used to calculate
the EoS for each of these two phases will be discussed in the following two
subsections.

1.1. Hadronic Phase: Hypernuclear Matter within the LOCV Method.

For the nuclear matter phase, we use a microscopic potential-based technique
called LOCV method by Owen et al. [37] for calculation of the bulk pro-
perties of nuclear fluids, such as the saturation properties. Different types of
nucleon—nucleon interactions have been employed so far, such as Reid68 and
A-Reid [38], UV14, AVI14 and AV18 [39-41], and charge-dependent Reid po-
tential (Reid93) [42,43], while a central potential [44,45] has been used for
nucleon-hyperon and hyperon-hyperon interactions recently. Since the three-
body interactions have an essential role to describe the nuclear matter properties,
the LOCV method is capable of dealing with the three-body interactions like
Urbana type [46] and chiral three-nucleon force [47]. This method has been used
not only at zero but also at finite temperature for the calculation of thermodynamic
properties of hot and cold fermionic fluids [39-41,43,48,49]. In other variational
methods such as the APR method [50], while the calculations are similar to the
ones in our method and there is a good agreement between our results [51],
there are some differences in calculating the correlation functions. Usually, in
other variational methods, several free parameters in the correlation functions are



chosen so that the energy per nucleon at every given density is minimized but
they do not mention the normalization constraint and therefore it is not clear how
the normalization constraint is satisfied. In the LOCV method, we impose the
normalization condition by demanding the control parameter x to vanish,

1 .. R
X = (W) — 1= 2> (il Fy — f?ij — ji) =0, (1)
(]
where F), is the Pauli function. For asymmetric nuclear matter, it is defined by

1
2

9 [ Jy(kpr)\ o .
Fy(r) = [1 -3 (W indistinguishable particles,

1 distinguishable particles,

where Ji(kys,7) denotes the spherical Bessel function of order 1 and ky, is the
Fermi momentum of each particle. The wave function of the system then reads

U(l...A) = F(1...A)d(1...A), )

where ®(1...A) is the uncorrelated Fermi system wave function (Slater deter-
minant of plane waves) and F'(1...A) is the many-body correlation function.
In (2), f(ij) denotes the two-body state-dependent correlation functions. In the
Jastrow formalism, the two-body correlation functions f(ij) are defined as

FGg) = fRG§)OR i), 3)

where O? is the projection operator which projects on to the « channels, i.e.,
a={J,L,S,T,T,,s} where s is the strangeness number of baryons. For singlet
and triplet channels with J = L we choose p = 1 and for triplet channels with
J=L=+1 weset p=2,3. The operators OF are given by

_ 2 1 1 1
ot =1, <§ + 6512>7 (5 - 5512), )

where S12 = 3(01.7)(02.7) — 01.02 is the spin tensor operator with o1 and o9
describing the spins of nucleons 1 and 2, respectively. In this model, it is sup-
posed that there is a specific form for the long-range behavior of the correlation
functions due to an exact functional minimization of the two-body energy with
respect to the short-range parts of the correlation functions. The constraint will
be incorporated only up to a certain distance (the healing distance) where the
logarithmic derivative of the correlation function matches that of the Pauli func-
tion. After the healing distance, the correlation function will be replaced with



the Pauli function. The condition (1) also ensures that the correlations are pre-
dominantly of the two-body kind and the higher many-body contributions are
small, and results in a rapid convergence of the cluster expansion. In compar-
ison with the mean field theories, we can directly use the realistic interactions
for baryons which are phenomenologically obtained from scattering data. Of
course, since the LOCV method is a non-relativistic method, when considering
hyperons, our results for the NS maximum mass are well below the value re-
quired by astrophysical observations, in agreement with previous works based on
Brueckner-Hartree—Fock (BHF) approach as well as other non-relativistic poten-
tial models [7-9]. In a Green function method like BHF, however, the correlation
functions cannot be obtained.
We point out the following characteristics of the LOCV method:

1. A microscopic method in configuration space which is purely variational;
2. Simply generalizable to finite temperature;

3. Correlation functions for baryon—baryon interactions as well as structure
functions, which are important quantities of interest in scattering studies,
are obtained directly in our formulation. In fact, the two-body energy
in the LOCV method is a functional of correlation function. Thus, by a
minimization of the energy with respect to the correlation function, one can
obtain both of the energy and correlation function;

4. Tensor correlation functions are employed;

5. Considering Eq.(4), the energy per baryon and correlation functions are
state-dependent and can be obtained for each state which is defined by
Q= {Jv L,STT,, S};

6. Numerical calculations are not time consuming, so that they can be per-
formed on standard desktop or laptop computers.

Recently, we have extended the work of Goudarzi et al. [46] by including hy-
perons, and studied the composition and EoS of a charged neutral, equilibrated
mixture of neutrons, protons, electrons, muons, free >~ as well as A hyperons
at zero temperature. In this work, the AV18 nucleon—nucleon interaction sup-
plemented with Urbana-type three-body force [50,52] is employed for nucleonic
part of hypernuclear matter, while hyperons are considered as non-interacting
particles. The chemical potential of nucleons has been calculated within the
LOCV method and the equations of (-stability in the presence of free hyperons,
as well as the TOV equations for the mass—radius relation of hypernuclear stars,
have been solved [9]. The results for the EoS of nuclear matter (LOCV) and
hypernuclear matter (LOCVY) obtained within the LOCV method are shown in
Fig. 1.
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Fig. 1. Nuclear and hypernuclear matter EoS obtained from the LOCV method, compared
with quark matter EoS according to the nINJL model with color superconductivity for
different values of the dimensionless vector meson coupling strength parameter 7

1.2. Quark Matter EoS within nINJL Model. For the quark matter phase we
employ a color superconducting nonlocal chiral quark model of the Nambu—Jona-
Lasinio type (nINJL) for the case of two quark flavors. This model has recently
been discussed in the context of modern compact star constraints in Ref. [30],
where references to preceding work are also given. For the convenience of the
reader, we summarize here the nINJL approach which is characterized by four-
fermion interactions in the scalar quark—antiquark, the anti-triplet scalar diquark
and the vector quark—antiquark channels. The effective Euclidean action for two
light flavors reads

sp= [[ate {ot0) (04 m) wio) - S (o)) -
~5 b o)~ Gt @ i ) ®

We considered the current quark mass, m., to be equal for u and d quarks. The
nonlocal currents jg p v(z), based on a separable approximation of the effective
one-gluon exchange (OGE) model of QCD, read

jg(x):/d‘lz g(z)z/?(x—k%) Ff’(/)(l'-%), (6)
@) = [tz gz) e (24 ) o w(a - 3), )



#@) = [t g 6 (04 3) v w(o - 3), ®)

where Yo (z) = 271 ¥T (), I'y = (1,ivs7) and I'p = iy572),, while 7 and
Aa, With @ = 2,5,7, stand for Pauli and Gell-Mann matrices acting on flavor
and color spaces, respectively. The function ¢(z) in Egs. (8) is a covariant form
factor which accounts for the nonlocality of the effective quark interactions [53].

The coupling constants ratios H/Gg, Gy /Ggs are input parameters. For
OGE interactions in the vacuum, Fierz transformation leads to H/Ggs = 0.75 and
n = Gy /Gs = 0.5. However, these values are subject to rather large theoretical
uncertainties. In fact, thus far there is no strong phenomenological constraint on
the ratio H/G g, except for the fact that values larger than one are quite unlikely
to be realized in QCD since they might lead to color symmetry breaking in the
vacuum. Below, at the end of this subsection, we will consider two schemes
of fixing the values of the coupling constants that will be applied in the present
work.

The first one, denoted as “model A”, assumes a set of coupling constants to be
fixed for vacuum conditions and afterwards, at finite densities remains unchanged.
The second one is denoted as “model B” and has been introduced in Ref. [30]
as a generalized nINJL model with a functional dependence of parameters on the
baryochemic potential as the natural thermodynamic variable of the pressure as
thermodynamic potential in the grand canonical ensemble. Before giving further
details on models A and B, we describe the mean field approximation to the
thermodynamic potential of the nINJL model.

After a proper bosonization of this quark model, introducing scalar, vector,
and diquark fields, we work in mean field approximation (MFA). In the diquark
sector, owing to the color symmetry, one can rotate in color space to fix Ay =
A7 =0, Ay = A. Finally, we consider the Euclidean action at zero temperature
and finite baryon chemical potential, where we introduce six different chemical
potentials 7., depending on the two quark flavors f = u,d and quark colors
c=rm,9,b.

The MFA grand canonical thermodynamic potential per unit volume can be
written as

2Gs  2H 2Gvy
1 d4 1, =
_5/# In det [S 1(U,Aawvﬂfc)]' ©)

A detailed description of the model and the explicit expression for the thermo-
dynamic potential after calculating the determinant of the inverse of the propagator
can be found in Ref. [54]. The mean field values &, A and @ satisfy the coupled
equations . i .

in ~0, in ~0, in _o (10)
dA do diw




As shown above, there is a freedom in choosing the direction of A in color
space. In the ansatz we considered, the colors participating in the pairing are r, g,
leaving the blue color unpaired. When considering that our system is in chemical
equilibrium, one can see that all chemical potentials are no longer independent and
can be expressed in terms of three independent quantities: the baryonic chemical
potential i, a quark electric chemical potential pg, and a color chemical potential
us. The corresponding relations read

[ 1
Hur = Hug = 3 + g,qu + §/~L8> (11)
po =5+ 2, — 2 (12)
par = g = 5 — zpa, + s, (13)
pan =" Tua, — 2ps (14)

where the chemical potential ¢, distinguishes between up and down quarks, and
the color chemical potential ;g has to be introduced to ensure color neutrality.

In this work we are interested in describing the behavior of quark matter in
the core of NSs; therefore, we shall consider that quark matter is electrically and
color neutral and in equilibrium under weak interactions. We include electrons
and muons as a free relativistic Fermi gas. Beta-decay reactions read

d—u+l+v, u+l—d+uy, (15)

for [ = e, u. We assume that (anti)neutrinos are no longer trapped in the stellar
core. Then, we have the following relation between chemical potentials:

Hde — Hue = —HQ, = M1 (16)

for ¢ = r,g,b, e = p,, = . Finally, we impose electrical and color charge
neutrality conditions

PQior — PQq — Z pr =

l=e,pu
2 1
- 5 Puc — 5 Pde | — =Y, 17

Z(sp 3Pd> > =0 (17)
c=r,g,b l=e,u
1

ps=—= > (pgr+prg—2ps) =0, (18)
\/g f=u,d

where the expressions for the lepton densities p; and the quark densities ps. can
be found in the Appendix of [54].



Summing up, for each value of ; one obtains A, &, y; and ug by self-
consistently solving the gap equations (10), together with -equilibrium Eq. (16)
and electric and color charge neutrality Eqs. (17) and (18) conditions.

The quark matter EoS is then

P(p) = P(uin(p), B(p)) = —=MF (n(n)) — B(p), (19)

where for later use we allow for the possibility of a bag pressure shift B stemming,
e.g., from a medium dependence of the gluon sector, and both parameters 1 and
B may depend on the chemical potential [30].

The resulting EoS for color superconducting quark matter for different values
of 1 is shown in Fig. 1 in comparison with the nuclear and hypernuclear ones. This
quark matter model with density-independent coefficients is denoted as model A.
From the crossing of the corresponding lines one can obtain the hadron-to-quark
matter PT, see below.

In Ref. [30] has also been discussed the possibility of a density dependence
of the vector meson coupling strength 1 and an additional softening of the quark
matter EoS due to a confining bag function, also with a density dependence. The
density dependence of these two parameters of the generalized nINJL model has
been introduced by an interpolation method described in detail in [30], and which
we will also employ in the present work for four sets of parametrizations that
will be detailed below in Table 1. This version of the nINJL approach is denoted
in the following as model B.

In spite of good results obtained for hybrid stars using the LOCV method
for the hyperonic phase and model A of the nINJL approach for the description
of color superconducting quark matter, we note that the absence of a confining
mechanism leads to rather low densities for the onset of the hadron-to-quark matter
transition. In this situation it appears that the asymptotic EoS, i.e., hypernuclear
matter in the low-density regime and quark matter in the high-density regime,
cannot simply be trusted in the intermediate range of densities where a quark-
hadron PT is expected. For this situation, it has been suggested to use an
interpolation method [55,56] between hadronic and quark matter models.

Table 1. Four different parameter sets which have been used for the interpolation of
nINJL model

Parameter Set1 | Set2 | Set3 | Set4
U<, MeV 1090 | 1090 | 1090 | 1070
I'c, MeV 155 163 150 170
l<, MeV 1500 | 1500 | 1500 | 1600
I'«, MeV 300 300 270 300
N< 0.05 0.05 0.07 0.07
7> 0.09 0.12 | 0.12 0.16
B, MeV/fm?® 30 30 20 25




In the present work, however, we will use model A with a Maxwell con-
struction where it is applicable and not make use of the interpolation between
quark and hadronic asymptotic EoS as described in [55]. Instead, we employ
the interpolation technique of Ref. [57] which has also been used in [30] and
is denoted here as model B. This method interpolates between different nINJL
parametrizations and thus corresponds to a density-dependent bag pressure as well
as a density dependence of the repulsive vector meson coupling strength. For this
model we investigated four sets of parametrizations for these density dependences
and obtained for all of them an onset of deconfinement at densities above that for
the onset of hyperons.

These different sets of parameters to interpolate the nINJL EoS for numerical
calculations of this work are given Table 1.

1.3. Phase Transition Construction. For constructing a first-order PT bet-
ween hadronic phase and deconfined quark matter, we will apply here the Maxwell
construction (MC) which assumes that both EoS should separately fulfill the
charge-neutrality and (-equilibrium conditions with electrons and muons. Under
such conditions the chemical potential of a particle species ¢ can be written as

pi = bip + Giptg, (20

where b; is the baryon number of the species ¢, ¢; denotes its charge in units of
the electron charge, 1 and p, are the baryonic and electric chemical potentials,
respectively. The Gibbs conditions for phase equilibrium require that the tempe-
ratures, chemical potentials and pressures of the two phases should coincide at
the phase transition:

HH = pHQ = He, (2D
T =Tg =T, (22)
PH(MBa,ue):PQ(UBvﬂe):P@ (23)

In the above equations, the subscript ¢ denotes the critical value of these thermo-
dynamic variables for which chemical, thermal and mechanical phase equilibrium
is established. In the present work, we construct the PT for the zero temperature
case. Technically, one can plot the pressure as a function of chemical potential
for two phases and merge them at the crossing point in which P, = P.. Physi-
cally, the phase with higher pressure (lower grand canonical potential) in a given
chemical potential is considered out of PT region. We note that this setting of
the problem inevitably evokes the so-called “reconfinement problem” [25,58]. In
the present work, we will employ the “no reconfinement” paradigm which states
that once the critical chemical potential for the deconfinement transition has been
reached the “old” hadronic EoS will no longer be considered as a relevant al-
ternative at still higher chemical potentials. Therefore, should a second crossing
between hadronic and quark matter EoS occur in the pressure vs. chemical
potential plane, it shall be ignored and thus a “reconfinement” will be excluded.

10



2. MASS-RADIUS RELATION FOR HYBRID STARS

A particularly interesting question in this context is the role which hyperons
or deconfined quark matter can play in interpreting the observations of binary
neutron star mergers. The observational constraints for maximum mass and radius
of neutron star from the millisecond pulsar PSR J0740 4 6620 and the binary
neutron star merger GW170817 should be fulfilled by the theoretical calculations.
We have assumed the hybrid star is a hydrostatic equilibrated and spherically
symmetric system. Thus, the mass—radius relation of the star can be determined by
solving the well-known Tolman—Oppenheimer—Volkoff (TOV) equations [59,60]
for a given EoS,

dP(r) _ _GM(’I")E(’I") o
dr c?r?

2
d]\c/ﬁr) _ 47rsc(;”)r . (25)

In these equations P(r) and e(r) denote the pressure and the energy density
profiles for the matter distribution in the CS interior, M (r) is the cumulative
mass enclosed in a spherical volume at the distance r from the center, and G is
the gravitational constant. The gravitational mass M = M (r = R) of the star is
the mass enclosed within the radius of the star. By considering that the boundary
condition P(r = R) = 0 defines the radius R for a chosen central energy
density e, = e(r = 0), we have the necessary boundary and initial conditions
to solve the TOV equations for a relativistic star with mass M and radius R,
respectively. By increasing € (or equivalently P) up to the maximum mass, the
mass—radius relation can be obtained. For the EoS of the inner and outer crust
of the neutron star, we use the results of Negele and Vautherin [61] and Harrison
and Wheeler [62], respectively.

3. RESULTS

Figures 2 and 3 show the EoS for pressure as a function of chemical potential
and energy density, respectively, for the Maxwell construction of the deconfine-
ment phase transition. As can be seen in Fig.3, the jump in energy density
increases by decreasing the vector meson coupling parameter. However it is a
big jump, but the crossing point occurs in low chemical potential which is before
the onset of hyperons for n < 0.14.
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Fig. 2. Pressure as a function of chemical potential for the Maxwell construction of the
deconfinement PT using the LOCV method with hyperons (LOCVY) for the hadronic
phase and the color superconducting nINJL model for quark matter
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Fig. 3. Pressure as a function of energy density for the Maxwell construction of the
deconfinement PT using the LOCV method with hyperons (LOCVY) for the hadronic
phase and the color superconducting nINJL model for quark matter

The gravitational mass of the hybrid star in the unit of solar mass has been
plotted in Fig.4 as a function of radius. As was mentioned before, we have
considered the PT to quark matter as a solution for hyperon puzzle. As the figure
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Fig. 4. Mass—radius relation of hybrid star for the Maxwell construction of the deconfine-
ment PT using the LOCV method with hyperons (LOCVY) for the hadronic phase and the
color superconducting nINJL model for quark matter
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Fig. 5. Hybrid star EoS (black solid line) obtained by a Maxwell construction between the
interpolated quark matter EoS for set 2 and the LOCVY EoS for hypernuclear matter
in B-equilibrium with electrons, muons as well as ¥~ and A hyperons. The doubly inter-
polated quark matter EoS is based on three parametrizations of the nINJL model: a soft
(low 7)) one with confinement (B # 0) at low densities, a soft one without confinement
(B = 0) at intermediate densities and a stiff one (high n) at high densities
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Fig. 6. Quark matter EoS in which we have used the interpolated EoS of set 2 at low and
intermediate chemical potential, while for high chemical potential the CSS extrapolation
method has been used. The parameters of the matching point are p = 1539 MeV and
€ = 851.4 MeV/fm>. The top panel shows the pressure as a function of the chemical
potential in which there is a good agreement between interpolated EoS and extrapolated
one. The lower plot shows the energy density as a function of chemical potential

shows, the PT which we have constructed not only increases the maximum mass
for hybrid star, but also all of the EoS have fulfilled the observational constraint
for the maximum mass of CS.

Figure 5 shows an example of the obtained EoS within this interpolation
method for set 2 of the table. In this table the three initial nINJL EoS for
producing the interpolated EoS as well as LOCVY EoS and the PT EoS have
been shown. The interpolated EoS can be considered as a generalized nonlocal
chiral quark model EoS with the p-dependent bag function B(u) and vector
coupling n(u).

It is worth mentioning that for very high density, we have applied the constant
speed of sound (CSS) extrapolation method to reach the maximum mass of hybrid
stars. This technique can be considered as the lowest-order terms of a Taylor
expansion of the quark matter EoS about the transition pressure [32]. An example
of this extrapolation method for set 2 of the table is shown in Fig.6. As can
be seen in the figure, there is a good agreement between interpolated EoS and
extrapolated one at high densities.

Figure 7 shows the squared speed of sound ¢> = dP/ds as a function of
the energy density for all the sets in the table and that the CSS extrapolation
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Fig. 7. The squared speed of sound c2 in units of the squared speed of light as a function
of the energy density for all the sets in the table. The region of high energy densities
(> 700 MeV/fm?) is described by a constant speed of sound model
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Fig. 8. Pressure as a function of chemical potential for the Maxwell construction of the
deconfinement PT using the LOCV method for hypernuclear matter (LOCVY) and four
sets of parametrization of model B for quark matter. The EoS of pure hypernuclear matter
is shown as well

method has been used for them in high chemical potential to reach the maximum
mass of hybrid star. The figure shows the regions of the first-order PT where c?
in unit of the speed of light squared is equal to zero and fulfills the condition
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Fig. 10. Mass—radius relation of hybrid star for the Maxwell construction of the decon-
finement PT using the LOCV method for hypernuclear matter (LOCVY) and four sets of
parametrization of model B for quark matter. The hyperon onset (filled circle) occurs at
a star mass of 0.8M, before the quark deconfinement, so that above that mass there are
hybrid stars with three phases of core matter: nuclear, hypernuclear and quark matter, see
Fig. 11

of causality ¢ < 1 at all energy densities. One should note that the quark

matter speed of sound is held constant after matching point. Figures 8 and
9 show the pressure as a function of chemical potential and energy density,
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Fig. 11. Profiles of energy densities for model A (upper panels) with four cases of vector
coupling strength 7 = 0.12,0.13, 0.14, 0.15 and the four sets of parametrization of model B
(lower panels) for the case of a typical binary radio pulsar mass of 1.35M, (left panels) and
for the case of a high-mass pulsar with 2.0M, (right panels). While for all parametrizations
of model A the deconfinement transition occurs directly from the nuclear matter outer core
to the extended quark matter core, in model B there is a shell of hypernuclear matter
in-between the inner core of superconducting quark matter and the outer core of nuclear
matter

respectively, for the Maxwell construction of the deconfinement PT in which the
LOCVY EoS for hypernuclear matter as well as the four sets of interpolated
(with extrapolation at high chemical potential) EoS for quark matter have been
used. The gravitational mass of the hybrid star in the unit of solar mass has been
plotted in Fig. 10 as a function of radius. As shown in Figs.8-10, by using the
interpolation method of model B, we obtain a strong PT for which the onset of
deconfinement takes place at a sufficiently large chemical potential so that there is
an intermediate hypernuclear phase between the nuclear and the deconfined quark
matter phases.
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Furthermore, the obtained maximum masses obey the modern compact star
constraints. It should be mentioned that in this case, the hypernuclear EoS is not
soft enough at low densities so as to produce a sufficiently big jump in energy
density to have the third family of CSs.

In Fig.11 we show the profiles of energy densities for model A (upper
panels) with four cases of vector coupling strength = 0.12,0.13,0.14,0.15 and
the four sets of parametrization of model B (lower panels). In the left panels
the case of a typical binary radio pulsar mass of 1.35M¢ is shown (which is
relevant for scenarios explaining the binary merger GW170817), and in the right
panels the case of a high-mass pulsar with 2.0M, is considered. While for all
parametrizations of model A the deconfinement transition occurs directly from
the nuclear matter outer core to the extended quark matter core, in model B there
is a shell of hypernuclear matter in-between the inner core of superconducting
quark matter and the outer core of nuclear matter.

Finally, in Fig. 12 we discuss the case of isospin-symmetric matter that is
relevant for applications to relativistic heavy-ion collisions. We see that for
model A (left panel) the cases with sufficiently repulsive vector meson mean
field (n > 0.12) do predict a deconfinement transition at high densities beyond
0.79 fm—3. The transitions from quark to hadronic phase at lower densities are un-
physical and shall be ignored. Their appearance may be attributed to the absence
of a confining mechanism for quarks in model A. Less repulsive vector mean
fields (n < 0.09) do not predict a deconfinement transition for the same reason.
For model B (shown in the right panel of Fig. 12) all the considered parametriza-
tions (sets 1-4) predict a deconfinement phase transition under isospin-symmetric
conditions with onset densities between 2.2ny and 2.7ng. Under compact star
conditions these parametrizations of model B predict onset masses for quark de-
confinement between 0.99M and 1.14M while fulfilling the maximum mass
constraint and thus solving the hyperon puzzle. As a characterizing feature of
this hybrid EoS model, there is an intermediate hypernuclear phase for all stars
in the range of observed compact star masses.

CONCLUSIONS

We have reconsidered the problem that the appearance of hyperons softens
the nuclear EoS such that under compact star conditions the constraint on the
lower limit for the maximum mass at 2M cannot be fulfilled (hyperon puzzle).
To this end, we have applied a two-phase approach to hybrid compact star matter
where the hadronic phase is described within the LOCV method including hype-
rons and the quark matter phase is modelled by a color superconducting nonlocal
Nambu—Jona-Lasinio model with constant (model A) and with density-dependent
(model B) coefficients. The phase transition has been obtained by a Maxwell
construction. Our study confirms that also with the present set of modern equa-
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tions of state the quark deconfinement presents a viable solution of the hyperon
puzzle. A new finding of the present work is that model B allows for an interme-
diate hypernuclear matter phase in the hybrid star, between the nuclear and color
superconducting quark matter phases, while in model A such a phase cannot be
realized because the phase transition onset is at low densities, before the hyperon
threshold density is passed.

We have discussed the possible application of the present hybrid EoS for
estimating the onset density of the deconfinement phase transition in symmetric
matter as it will be probed in future heavy-ion collision experiments at FAIR,
NICA and corresponding energy scan programs at the CERN and RHIC facilities.
We found that for model A the cases with a sufficiently strong repulsive vector
mean field (n > 0.12) which produce reasonable hybrid star EoS have also a phase
transition under isospin-symmetric conditions. For n = 0.12 the critical density
is n, = 0.79 fm~3 and for = 0.15 it is n. = 0.98 fm 3. For the less repulsive
vector mean fields (n < 0.11) there is no deconfinement transition in symmetric
matter! This may be attributed to the absence of a confining mechanism for
quarks in model A. For model B a density-dependent bag pressure serves as a
confining mechanism at low densities. This model predicts a deconfinement phase
transition under isospin-symmetric conditions for all the considered parametriza-
tions (sets 1-4) at densities between 2.2ny and 2.7ng. For these same parameter
sets the hybrid star EoS predicts an onset of quark deconfinement for compact
stars in the mass range from 0.99M¢ to 1.14M while fulfilling the maximum
mass constraint and thus solving the hyperon puzzle. It is remarkable that in this
model all compact stars in the observed range of masses (i.e., from about 1.2M,
to 2.2M) may have a shell of hypernuclear matter between the inner core of
color superconducting quark matter and the outer core of nonstrange nuclear mat-
ter. Therefore, the scenarios of binary compact star mergers should consider the
case of coalescing hybrid stars and investigate the role of hypernuclear and quark
matter phases in this context.

The application of the quark-hadron hybrid EoS to binary merger simulations,
however, requires the inclusion of finite temperatures which is planned for the
future extension of the presented approach. On such a basis the recently sug-
gested gravitational wave signal for a deconfinement transition [63] could then
be discussed and the supernova explodability of blue supergiant stars [64] when
described with the finite-temperature extension of the here introduced class of
hybrid EoS could be investigated. To such a further development of the EoS
would correspond a structure of the QCD phase diagram in the full space of
variables, i.e., temperature, baryon density, and isospin asymmetry which besides
astrophysical applications is of relevance for simulations of heavy-ion collision
experiments.
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