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Физическая теория относительности

Мы формулируем принцип общей ковариантности и восстанавливаем в об-
щековариантной форме фундаментальные понятия электрического и магнит-
ного полей, выводим общековариантные уравнения Максвелла для этих полей
и узнаем, что общековариантное фундаментальное понятие интервала опре-
деляется не группой Лоренца, а общековариантной зеркальной симметрией.
Это определяет прямой путь к объяснению природы времени и пространства
и выражает сущность физической теории относительности. Из геодезических
уравнений мы смогли вывести общековариантные уравнения Ньютона и,
следовательно, восстановить базисные понятия скорости и импульса, силы,
работы и энергии в общековариантной форме. Этим мы раскрыли связи
физической теории относительности с классической механикой, решив при
этом известную проблему нулевого гамильтониана.
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We formulate the Principle of General Covariance and restore the
fundamental notions of electric and magnetic fields in the general covariant form,
derive the general covariant Maxwell equations for these fields and recognize
that the general covariant fundamental notion of interval is determined not by
the Lorentz group, but by a general covariant bilateral symmetry. This directly
leads from electromagnetism to a new understanding of the nature of time and
space and expresses the essence of physical general relativity. Considering the
geodesic equations, we are able to derive the general covariant Newton equations
and, hence, to restore the basic notions of velocity and momentum, force, work,
and energy in the general covariant form. Thus, we disclose relations of the
physical general relativity with classical mechanics and give a natural solution
to the known problem of the zero Hamiltonian.
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INTRODUCTION

Our goal here is to formulate the Principle of General Covariance,
restoring in the general covariant form the fundamental notions of electric
and magnetic fields and the Maxwell equations of these fields in order
to lay the fundamentals of physical general relativity. In the framework
of physical general relativity, we also exhibit that the so-called geodesic
equations of general relativity theory contain, in the hidden general covariant
form, the Newton equations and the concepts of physical velocity, momentum,
force, work, and energy. This gives an adequate solution to the known
zero-Hamiltonian problem and ensures, in the evident form, the transition to
the special theory of relativity.

The paper is organized as follows. In Sec. 1, all aspects of the Principle
of General Covariance are presented on the basis of the seminal papers [1]
and [2]. Our goal is to obtain a clear and exhaustive definition of this
fundamental principle of nature and not just of the general theory of
relativity. There is too intimate connection between gravity and the rest to be
considered separately. That is why, the Principle of General Covariance takes
on fundamental significance as a top idea. In what follows, the words “general
covariant” will mean “defined in the framework of the Principle of General
Covariance”.

In Sec. 2, we consider the general covariant generalization of the concept
of interval in the context of the problem of the general covariant definition of
electric and magnetic fields and give the solution of the problem in question.
Section 3 is devoted to the derivation of the general covariant Maxwell
equations of electric and magnetic fields and definitions of natural time and
physical space in the framework of the Principle of General Covariance. On
this ground, in Sec. 4, we derive the general covariant Newton equations and
restore the physical notions of physical velocity, momentum, force, work, and
energy in the general covariant form. In Conclusions, we pay attention to the
heuristic physical aspects of our consideration.

1. PRINCIPLE OF GENERAL COVARIANCE

In this section, the Principle of General Covariance is formulated as
a fundamental principle of nature itself with the emphasis on the work by
Einstein and Grossmann published in 1913 [1] and on Einstein’s subsequent
work [2], where the general relativity (reparameterization symmetry) was
actually discovered. The first original paper contains the first systematic
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representation in the physical literature of the adequate mathematical
formalism proposed by Ricci and Levi-Civita.

The Principle of General Covariance includes three aspects: the definition
of general covariant fields that can only be used to formulate the most
general laws and principles of symmetry of nature; the definition of general
relativity (reparameterization symmetry); the definition of natural derivative.
“General covariant” everywhere means “approved by the Principle of General
Covariance”.

The definition of general covariant fields presupposes some acquaintance
with the theory of functions of many variables, an important element of
which is the reference space Rn, which provides a reliable geometrical
basis and a definite geometrical visibility. Since the field of real numbers
R is continuous and unconditional to all forms of physical matter, we can
define on this ground the continuous and unconditional natural geometry
Rn, in which a point is defined as an n-tuple of real numbers x =
= (x1, x2, · · · ,xn), −∞ < xi < ∞, and the distance function is introduced
as usual d(x, y) =

√
(x1 − y1)2 + (x2 − y2)2 · · ·+ (xn − yn)2 . If a ∈ R and

b ∈ R, then a + b ∈ R and, hence, the points x = (x1, x2, · · · ,xn) and
y = (y1, y2, · · · , yn) are not distinguished, since it is always possible to write
yi = xi + ai. It is clear that R1, R2, R3 can be considered as numerical
models of the Euclidian straight line, plane, and space, respectively. However,
R1, R2, R3 admit a simple and clear generalization and, hence, Rn is a very
important geometry, which can be considered as the underlying structure of
any investigation. The geometry unfolded in the reference space Rn gives
a universal and general method for constructing geometries with nontrivial
topology in which a point is defined as that of some n-dimensional surface
in the space RN , n < N. These generalized geometries can be put into
correspondence with definite states of the general covariant physical system.
The details of this correspondence will be considered in a suitable place.

The numbers xi are called the Cartesian coordinates of the point x. This
is the initial system of coordinates. It is clear that the Cartesian coordinates
x1, x2, · · · ,xn of the point Rn should be considered on the absolutely equal
footing from any point of view. Hence, it is impossible to introduce the
so-called space coordinates and the time coordinate in the framework of the
reference space Rn alone. But instead of this, we can look for a definition of
natural time as an entity that is tightly connected with the hidden essence
of gravity and electromagnetism. This is the main goal and motivation of our
consideration.

Functions f(x1, x2, · · · ,xn) can be defined not only in all the reference
space but just in its part Ω called a domain without boundary. The set Ω
is defined as follows. If a point x = (x1, x2, · · · ,xn) belongs to Ω and there
exists ε > 0 such that for a point y = (y1, y2, · · · , yn) the inequalities

|yi − xi| < ε
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are fulfilled, then y belongs to Ω. A domain with boundary is Ω with limit
points which form its boundary. Each function f has the domain of its
definition and the range of its values and is continuously differentiable.

If the variables x1, x2, · · · ,xn are not the Cartesian coordinates, then they
are some auxiliary variables (called curvilinear coordinates) connected with
the Cartesian one x1, x2, · · · ,xn by the nonlinear relations

xi = xi(x1, · · · ,xn), xi = xi(x1, · · · ,xn),
∂xi

∂xk

∂xk

∂xj
= δij ,

which are given here in the implicit form.
Now it is time to consider the first aspect of the Principle of General

Covariance. Let a system of m functions V 1(x), · · · ,V m(x) of independent
variables x1, · · · ,xn be given. The rule is defined (the law of transformation)
which shows how one can uniquely find another system of m functions
V

1
(x), · · · ,V n

(x) of curvilinear coordinates x1, · · · ,xn only through the
functions of the first system and the derivatives of xi with respect to xj

(∂xi/∂xj) and (or) the derivatives of xj with respect to xi (∂xk/∂xj), which
can be called the functions of transformation. It is clear that these functions
are primary entities in the framework of the Principle of General Covariance.

If m = n and the law of transformation has the form

V
i
(x) = V j(x)

∂xi

∂xj
, (1)

then one says that the contravariant tensor field of type (1, 0) is defined. The
term “tensor field” can be explained as follows. In physics, the term “field”
is tied to the physical reality that expands all over our space or its region.
Thereby, a field is in general described by the functions of three independent
variables. In our case, a tensor field is expanded all over some region of the
reference space Rn, which is the region of definition of the considered system
of functions. Hence, the relevance of the use of the word “field” is possible
in all cases in question. The necessity to consider the region is also dictated
by derivatives that define the law of transformation (1). The so-defined tensor
field is also characterized by the general covariant autonomous system of
equations that determines the congruence of lines in the reference space and
the partial differential equation

dxi

dt
= V i(x), V i(x)

∂F (x)

∂xi
= 0.

The last equation is general covariant if F (x) is a tensor field of type (0, 0),
that is the general covariant field which transforms as follows:

F (x) = F (x). (2)

A tensor field of type (0, 0) is usually called a scalar field. Scalar fields have
an interesting peculiarity: they can be constant since the needed condition of
constancy is ∂jF (x) = 0 and it does not depend on the choice of an arbitrary
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system of coordinates. Indeed, in accordance with (2), for the gradient of a
scalar field, the law of transformation has the following form:

∂F (x)

∂xj =
∂F (x)

∂xk

∂xk

∂xj

that defines the covariant tensor field of type (0, 1). The tensor field Ai(x) of
type (0, 1) until the law of transformation

Aj(x) = Ak(x)
∂xk

∂xj (3)

is also characterized by the integral
∫
Aidx

i along the path in the reference
space and the general covariant equation ∂iAj(x) − ∂jAi(x) = 0, which
expresses in the general covariant form the condition of independence of the
integral from the choice of the path between two given points.

The tensor fields of type (1, 0) are generally reffered to as vector fields
for the following reason. The general covariant structure of the linear space
naturally appears on the set of the scalar and vector fields. Indeed, let
a(x), b(x) be two scalar fields and U i(x), V i(x) be two vector fields, then
W i(x) = a(x)U i(x) + b(x)V i(x) is evidently again the vector field. This
general covariant linear space has notable properties. For a natural and
constructive introduction of the general covariant linear operator, we have no
need to introduce n linear independent vector fields Ei

μ(x) (a frame field) as
in the abstract theory of linear spaces, since the role of the general covariant
linear operator is played here by the tensor field Si

j(x) of type (1, 1). We

consider the general covariant equation V
i
(x) = Si

j(x)V
j(x) as the definition

of the linear operator in the linear space in question. It is also very important
to recognize that this equation defines the fundamental representation of the
general covariant gauge group of internal symmetry with the associative
product P i

j (x) = Si
k(x)T

k
j (x). The considered general covariant gauge group

essentially uniquely defines the nature of gravity and, hence, the right-hand
side of the Einstein equation. The details can be found in [3].

The general covariant field P i
jk(x) with the law of transformation of the

form
P

i

jk(x) = P l
mn(x)

∂xi

∂xl

∂xm

∂xj

∂xn

∂xk
+

∂xi

∂xl

∂2xl

∂xj∂xk
(4)

is called a connection. The connection is not transformed as a tensor.
Nevertheless, the transformed components depend only upon the components
before the transformation and transformation functions.

A general conclusion means that only general covariant fields considered
as invariant systems of functions, defined and classified by arbitrary
transformations of coordinates, should be used to formulate the most general
and fundamental laws of nature. Such general covariant fields are called tensor
fields and connections. The definition of a tensor field of type (p, q) is an
evident generalization of formulas (1) and (3). We must always remember
about the dual nature of general covariant fields, which is reflected in their
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definition. On the one hand, these quantities (similar to the electromagnetic
field) are invariant and, hence, their properties are coordinate-free and basis-
free. The same general covariant quantity can be presented in any system of
coordinates. On the other hand, the general covariant quantities are systems of
functions of many variables, and this is very important, since the fundamental
laws of nature are formulated as systems of differential equations in partial
derivatives. Let us consider a simple analogy to illustrate our message. A
number system is similar to a system of coordinates. A transition from one
number system to another is analogous to a transformation of coordinates.
However, the properties of numbers are formulated in the invariant form
(independently of the definite choice of a number system). On the contrary,
the definition of general covariant quantities include transformations of
coordinates, but all properties of these quantities are independent of the choice
of a coordinate system. However, such a permutation does not change the
essence of the matter. We can expect that the interplay between an observer
and computing machines which is provided by the binary number system
has an analog in the framework of the Principle of General Covariance (a
preferred system of coordinates in nature itself). We emphasize once again
that a function is a primary entity of the Principle of General Covariance.

Einstein discovered the general relativity (reparameterization symmetry)
in the work [2], even before the equations of the gravitational field were
established in the final form. To define the reparameterization symmetry as
one more aspect of the Principle of General Covariance, let us consider a
domain Ω in the reference space Rn. By the transformation of this domain
we will mean 2n real functions αi(x1, · · · ,xn) = αi(x), αi

−1(x
1, · · · ,xn) =

= αi
−1(x) for which the domains of their definition and the ranges of their

values coincide with Ω, and moreover, α(α−1(x)) = x, α−1(α(x)) = x. Thus,
under the transformation of Ω we put each of its points x into correspondence
with the point y so as to yi = αi(x), αi

−1(y) = xi.
Let us consider a new system of coordinates xi = xi(x) = αi(x) in the

domain Ω which is defined by the transformation of this domain. Let Ai(x)
be a covector field in Ω. In the new system of coordinates, one can consider
the covector field Ai(x). Let us see how this new covector field looks like in
the initial system of coordinates. We have

Ãi(x) = Aj(x)
∂xj(x)

∂xi
= Aj(α(x))

∂αj(x)

∂xi
.

Thus, we put any transformation of the domain Ω into correspondence with
the transformation of the covector fields in accordance with the rule

Ãi(x) = Aj(α(x))
∂αj(x)

∂xi
.
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For the scalar field and the symmetric covariant tensor field of the second
rank, we have ϕ̃(x) = ϕ(α(x)),

g̃ij(x) = gkl(α(x))
∂αk(x)

∂xi

∂αl(x)

∂xj
.

Einstein uncovered that if gij(x) is the solution of the general covariant
equations, then g̃ij(x) will be the solution of the same equations as well. This
means that the standard parameterization of the solutions through the initial
data is unfit. Such an unusual situation dramatically turned the investigation
of the true equations of the gravitational field on a false track.

It is not difficult to write the laws of reparameterization for any
general covariant fields. We mention only two important aspects of the
reparameterization symmetry. The variation of the covector field under the
reparameterization can be represented as difference �Ai(x) = Ãi(x)−Ai(x).
Let us consider some infinitesimal transformation of the domain Ω, setting
αi(x) = xi + ξi(x) with condition that ξi(x) should be trivial on the boundary
of Ω. One can prove that ξi(x) is the vector field. It is not difficult to
show that under the infinitesimal transformation �Ai(x) = Ãi(x) − Ai(x) =
= ξk(x)∂kAi(x) +Ak(x)∂iξ

k(x). The right-hand side of this equation is called
the Lie derivative. It should be emphasized that in the general covariant
theory it is natural to consider the Lie derivative as a variation in the
stationary-action principle.

General relativity (reparameterization symmetry) means that in the
general covariant theory the true physical configuration corresponds not to
a unique set of fields, but to a whole class of reparameterization equivalent
configurations.

The concept of natural derivative is the last but not least aspect of the
Principle of General Covariance which is mainly motivated by the demand
that covariant derivatives should not enter into the canonical Lagrangians of
the physical fields [4]. The well-known example of the canonical Lagrangian
represents the Lagrangian of the electromagnetic field.

Let us give the general definition of natural derivative and with this the
selection rule that provides a possibility to find a very restricted number of
the general covariant fields in their infinite manifold.

If some general covariant field is given and from the components of this
field and its partial derivatives one can form (using the algebraic operation
only) a new general covariant field, then the connection between these fields
is called the natural derivative.

The gradient of the scalar field is the simplest but important example. The
tensor of the electromagnetic field is the natural derivative of the covector
field.

The notion of natural derivative has an exceptional meaning since it
emphasizes that the symmetric tensor is the unique general covariant field.
Indeed, if we take the components of the symmetric covariant tensor field gij
and form its derivatives ∂jgkl, then these derivatives are not the components
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of a general covariant field. However, from gij and these partial derivatives one
can form (with the help of algebraic operations only) a new general covariant
field (the Christoffel symbols)

Γi
jk =

1
2
gil(∂jgkl + ∂jgkl − ∂lgjk) (5)

with the law of transformation given by (4). We see that the Christoffel
symbols are a natural derivative of gij which defines the Levi-Civita
connection. The Riemann tensor is a natural derivative of this connection

Rijl
k = ∂iΓ

k
jl − ∂jΓ

k
il + Γk

imΓm
jl − Γk

jmΓm
il . (6)

Thus, the symmetric Ricci tensor Rjl = Rkjl
k can be considered as the

second-rank natural derivative of gij . The unique status of the gravitational
field and the Einstein law of gravity Rjl = 0 is demonstrated. There is no
other general covariant field with such a property.

Resume. The Principle of General Covariance includes the definition and
classification of the kinematically possible general covariant fields in which
arbitrary transformations of the coordinates play the key role, as well as
the definition of general relativity (reparameterization symmetry) and the
selection rule of unique general covariant fields by the method of natural
derivative.

The Principle of General Covariance does not contain assertions about
the physical content of the general covariant laws of nature, but speaks
about necessary and sufficient elements of its mathematical formulation which
includes the principle of general covariant symmetries, the important example
of which was exhibited above.

2. MOTIVATION FOR OUR STUDY

The general covariant electric and magnetic fields disappeared from the
consideration in the general theory of relativity where we deal with the
general covariant tensor of the electromagnetic field Fij = ∂iAj − ∂jAi.
Such “integration” of electric and magnetic fields cannot be considered as
satisfactory, since condensators and magnets evidently exist, and this fact
should be put into correspondence with the Principle of General Covariance as
the fundamental principle of nature itself. The tensor of the electromagnetic
field has six independent components that is equal to the number of
independent components of electric and magnetic fields. The problem is to find
one-to-one general covariant correspondence between these quantities. As the
first evident step in the needed direction, we can simply put for the electric
field Ei = tkFik. But we know nothing about the nature and physical sense of
the vector field ti.

To clarify this entangled situation, we can pay attention to the fact that
general relativity in a certain sense is a far-reaching generalization of the
special theory of relativity. That is why we can start with the question: “What
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is the general covariant generalization of the concept of interval of the special
theory of relativity?” The answer is given by the formula

ds2 = gijdx
idxj = (

2titj
gkltktl

− gij)dx
idxj ,

which can be found, for example, in [5]. From this formula it follows that

gij =
2titj
gkltktl

− gij , ti = gijt
j . (7)

We see that in the general case, the Einstein potential gij is the function of
a vector field ti and a symmetric tensor field gij , which defines the natural
general covariant scalar product in the general covariant linear space of vector
fields

(t|u) = gijt
iuj, (t|t) = gijt

itj � 0, (t|t) = 0, if and only if ti = 0.

Thus, for the scalar field

ϕ =
(t|u)√

(t|t)√(u|u) ,

we have −1 � ϕ � 1, but it is evident that in general we cannot speak about
the angle between two vector fields, since from the equation cosα = ϕ it
follows that α is a function of x. We can only prove that there are orthogonal
vector fields. Indeed, if (t|u) �= 0, we put vi = ui − (t|u)ti/(t|t) and, hence, ti

and vi are orthogonal (t|v) = 0 for any x.
Now our goal is to ensure the internal content of Eq. (7). The right-hand

side of Eq. (7) contains fourteen unknown functions. It is clear that this
number should be reduced to ten unknown functions of the Einstein potential
gij . The first natural step is to put ti = ∂if , ti = gijtj . To simplify relation
(7), we can write the equation

gij∂if∂jf = 1, (8)

which can be considered as a general covariant generalization of the equation
of geometrical optics. Other arguments in favour of this equation will be
presented in what follows. Constraint (8) provides in its final form the formal
solution of the problem in question, and for the Einstein potential we have

gij = 2∂if∂jf − gij , ti = gij∂jf , gij∂if∂jf = 1. (9)

We will call f(x) a scalar constituent of the Einstein potential and gij — the
Riemann constituent.

Now we will give the geometrical interpretation of the positive definite
quadratic differential form (the Riemann constituent) dl2 = gijdx

idxj . Let us
consider the four-dimensional surface Xa = F a(x1, x2, x3, x4) = F a(x) in the
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reference space RN with the Cartesian coordinates Xa. If the functions gij(x)
are known, we can solve the system of equations

δab
∂F a(x)

∂xi

∂F b(x)

∂xj
= gij(x)

and find the unknown functions F a(x) and dimension N. Thus, we can put into
correspondence with any solution of the Einstein equation a curved surface
on which the length of any curves is defined by the Riemann functional∫
dl =

∫√
gijdxidxj . By this, we provided a natural realization of Einstein’s

idea about gravity as a curved space.
And, last but not least, we need to explain a hidden (and, hence, very

important) reason of appearance of the indefinite quadratic differential form
ds2 = gijdx

idxj . Let Ri
j be a linear operator and (Ru)i = Ri

ku
k. Suppose

that this operator is self-adjoint with respect to the natural scalar product
(u|v), (Ru|v) = (u|Rv). From the last equation it follows that gikRk

j = gjkR
k
i

and, hence, the tensor field gikR
k
j is symmetric. The idea is to connect the

existence of the indefinite quadratic forms ds2 with the self-adjoint operators
defined as usual with respect to the natural (positive definite) scalar product.
We demonstrate that this idea can be realized in our case and establish a
connection between the symmetric tensor fields gikRk

j and gij . We remind that
at our disposal there are only the vector field ti and the symmetric tensor field
gij , which defines the natural scalar product in the general covariant linear
space of the vector fields. We also pay attention to that there is a fundamental
discrete symmetry of nature known as bilateral symmetry which is defined by
the given vector and the well-known scalar product in familiar vector algebra.

On the ground of this association, we give the natural general covariant
definition of the bilateral symmetry in the framework of the Principle
of General Covariance as follows. A pair of vector fields v and v has
general covariant bilateral symmetry with respect to the gradient of
the scalar constituent of the Einstein potential ti, if the sum of these
fields is collinear to ti and their difference is orthogonal to it, v + v =
= λt, (v|t) = (v|t), where (u|v) is a scalar product defined above and,
hence, vi = (2titj − δij)v

j , vi = (2titj − δij)v
j . From this definition it follows

that the connection between the right-hand sided and left-hand sided vector
fields can be represented as a linear transformation (reflection) vi = Ri

jv
j ,

Ri
j = 2titj − δij , Ri

kR
k
j = δij , Det(Ri

j) = −1. The vector ti and the tensor
gij are invariant under reflection since Ri

jt
j = ti, Ri

kR
j
l gij = gkl.

Now it is easy to see that the needed connection is given by the equations
gij = gikR

k
j = 2titj − gij , gij = gikRj

k = 2titj − gij . These fundamental
equations are a strong argument to put forward an idea that the general
covariant bilateral symmetry is a strict and fundamental symmetry of nature
and, hence, in all natural physical processes, a right-hand sided general
covariant physical quantity (let it be v) always appears in pairs with the
left-hand sided one v.
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Now our initial motivation looks like as heuristic since we recognized that
in general the fundamental concept of interval is clearly defined by the general
covariant bilateral symmetry and not the Lorentz group. Moreover, now it
is clear how to introduce the concepts of electric and magnetic fields in the
framework of the Principle of General Covariance.

3. GENERAL COVARIANT ELECTRIC AND MAGNETIC FIELDS

Let eijkl be the antisymmetric Levi-Civita tensor associated with
gij , e1234 =

√
g , where g = Det (gij) > 0. For the contravariant

antisymmetric tensor eijkl = gimgjngkrglsemnrs, e1234 =
√

1/g . For the

tensor of the electromagnetic field Fij , we put F̃ij =
1
2
eijklF

kl, F kl =

= gkigljFij . General covariant electric and magnetic fields are introduced as
follows:

Ei = tkFik, Hi = tkF̃ik. (10)

It is evident from the definition that (t|E) = (t|H) = 0. Equation (10) can be
inverted. Let us prove that

Fij = −tiEj + tjEi − eijklt
kH l. (11)

We have

−eijklt
kH l = −eijklt

ktmF̃ lm = −eijkle
lmrs 1

2
tktmFrs.

Since −eijkle
lmrs = δmrs

ijk , where δmrs
ijk is the Kronecker symbol, then

−eijklt
kH l = tk(tiFjk + tjFki + tkFij) = tiEj − tjEi + Fij ,

as titi = 1 and this is an additional argument to introduce the constraint (8).
Now we are ready to derive the Maxwell equations for the general

covariant electric and magnetic fields from the equations for the tensor of
the electromagnetic field Fij , which are considered in the general theory
of relativity. Beforehand, it is important to formulate basic relations of the
natural generalization of familiar vector algebra and vector calculus in the
framework of the Principle of General Covariance.

The scalar product (A|B) of the vector fields Ai and Bi was defined above.
The vector product C = [A×B] is defined as follows:

Ci = [A×B]i = eijkltjAkBl, Ak = gklA
l.

We suppose that gij and ti are known. It is evident that [A×B] + [B ×A] = 0.
The main relations of general covariant vector algebra

|[A×B]| = |A||B| sinα, [A× [B × C]] = B(A,C) − C(A,B)

are fulfilled. We also state that

[ABC] = [BCA] = [CAB], [ABC] = (A|[B × C]).
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The basic operators of the general covariant vector calculus are defined
quite naturally

divA =
1√
g
∂i(

√
g Ai), (gradφ)i = gij∂jφ,

div gradφ =
1√
g
∂i(

√
g gij∂jφ) = ∇i∇iφ,

where ∇i is a covariant derivative in the Levi-Civita connection (5) belonging
to gij .

The rotor of the vector field A is introduced as a vector product of the
four-dimensional operator ∇ and A

(rotA)i = [∇×A]i = eijkltj∂kAl =
1
2
eijkltj(∂kAl − ∂lAk).

We have
rot gradφ = 0, div rotA = 0.

Let Γi
kj be the Levi-Civita connection of the Einstein potential gij .

From (5), (8), and (9) we find that Γi
kj = Γi

kj + 2ti∇ktj . Hence, it follows
that in the general theory of relativity, the equations for the tensor of the
electromagnetic field can be written in the following form:

∇iF̃
ij = 0, ∇iF

ij
= 0, (12)

where F̃ ij =
1
2
eijklFkl, F

ij
= gikgjlFkl.

We have

F̃ ij = −tiHj + tjHi − eijkltkEl, F
ij
= tiEj − tjEi − eijkltkHl. (13)

Substituting (13) into (12), we derive the general covariant Maxwell equations
for electric and magnetic fields

rotE = − 1√
g
Dt(

√
g H), rotH =

1√
g
Dt(

√
g E), (14)

divE = 0, divH = 0, (15)
(t|E) = 0, (t|H) = 0, (16)

where Dt is the operator of the Lie derivative defined above (DtE)i =
= tk∂kE

i − Ek∂kt
i.

Let us reproduce the derivation of the first and fourth equations. From (12)
and (13) we have

−∇iF̃
ij = ∇i(t

iHj − tjHi + eijkltkEl) =

= ti∇iH
j −Hi∇it

j +Hj∇it
i − tj∇iH

i + ejkiltk∇iEl.

11



Since

(DtH)i = tk∂kH
i −Hk∂kt

i = tk∇kH
i −Hk∇kt

i,

Dt
√
g = ∂k(

√
g tk) =

√
g∇kt

k,

then
−∇iF̃

ij =
1√
g
Dt(

√
g H)j + ejkiltk∇iEl − tj∇iH

i.

Taking into account that Dtti = Dtt
i = 0 and, hence, tjDt(

√
g H)j = 0, we

derive from the last formula what we need.
From equations (14) we can derive

Dt(∂i(
√
g Hi)) = 0, Dt(∂i(

√
g Ei)) = 0,

Dt(
√
g tiE

i) = 0, Dt(
√
g tiH

i) = 0,

and therefore Eqs. (14)–(16) are compartible.
For the energy–momentum tensor of the electromagnetic field, we have

the following representations:

Tij =
1
2
gij(E

2 +H2)− EiEj −HiHj − tiΠj − tjΠi,

E2 = (E|E), H2 = (H |H),
(17)

where Πi = gijΠ
j — the components of the general covariant Poynting vector

Πi = eijkltjEkHl, Π = [E ×H ].

For the energy density, we have

εm = titjTij =
1
2
(E2 +H2).

If Dtgij = 0, from the Maxwell equations (14)–(16) we can derive the law
of energy conservation

1√
g
Dt(

√
g εm) +∇iΠ

i = 0.

Resume. The fundamental physical notions of electric and magnetic fields
are put into correspondence with the Principle of General Covariance to
have a deeper perception of nature. There is no doubt that the general
covariant Maxwell theory of electric and magnetic fields opens the door
to the unexplored world of physical general relativity. It is clear from our
consideration that the scalar constituent f(x) of the Einstein potential (9)
has an exact relation to the enigma of natural time (time of nature itself).
To make it easier to perceive the definitions given below, let us appeal to
physical intuition. We know very well the physical phenomena connected
with the temperature and pressure difference. We speak about the gradient
of temperature and pressure and presuppose that values of these physical
quantities are known for any point of some region of the Euclidian space.

12



From a geometrical point of view, we deal here with a scalar field that is
invariant with respect to all admissible transformations of coordinates. Now it
is reasonable to suppose that there are a field of moments of natural time and
an area of phenomena defined by the gradient of time. However, following the
principle of sufficient reason, we consider a simple but important realization
of our general consideration, and after that exact definitions will be given.

We consider the four-dimensional reference space R4 with the metric
dl2 = gijdx

idxj = (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2, gij = δij and look for
solutions to Eq. (8) under this condition. Equation (8) reads as( ∂f

∂x1

)2
+
( ∂f

∂x2

)2
+
( ∂f

∂x3

)2
+
( ∂f

∂x4

)2
= 1 (18)

and in accordance with our general statement has a general solution
f(x) = aix

i = a1x
1 + a2x

2 + a3x
3 + a4x

4, where ai = ti and, hence, (a|a) = 1,
and a special solution f(x) =

√
(x1)2 + (x2)2 + (x3)2 + (x4)2 . For the Einstein

potential (9), we have in the first case gij = 2aiaj − δij and ds2 = (2aiaj −
− δij)dx

idxj . We can put into correspondence this quadratic differential
form, the quadratic form s2 = (2aiaj − δij)x

ixj in R4, which defines the
three-parameter family of the Lorentz groups. The case of the Lorentz group
ai = (0, 0 0, 1) is investigated very well. We believe that now it is time to
formulate adequate and key definitions of physical general relativity.

Definition: a moment of natural time is a number that we put into
correspondence with any point of the reference space Rn. Hence, a moment
of time is defined by the equation t = f(x1, x2, · · · ,xn) = f(x), and f(x) is
identified with the scalar constituent of the Einstein potential (9). It is very
important to emphasize at this point that a temporal scalar field is invariant
with respect to general coordinate transformations.

By definition, all points of the reference space that correspond to the same
moment of time constitute physical space S(t). A point of S(t) is defined by
the equation f(x1, x2, · · · ,xn) = f(x) = t = constant and, hence, a change
of states of physical systems is connected with variation of values of the
function f(x) that is put into correspondence with natural time. Actually, this
was demonstrated by the example of the Maxwell equations for electric and
magnetic fields.

The gradient of time is the vector field t with the components ti = (∇f)i =
= gij∂jf = gijtj , which defines fundamental discrete internal symmetry —
general covariant bilateral symmetry defined above. The Einstein potential
gij = 2titj − gij = gikR

k
j , gij = 2titj − gij provides a straightforward

method of considering dynamical processes through the introduction of natural
time into the Lagrangians (and the equations) of the fundamental physical
fields. The idea is put forward that bilateral symmetry is a strict symmetry
of nature and, hence, in all physical processes one cannot distinguish the
right-hand sided physical quantity from the left-hand sided one.

From the consideration of the bilateral symmetry it follows that in
the general covariant form, the time-reversal invariance means that a
theory is invariant with respect to the transformation T : ti → −ti. The

13



transformation T has meaning if and only if the domains of values of the
potentials f(x) and −f(x) coincide. In accordance with this definition, a
theory will be time-reversal invariant if the gradient of the temporal field
appears in all formulae only as an even number of times, like titj .

Since the temporal field enters into the Lagrangians of the physical fields
in the form of the gradient of the scalar field ti = ∂if(u), the laws of nature
are invariant with respect to transformations of the form f(x) ⇒ f(x) + a,
where a is a constant. This symmetry defines the law of energy conservation
as a fundamental physical law of nature itself, which is true in all cases.

The potential f(x) of natural time is a solution to Eq. (8), which can be
considered as a definition of uniformity of natural time. Other mathematical
arguments in favour of this equation are also impressible. Let dxi = tidt,
f(x + dx) = t + dt, f(x) = t, then df(x) = tit

idt = dt and, hence, titi = 1.
This is Eq. (8). Further, we consider the differential operator Dt = ti∂i defined
by the gradient of natural time ti and its exponent exp(aDt) = 1 + aDt +

+
a2

2
(Dt)

2 + · · · . We put forward a natural demand that the transformation
f(x) ⇒ f(x) + a is generated by the exponent of the gradient of natural
time ti, and from equation exp (aDt)f(x) = f(x) + a we again derive Eq. (8).
Taking into account the possibility of changing the scale, we also subordinate
the potential f(x) of natural time to the equation

f(λx1,λx2, · · · ,λxn) = λf(x1,x2, · · · ,xn). (19)

The fundamental (from a physical point of view) observation reads that Eq. (8)
has not only a general solution but also a special solution known as the
function of geodesic distance. This means that there are two different times
in nature and, hence, two different kinds of natural dynamical processes. To
illustrate this important general statement, let us go back to Eq. (18) and its
general and special solutions. From the equations f(x) = aix

i = a1x
1 + a2x

2 +
+ a3x

3 + a4x
4 = t = constant and f(x) =

√
(x1)2 + (x2)2 + (x3)2 + (x4)2 =

= τ = constant we see that, in one case, physical space is the familiar
three-dimensional Euclidian space E3 and, in the other, a new physical space
is the three-dimensional sphere S3. We can see that there are two different
times in the same reference space R4. The physical (mass) points are to
be identified with the points belonging to the three-dimensional Euclidian
space E3, but the points belonging to the three-dimensional sphere S3 should
be put into correspondence with the Spherical Tops. Indeed, the symmetries
of the Euclidian space can be composed of translations and rotations, and
the symmetries of the three-dimensional sphere S3 coincide with those of
the Spherical Top. In other words, geometrical points in the Euclidian and
spherical spaces have different physical meanings. The concept of the Spherical
Top can be reduced to the concept of the point particle but in the dual
time and dual physical space. A natural rotation is a motion in dual time.
Thus, from the duality of time it follows that any known particle can be
put into correspondence with a dual particle (dparticle) moving in the dual
time. Hence, it is natural to put forward the idea of dual approach to the
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world of elementary particles which can explain the existence of leptons and
quarks, lepton–quark symmetry and confinement (if we identify dparticles
with quarks).

4. FROM GEODESIC EQUATIONS TO THE NEWTON EQUATIONS

The general covariant notions of velocity, momentum, force, work, and
energy are not used in the general theory of relativity where the only
so-called geodesic equations are considered. Such a situation is not satisfactory
from a physical point of view since we know that the gravitational field
performs work and this fact should be put into correspondence with the
Principle of General Covariance to expand the boundaries of physical general
relativity outlined above. Thus, our main task here is to restore the just
listed fundamental physical concepts in the framework of the Principle of
General Covariance. To this end, we consider the motion of a massive
charged point particle in the external gravitational and electromagnetic
fields via the general covariant action principle. We derive the general
covariant and reparameterization invariant Newton equations from the
Euler–Lagrange equations which represent the so-called geodesic equations.
Path reparameterization is defined as a one-to-one and smooth transformation
of the definition region of the parameter along a path in the reference space.
On the basis of the natural concept of time, general covariant definitions of
physical velocity, momentum, force, work, and energy (invariant with respect
to the path reparameterization) are established. The connection between the
change of the orientation of a path and the operation of the charge conjugation
is marked. For the first time, one can see the results and visible changes that
the Principle of General Covariance and the path reparameterization carry
into the classical mechanics, and thereby expand the boundaries of physical
general relativity.

The general covariant operator of the rate of change of the gravitational
field with time is the Lie derivative along the gradient of time

Dtgij = tl∂lgij + glj∂it
l + gil∂jt

l = ∇itj +∇jti = 2∇itj , (20)

where ∇i is the covariant derivative with respect to the Levi-Civita connection
belonging to gij . The gravitational field is called static if its rate of change
with time is trivial Dtgij = 2∇itj = 0. It is clear that these definitions are
general covariant.

Let us consider the class of functions of one variable τ = α(σ), for
which the region of their definition coincides with the region of their values.
If σ is running [a, b], then α(σ) does this as well. Each function of this
class defines the same path in the reference space Rn in accordance with
the equations xi = xi(α(σ)), i = 1, 2, · · · ,n. For a graphic representation
of a set of functions τ = α(σ), one should use the plane σ, τ with fixed
points (a, a), (a, b), (b, b), (b, a). The decreasing functions connect the points
(a, b), (b, a) and the increasing ones connect the points (a, a), (b, b). The
simplest graphics are defined by the functions τ = σ, τ = b− (σ − a). For the
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functions α(σ) in question, the following conditions are fulfilled: dα/dσ > 0,
dα/dσ < 0, which define the orientation of the path. In the first case,
α(a) = a, α(b) = b, whereas α(a) = b, α(b) = a in the case of the path
with the opposite orientation. The equations of motion of a point particle
are invariant with respect to the path reparameterization if the functions
xi = xi(α(σ)), i = 1, 2, · · · ,n, are the solutions of these equations under any
α(σ).

Let us consider the autonomous system of equations dxi/dσ =
= vi(x1, · · · ,xn) and suppose that xi = xi(σ), i = 1, 2, · · · ,n, is its solution.
Since

dxi(α(σ))

dσ
=

dxi(α(σ))

dα(σ)

dα(σ)

dσ
= vi(x1(α(σ)), · · · ,xn(α(σ))

dα(σ)

dσ
,

then xi = xi(α(σ)), i = 1, 2, · · · ,n, is again a solution but only under the
condition that dα(σ)/dσ = 1. Hence, the system of equations in question is
invariant only with respect to the transformations σ → σ + a, where a is
constant. It is not invariant with respect to the path reparameterization. It is
clear that the Hamilton equations are not invariant with respect to the path
reparameterization, and that is why it is very important, from a physical point
of view, to consider in all the details the transition from the Euler–Lagrange
equations, which are general covariant and invariant with respect to the path
reparameterization, to the Hamilton equations in the case of the motion of
a massive charged particle in the external gravitational and electromagnetic
fields.

We investigate the Lagrangian

L = −m
√
giju

iuj − αAiu
i = L1 + L2, (21)

where ui = dxi/dσ, m denotes the mass of a point particle to which we put
in correspondence the path xi = xi(α(σ)), i = 1, 2, · · · ,n. The coordinates
and parameter σ have the dimension of length. The action is dimensionless
and, hence, the mass m and components of the electromagnetic potential
have the dimension of inverse length, and the constant of interaction α is
dimensionless. We clarify this choice of dimensions by the equation (e/c)Ai =
= h̄(e2/h̄c)(1/e)Ai from which it follows that (1/e)Ai has the dimension of
the inverse length. Thus, under this choice of dimensions, the operation of
charge conjugation looks like

C : Ai → CAi = −Ai. (22)

We investigate the invariance of the action with respect to the path
reparameterization. Since σ ⊂ [a, b] and xi = xi(σ), we write the action in the
form of definite integral

S =

b∫

a

L(σ)dσ =

b∫

a

L1(σ)dσ +

b∫

a

L2(σ)dσ = F1(b)− F1(a) + F2(b)− F2(a),
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where F1(σ) and F2(σ) are the primitives of L1(σ) and L2(σ), respectively.
For xi = xi(α(σ)), we write the action in the following form:

S̃ =

b∫

a

L̃(σ)dσ.

Since L̃1(σ) = L1(α(σ))|dα(σ)/dσ|, L̃2(σ) = L2(α(σ))dα(σ)/dσ, we will
distinguish two cases. If dα/dσ > 0, then α(a) = a, α(b) = b and, hence,
S̃ = F1(α(b)) − F1(α(a)) + F2(α(b)) − F2(α(a)) = S. For dα/dσ < 0, α(a) =
= b, α(b) = a and, hence, S̃ = −F1(α(b)) + F1(α(a)) + F2(α(b))− F2(α(a)) =
= S only under the condition that the path reparameterization is accompanied
by the charge conjugation (22). We can see that the change of the path
orientation is tightly connected with the charge conjugation.

The Euler–Lagrange equations δS = 0 can be written as follows:

d

dσ

(
−m

giju
j√〈u|u〉 − αAi

)
= −m

2

∂gjk
∂xi

uj√〈u|u〉 u
k − α

∂Ak

∂xi
uk,

where 〈u|u〉 = giju
iuj. After some transformations, these equations can be

written in the following form:

dQi

dσ
+ Γi

kju
kQj = αF i

ku
k, (23)

where

Qi =
mui√〈u|u〉 , F i

k = gilFlk,

and Γi
kj are the Christoffel symbols of the Einstein potential gij . If Γi

kj are
the Christoffel symbols of gij , then Γi

kj = Γi
kj + 2ti∇ktj . The last relation

and concept of natural time is the starting point to derive from Eqs. (23)
the general covariant Newton equations (Newton’s second law) invariant with
respect to the path reparameterization xi = xi(σ) → xi = xi(α(σ)).

We define that some quantity (which is given along the path xi = xi(σ))
is invariant with respect to the path reparameterization if it does not depend
on the factor dα(σ)/dσ. It is evident that all physical fields are invariant with
respect to the path reparameterization if the path goes through the region
of definition of these fields. It is easy to see that the vector Qi is invariant
with respect to the path reparameterization, but ui is not. It is necessary to
strictly distinguish the path reparameterization and the introduction of a new
parameter σ = ϕ(σ).

The path reparameterization changes the orientation of the path if dα/dσ <
< 0. Let xi = xi(σ) be a solution of Eqs. (23), then xi = xi(α(σ)) is again a
solution of the same equations if dα/dσ > 0. In the opposite case, dα/dσ < 0
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and the functions xi = xi(α(σ)) will be a solution of Eqs. (23) only after the
charge conjugation (22). Indeed, for xi = xi(σ), we have

Qi(σ) =
mdxi(σ)√

gij(x(σ))dx
i(σ)dxj(σ)

and, hence, for xi = xi(α(σ)), we obtain

Q̃i(σ) =
mdxi(α(σ))√

gij(x(α(σ))dx
i(α(σ))dxj(α(σ))

= Qi(α(σ))ε,

ε =
dα(σ)/dσ

|dα(σ)/dσ| = ±1.

We can see a direct connection between the charge conjugation and the
orientation of a path of a massive charged particle. The symmetry of this kind
attracts attention since there is an evident but unclear discrepancy between
matter and antimatter in the Universe.

Now we are strongly motivated to consider the decomposition

Qi = Wti + πi, (t|π) = tiπ
i = 0, (24)

and derive equations for W and πi from Eqs. (23). We have

dQi

dσ
+ Γi

kju
kQj =

dπi

dσ
+ Γi

kjπ
juk +W (

dti

dσ
+ Γ

i

kjt
juk) +

dW

dσ
ti.

Taking into account the relations tk∇kt
i = tk∇it

k = 0, Wuk = (tlu
l)Qk, it is

easy to check that

W (
dti

dσ
+ Γ

i

kjt
juk) = (tlu

l)πk∇kt
i. (25)

We put

dπi

dσ
+ Γi

kjπ
juk =

dπi

dσ
+ Γ̃i

kjπ
juk + (πj∇jtku

k)ti =
Dπi

dσ
+ (πj∇jtku

k)ti

and have tiDπi/dσ = 0, where Γ̃i
kj = Γi

kj + ti∇ktj . We conclude that Dπi/dσ
can be considered as a rate of the change of the physical momentum with
respect to the parameter σ.

To complete our investigation, we transform the right-hand side of
Eqs. (23) as well. The general covariant definition of electric and magnetic
fields is given by the relations (10). With (11) we derive

F i
ku

k = −tiEku
k − (tku

k)Ei − [u×H ]i, [u×H ]i = eijklt
jukH l.

We conclude that Eqs. (23) can be written as a system of two equations

dW

dσ
+ πi∇itku

k + αEku
k = 0, (26)
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Dπi

dσ
+ (tlu

l)πj∇jt
i + α(tlu

l)Ei + α[u ×H ]i = 0. (27)

We see that there is a small asymmetry in the expression for the Lorentz force
F i due to the factor tiu

i and this is a very important argument to introduce
the fundamental concept of physical velocity. We write the sequence

ui = (tlu
l)

ui

tlul
= (tlu

l)(
ui

tlul
− ti + ti) = (tlu

l)(vi + ti)

and have a beautiful expression for the Lorentz force

F i = (tlu
l)

(
αEi + α[v ×H ]i

)
since [t×H ] = 0. Thus, the definition of physical velocity with respect to the
parameter σ is given by the expression

vi =
ui

tlul
− ti, tiv

i = 0, (28)

which is general covariant and invariant with respect to the path
reparameterization. Other evidences in support of this definition of the
physical velocity can be presented as follows. Since ui = (tlu

l)(vi + ti), then
〈u|u〉 = |tlul|√1− v2 and, hence,

Qi = ε

(
mvi√
1− v2

+
mti√
1− v2

)
, ε =

|tlul|
tlul

= ±1.

We conclude that
πi =

εmvi√
1− v2

, W =
εm√
1− v2

. (29)

At last, we have the following expression for the Lagrangian (21):

L = (tlu
l)

(
−εm

√
1− v2 − αΦiv

i − eϕ

)
,

where ϕ = (t|A) = tlAl is the scalar potential of the electromagnetic field and
Φi = Ai − tiϕ is its vector potential (t|Φ) = tiΦi = 0 expressed in the general
covariant form.

Equations (26) and (27) read as

1
tlul

dW

dσ
+ πi∇itkv

k + αEkv
k = 0, (30)

1
tlul

Dπi

dσ
+ πk∇kt

i + αEi + α[v ×H ]i = 0. (31)

The factor 1/tlul provides the invariance of the Newton general covariant
equations (30) and (31) with respect to the path reparameterization. Equa-
tion (30) expresses the law of energy conservation and Eq. (31) represents the
Newton second law defined by the Principle of General Covariance.
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From Eqs. (30) and (31) we have the following expression for the
gravitational force:

F i
g = πk∇kt

i = πkP i
k, (32)

which is general covariant (if F i
g is equal to zero in some system of

coordinates, then it will be trivial in any system of coordinates). We conclude
that the gravitational force is not trivial only for the nonstatic gravitational
fields. Remind that for the static gravitational field, Dtgij = 2∇itj = 0, where
∇i is the covariant derivative with respect to the connection belonging to gij .
This is an unknown and unexpected result. We believe that it can be verified
easily.

We have obtained the general covariant and invariant with respect to
the path reparameterization expressions for the physical velocity, momentum,
force, work, and energy of massive charged particles moving in the external
gravitational, electric and magnetic fields.

Now we pay attention to the fact that transformation, which defines
the physical velocity through the component of tangential vector ui, is not
reversible, because vi has three independent components and ui has four
independent components. It is evident that we can put tlu

l = 1 and the
transition from the Euler–Lagrange equations to the Hamilton equations will
be trivial. However, we need to estimate the content and consequences of
this condition. We see that the equation tlu

l = 1 is general covariant but
not invariant with respect to the path reparameterization. A reason is as
follows. For the natural time, we have t = f(x1, x2, x3, x4). Hence, along the
path xi = xi(σ), t = f(x1(σ), x2(σ), x3(σ), x4(σ)) and dt = tiu

idσ = dσ.
Thus, we see that under the condition that tlul = 1, the path is automatically
parameterized by the moments of natural time. We can speak about the
trajectory of motion in this case, which is defined by the equations

dW

dt
+ πi∇itkv

k + αEkv
k = 0, (33)

Dπi

dt
+ πk∇kt

i + αEi + α[v ×H ]i = 0, (34)

where
Dπi

dt
=

dπi

dt
+ Γ̃i

kjπ
j dx

k

dt

is the general covariant definition of the rate of the physical momentum change
with respect to natural time. For the physical momentum and energy, we
have the same equations (29) but with the following definition of the physical
velocity vi with respect to natural time:

vi =
dxi

dt
− ti (35)

and ε = 1,

πi =
mvi√
1− v2

, W =
m√

1− v2
. (36)
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Thus, the concept of natural time at the fundamental level provides a full
correspondence of physical general relativity with the classical mechanics and
special relativity and uncovers its hidden so far deep physical content.

If vi = 0, then dxi/dt= ti. This system of equations defines the congruence
of curves called the lines of time. When a particle moves along a line of time,
its “shadow” on the surface of physical space is at rest. Hence, any movement
has invisible and visible components. We can only make assumptions about
the nature of invisible component.

CONCLUSIONS

Thus, it is shown that physical general relativity uncovers the deep
physical content of the Einstein gravity theory with the new concept of
natural time. Here it announces itself by the Principle of General Covariance,
the general covariant Maxwell equations (14)–(16) for electric and magnetic
fields, and the general covariant Newton equations (30) and (31). It restores
the fundamental physical meaning of electric and magnetic fields, velocity,
momentum, force, work, and energy in the framework of the Principle of
General Covariance. It unravels the puzzles of time and predicts the duality
of natural time. It should be emphasized here that the duality of time
demonstrates that in a certain sense the well-known idea of “rotating rigid
body” (also mentioned as the Top) of classical mechanics is as fundamental as
the idea of “mass point”, i. e., the first concept can be reduced to the second
one at the fundamental (field-theoretical) level and this opens terra incognita.
The prediction of the general covariant gravitational force (32), which is not
trivial only for the nonstatic gravitational fields, may have practical meaning
in the vicinity of the Sun. We would also like to emphasize the connection
between the path orientation and charge conjugation. The adequate solution to
the well-known problem of zero Hamiltonian should be mentioned as a visible
achievement of physical general relativity.

We believe that physical general relativity provides a needed unified basis
for the physical world as a whole.
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