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3aBepiieHHas 061as OTHOCHTEJbHOCTD

3aBeplieHHast 0011asi OTHOCUTEJNBHOCTb — 3TO Teopus DUHILTEHHA, PacKphbl-
Baroulas riyoboKo CKPBITYI0 KaTHOPOBOUHYIO IPUPOAY FPaBUTALMHU U BKJOUAKOLLAS
B ce6s B KadyecTBe OCHOBBI NMPUHUHUN OOIIeH OTHOCHUTENbHOCTH W MeTPHUECKOe
roJie, ¢ OMHOH CTOPOHBI, U MPUHIUIN 0611el KaJiuOpPOBOYHON OTHOCHTENbHOCTH H
oblee KajiuOpPOBOYHOE MOJIe, ¢ APYroi cTopoHbl. Obliee Kaau6pOBOUHOE T0JiE He
UMeeT HMCTOYHHUKOB U C (PU3WYECKOH TOUKH 3peHUs MpefcTaBjsieT UHTepec Kak
€CTeCTBEHHbIH W eUHCTBEHHBIH UCTOUHHK I'PABUTALMOHHOTO TOJs DUHIITeHHA.
[TokasaHo, UTO CHHIJIETHOE COCTOSTHWE 00I1ero KajauOpOBOYHOTO TOJS MPEACTaB-
JISleT COO0O0H 3JIeKTPOMarHUTHOE T0Jie. YCTAHOBJIEHBl OCHOBHBIE YPaBHEHHS 3aBep-
[IeHHOH o0611ell OTHOCHTENbHOCTH, (PU3WYECKHH CMBIC KOTOPBIX 0O0CYKIaeTcs
C pas/MYHBIX TOUEK 3peHHUs.

Pa6ota BrinosniHeHa B Jlabopatopuu Teopetuueckoil ¢pusuku uM. H. H. Borouio-
6oBa OUAH.
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Complete General Relativity

Complete General Relativity is the Einstein theory that discloses the deeply
hidden gauge nature of gravity and includes, as a basis, the Principle of General
Relativity with the Einstein metric field, on the one hand, and the Principle of
General Gauge Relativity with the general gauge field, on the other hand. The
general gauge field is a nontrivial sourceless gauge field, which is of physical
interest as the natural and the only source of the Einstein gravitational field.
[ts singlet state becomes apparent in the form of familiar electromagnetic field.
The main equations of Complete General Relativity are established, and their
physical content is discussed from different points of view.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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INTRODUCTION

The left-hand side (l.h.s.) of the Einstein equation is defined by the
curvature tensor of the gravitational field and, hence, it is very beautiful from
a geometrical point of view. Einstein believed that the right-hand side (r.h.s.)
of his equation should also be a very beautiful expression in Complete General
Relativity. That is why this problem was constantly in the sphere of Einstein’s
investigations [1]. His works during the last decades of his life clearly indicate
that he regarded the right-hand side as not the final story, but a temporary
way out.

Quoting Chen Ning [2], “I believe that the right-hand side should become
a very beautiful expression and not the derivative of the garbage. But what
that should be remains to be worked out. I personally believe this is a field
which may have dramatic developments in the next ten years”. As for the
current status of the r.h.s., see [3-5].

Our goal here is to formulate the main equations of Complete General
Relativity with the needed details of the right-hand side.

The paper is organized as follows. In Sec.1, we consider the parallel
displacement defined by the metric and covariant derivative associated with
this displacement. The commutator of the covariant derivatives gives the
curvature tensor of the gravitational field which defines the left-hand side of
the Einstein equation. Following these ideas, we consider the most general
parallel displacement (quite independent of the metric and anything else) and
recognize that it is tightly connected with general local internal symmetry
which defines a gauge covariant derivative and the Principle of General Gauge
Relativity dual to the Principle of General Relativity. The commutator of
gauge covariant derivatives gives the curvature tensor of the general gauge
field and the needed details of the right-hand side of the Einstein equation.
The notion of the ground state of the general gauge field is introduced. In
Sec.2, we consider the curvature tensor of the general gauge field in more
detail. The curvature tensor of the gravitational field is traceless, but that of
the general gauge field has a trace. Hence, we separate the trace part and deal
with it separately. We derive equations of Complete General Relativity and
demonstrate that the trace part represents a familiar electromagnetic field. In
Sec. 3, it is shown how the Dirac field defines the nontrivial ground state. In
Conclusions, we discuss some physical aspects of Complete General Relativity.
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1. GENERAL GAUGE FIELD

The curvature tensor R;;* of the gravitational field ds® = g;;da’ dz?
results from the parallel displacement

§Vi=dV' +TidalVF =0,

where the connection T is defined by the metric as

= égil(aigjl + 0j9i — Agij),
the covariant derivative §V* = V,;V'da?
V,;Vi=0;V' + %"
and the commutator of the covariant derivatives
(ViV; = V;V)VFE = Ry " v

Hence,

Rijlk - alr_ljcl - ajrfl + an ?l - an Z
The antisymmetric tensor (trace) R;;* of the curvature tensor of the
gravitational field is trivial, since 9;I'%, — &,I' = 0. But from R;;* we can
create the symmetric tensor R;; = Ry;;* and the scalar R = Rj; ¢’ and thus
define absolutely the 1.h.s. of the Einstein equation

1
R — 5 9i = Tij-

With this sequence of ideas in mind, it is natural to put forward an
assumption that a curvature tensor, which defines the r.h.s. of the Einstein
equation, results from the general parallel displacement

§V' =dV' + Pjda V¥ =0,

where the connection P}, is considered as a primary entity. However, here
we need to stop and look for an intuitively clear expansion of the Principle of
General Relativity.

To define the Principle of General Gauge Relativity, we start from
the consideration of the linear operators in the space of vector fields V?.
Nondegenerate linear transformation has the form

V' =5iV9, Det(S)) #0,

where S% is a tensor field of the second rank. These local internal
transformations form a general gauge group with an associative binary
operation P/ = SiTF.
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The parallel displacement of the vector fields V' and V7 can be produced
only by a pair of connections P, and Pj,. From the law of parallel
displacement we have

Pl =SL,Pns~' ) + 810,57,

m*> jn
where S‘1§ — the components of the operator S~! inverse to the operator
S, S,QS*I;? = 5; Hence, the Principle of General Gauge Relativity states here
that a physical configuration is not a given potential Pjik, but rather a class of
gauge equivalent potentials defined above. This principle essentially uniquely
defines the dynamics of the general gauge field and the r.h.s. of the Einstein
equation.
For the gauge covariant derivative §V* = D;Vidax’

D;V'=8;V' + Pj V¥,
we have o _ i
D;V' = S5,D,;V".
The commutator of the gauge covariant derivatives
(D;D; — D;D;)V* = [D;,D;]V* = H,;;,*V',
where
Hijlk = aiP]kl - 8]P2]? + Pz]:“LP;lL - ijnP;ll’

gives the curvature tensor (the strength tensor) of the general gauge field with
the potential Py, since H;;" is a natural derivative of Py, (a generalization
of the trivial ¢, 9;).

The antisymmetric tensor Fj; = Hijkk (trace of the curvature tensor)

F,; = 0;P}i, — 0P},
is nontrivial here and should be considered separately from the irreducible
(traceless) tensor of curvature
1
Iig* = Hi* - ZHijnn(Slka L' =0.

For brevity, in what follows we will use the matrix notation

S=(Sf), P;=(P)), E=(5), Hy=(Hy"), TrH;=Hyj",

K2

Hij = ain — 8]‘Pi + [Pi, Pj].



The transformations of general gauge field take the form
P, =SP;S7' +80;S7' =P; +SD;S7,
H,, =SH;;S™!, D;H,;; = SD;H;,S™!,

where D; is the natural differential operator (gauge covariant derivative)
associated with the general covariance and general gauge covariance, so

D;S = 8;S + P;S — SP; = 9,S + [P;, S

is the tensor, D;H;; = 0;H i + [P;, Hjz] is not the tensor, but D;H;; +
+ D;Hy; + DH;; is the tensor, and the identity

D;H;r + D;jHy; + DyH;; =0

is generally covariant.
The important notion of the ground state of the general gauge field is
defined as a nontrivial solution of the equation

Hij =0.

Let four linear independent vector fields EL be given. In this case, one
can construct purely algebraic components of four covector fields E¥, so that
E Bl = &} holds valid. Setting Pjj = L}, where

LY = EﬁaiEf

is a linear connection of the ground state, we get a general solution of the
equation H;; = 0. For the ground state we have Tr(L;) = 9;In|p|, where
p = Det (E!'). Thus, we can define the ground state as any quadruplet
of linear independent vector fields Ej associated with the connection
Lk = Eka E!". The ground state is invariant with respect to the general
gauge transformahons Indeed, if the quadruplet of vector fields EZ represents

the ground state, then E = SIEJ is the ground state as well, since
L; = SL;S™! +S9;S~! . The meaning of the notion of the ground state will
be clarified in the course of the development of Complete General Relativity.

A transition from the ground state to the excited one is characterized by
the tensor of transition

i _ pi i
T}, = Py, — L,

with a simple (homogeneous) law of transformation

T = SeTms™'h, T, =sT,87,

m*jn

and the irreducible tensor

L (T;)E

i 1 i
k:Tjk_ZT;lék* Qj:Tj—4

with the trivial trace Tr (Q;) = 0.
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2. EQUATIONS OF COMPLETE GENERAL RELATIVITY
We put

1 . 2 , 1 g
Lp=—4Tr (L; 1) + % Tr(QiQ"), Lem= —q B BV

The general covariant and general gauge covariant Lagrangian £ of the general
gauge field takes the form

2
L= CY;CP + Bﬁem =« _i Tr (I”IIJ) + % Tr (Qle):l + B [_é Fl_} F”:| ) (1)
where p is a constant of dimension of em™!, and o >0 and 8 >0 are
dimensionless parameters, dimension of P]?k is equal to cm~! and the
action is dimensionless, I¥ = ¢**¢7'T;;, Q" = ¢**Qy. As for the form of the
Lagrangian (1), we mention that the tensor H,j;;* has sense in the framework
of General Relativity, but it is not the case with respect to the general gauge
symmetry.
By varying the Lagrangian £ with respect to P;, the following equation

holds 1 1
o | —=Di(\gT) + /ﬁQ]} +8 {—
where g = —Det (g;;). From the properties of the operator D; it is not difficult
to see that Eq.(2) is invariant with respect to the transformations of the
general gauge group. The tensor character of this equation can be seen on the
same grounds.
Taking trace from Eq. (2), we find that
1 -
—= 0§ F'7) =0, 3)
7 (Vg )

since Tr (I¥) = Tr (Q’) = 0. Hence,

m@wﬂ=a )

1 . ,
— Di(ygT7) + 12Q7 = 0. )
NG (Vg17)

For completeness, we extend this system of equations by the identities
DiLjx + DLk + Dilij =0, 0iFjk + 0;Fri + Ok Fiy = 0.
From Eq. (4) it follows that Q° has to satisfy the equation
1 _
— Di(v9y Q') =0, (®)
NG (VgQ")

because D;D;(,/gI") = 0. It should be noted that the same equation appears
under varying Eq.(1) with respect to E. But as shown above, Eq.(5)
represents sixteen additional gauge invariant constraints on the potential P;,
but not equations for EJ,.



To make a clear and apparent conclusion from this result, we first of all
mention that the strength tensor I;; can only be written in terms of the
irreducible tensor Q;, since

L; =D: Q;— D; Qi + QiQ; — Q;Q..
Here ]51 denotes the gauge covariant derivative with respect to the connection
L; of the ground state and, hence, [D;, D;] = 0. For the antisymmetric tensor
F;; we obtain
Fyj = 08; Pjy — 0; P, = 0; (L}, + T),) — 0; (L, + Tji.) = 0; Ty, — 0; T}y,

since Tr (L;) = 9; In |p|, p = Det (E!). Thus, we can consider the tensor field
Q% with the constraints Q% = 0 and covariant vector field A; = Tk as
independent quantities, which obey the equations

1 y
—0; )y =0, F;=0A;—0;A, 6
7 Vg FY) j (6)
1 o . g .
— Ds 1 i, 1Y Q7 =0, 7
\@D (VgI7) +[Q: IV + 1" Q (7)
and 1 o _ _
— v 5, Q'1=0. 8
\@D (V9Q") +[Q:, Q'] (8)

Since the trace of I;; is equal to zero, it is clear why we need to consider
a traceless tensor Q°. In our case, the trace of Q! is trivial, and Eq.(7) is
compatible.

From the Lagrangian (1) it follows that in Complete General Relativity
the r.h.s. of the Einstein equation (energy—momentum tensor) is defined by
the curvature tensor of the general gauge field as

Ty = o[-Tr L L") — gi5 Lp +

2T (Qi Q)]+ B | —Fu By + ~ Ry P |, (9)

4
where I;* = I;¢". It is evident that the energy-momentum tensor (9) is
invariant with respect to the transiormations of the general gauge group and,
hence, it is observable from the point of view of general gauge symmetry.
One can show that the energy—-momentum tensor (9) satisfies the equation

VT =0, (10)
where V; denotes the covariant derivative with respect to the connection
belonging to metric g;;. Since g“T;; = —1>Tr (Q;Q?), the scale invariance
is broken. The mass term p?Tr(Q,;Q¢) is obtained by means which does

not violate the general gauge symmetry, and this is important point for the
renormalizability of the theory.
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At last, we write the Lagrangian £, = —({;/2) R, where [, is a constant
of dimension cm~2, and the Einstein equation of Complete General Relativity
takes the form

1,Gij = a[~Tr (L L*) — gi; Lp + 1*Tr (Q; Q)] +

1
+p —Filel-i-ZFleklgij . (11)

1 . 2 .
Lp=—7Tr(l;17) + %Tr (Q: Q).

When the system goes into the ground state (H,;; = 0), the r.h.s. of the
Einstein equation is trivial.

3. DIRAC FIELD AND GROUND STATE

In this section we pay attention to the natural mechanism of spontaneous
broken symmetry inherent in the system in question.

The ground state Pj, = L, so defined is trivial in the following sense.
By the local transformation S} we can reduce four covector fields E/ to
the form of four gradient covector fields d;a* = SIE}’, Det (9;a*) # 0.
In the coordinate system T = o(x), P} = L%, = 0. It is clear from this
consideration that we can define the trivial ground state simply putting
E/, = 4!, and that for the nontrivial ground state the general gauge symmetry
should be broken. A natural way to do this is to take into consideration the
tensor fields

i 7 i 7k
Iy, = L, — Ly, L =1

and the Lagrangian ;
1 ij
Lr= E(Iﬁljl-k + al;iI;)g",

where a is a dimensionless parameter. This Lagrangian is evidently not
invariant with respect to general gauge transformations. Setting EL = SIE], =

= LZE,ﬁ, we see that if LY is a constant matrix, then the tensor I;fk is invariant

with respect to the global transformations FZ = LI E}.
It is important to explain how the Dirac field comes into Complete General
Relativity and defines the nontrivial ground state. Let us consider the general

covariant Lagrangian [6]
Lp = 3B (" P = Piby"y) — miu,

where _ _
Ppip = (O — iaAp)tp,  Prptp = (O + iccAg)y

and « is the fine-structure constant. Setting p = Det (E}’), we have

1 .
~Oyp = ELO,EL".
p



Varying the action

A= J Lppd'z,
we derive the Dirac equations
A (P + T = m, (12)
(P + 51T = —m, (13)

where I, = I}, was introduced above. The trace I = I}, plays an important
role under the proof that the current

J* = Efyty
is divergenceless. If we multiply Eq.(12) by %, and Eq.(13) by % and put
together, then
Eop(El' ") + Iy J" = 0.
Considering this and equation
|
I = ];akp — ELO.E,
we conclude that the current J* is conserved
|
— O(pJ*) =0.
p b (pJ")
Now let us put
i — —
Wi = B (" Drp — D ypy"ap).

Then Lp = El’jW,é‘ — maptp and, hence, from the action

A= Jﬁppd4x + Jﬁf\/g d*z, g = —Det(gij)

we have the equation for the ground state El’j which can be written in the
form

1 .
l——8;(\/g HIM) + e W =0,
I\/g ](\/§ )

Wi =EW/', e=p/\g.
HiF = HI'BIES,  H]' = g"(I4 + al;0}) — g" (I, + aL;d}).

where

A weak impact of the nontrivial ground state on gravitational interactions
is defined by the energy—momentum tensor

Tij = gijLI — l]([ﬁfjlk + CLIZI])



We can see the indirect influence of matter with spin on the gravitational
effects in the framework of the Dirac theory. In this sense, unification
of General Relativity and quantum mechanics is trivial. The Maxwell
equation (6) in this case reads as

1

V9
In brief, the Dirac field participates in gravitational interactions indirectly.
[t follows from our consideration that the Dirac field can interact with the
gravitating physical system in question only through the channel of the ground
state. In the case of interaction, the canonical energy-momentum tensor of

the Dirac field is a source of the field that describes the ground state of the
general gauge field (in this case, nontrivial).

Oi(VaF7) +aet' =0, J' = Ejy*p.

CONCLUSIONS

Thus, the general gauge field Pfl has two states: the familiar
electromagnetic field A; = Tfk (which should be considered as its singlet
state) and more general state Q%, Q% =0, that can be called the general
electromagnetic field. As is known, we put particle called photon into
correspondence to definite state of the proper electromagnetic field. With
this in mind, we will call a massive particle that corresponds to a definite
state of the general electromagnetic field “mphoton”. These particles are the
only source of the gravitational field in the framework of the General Gauge
Relativity. Hence, the nature of gravity is disclosed, and we can say that
the universe is arranged as a system of particles with the Bose—Einstein
statistics. Some region of space filled with the gravitational and general
electromagnetic fields looks like absolute darkness.

From Eq.(11) it follows that the interactions between photons and
mphotons are realized by a graviton exchange. This interaction can be
characterized by an angle of mixing. In accordance with Eq.(11), we can put
sinp = a/v/a?+ B2, cosp = B/y/a? + 32 and redefine [,.

It is important to pay attention to the following analogy between
gravity and electromagnetism. In the electron theory of Lorentz [7], the
right-hand side of the Maxwell equations was presented with continuous
phenomenological distributions of charge and current. With the discovery of
quantum mechanics or, more exactly, the Schrédinger and Dirac equations,
the details of the right-hand side in this case were clarified. But the physical
content of the Maxwell-Dirac equations was disclosed only in the framework
of quantum electrodynamics. We see the same situation in the Einstein theory
of the gravitational field. It is clear that the investigation of Complete General
Relativity as a closed gravitating system in the framework of quantum field
theory is an urgent problem. Hence, we need to look for hidden possibilities
to solve the renormalization problem in the gravitating system in question.



Whilst the need for invisible matter was established almost a century
ago, only its gravitational interaction has been conformed so far. Hence, it
is natural to suppose that mphotons can represent the invisible matter, and
there is no reason for a plethora of models for this matter often called dark
matter [8]. On dark matter search, see review [9].

Thus, from the observations we can conclude that in the framework of
Complete General Relativity, the photons represent the Cosmic Microwave
Background (CMB), and the mphotons correspond to the so-called Weakly
Interacting Massive Particles (WIMPs). But from Eq. (11) it follows that the
Cosmic Microwave Background and invisible matter are tightly connected
and, hence, the investigations of CMB can provide the discovery of hidden
properties of mphotons (or WIMPs)

We believe that Eqgs.(6)-(11) provide a justified basis for discovering
realistic cosmological models.

Since we now know the source of the gravitational field, the new status of
the gravitational waves should be considered as well.
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