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Червяков А.М. E11-2024-56
О конечно-элементном моделировании ресурсно-затратных задач
магнитостатики с помощью скалярного потенциала

Целью работы является повышение эффективности конечно-элементно-
го моделирования магнитных полей в ресурсно-затратных задачах магнито-
статики с постоянными токами и нелинейными магнитными материалами.
Предложены новые подходы, в которых для численного анализа уравнений
Максвелла в методе конечных элементов используется полный скалярный
потенциал, а индукционный эффект проводников с током моделируется с по-
мощью как скачков потенциала на разрезах, так и намагниченностей ли-
нейных и нелинейных постоянных магнитов. Для проверки предложенных
методов проводится конечно-элементное моделирование магнитных полей для
дипольного магнита с токопроводящей катушкой. Сравнение с референсным
моделированием на основе магнитного векторного потенциала демонстрирует
значительное сокращение как объема оперативной памяти, так и времени
вычислений при аналогичной точности результатов.
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FEM-Based Approaches to Modeling the Resource-Demanding
Magnetostatic Problems with Magnetic Scalar Potential
The paper aims to improve the computational efficiency of 3D finite-element

method for modeling the resource-demanding magnetization problems in the
presence of steady currents and nonlinear magnetic materials. For this purpose,
new approaches based on the use of magnetic scalar potential for numerical
analysis of Maxwell’s equations and modeling the inductive effect of conductors
using both the scalar potential discontinuities of thin cuts and the magnetizations
of linear and nonlinear permanent magnets are proposed and validated. Compared
to the computationally expensive standard approach for modeling magnetic fields
in dipole magnet with magnetic vector potential and the current-carrying coil,
the novel approaches allow us to obtain the expected results with similar
accuracy at much lower computational cost.
The investigation has been performed at the Meshcheryakov Laboratory of

Information Technologies, JINR.
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INTRODUCTION

Despite the excellent quality of numerical calculations, 3D finite-element
analysis of magnetic fields with magnetic vector potential as a primary
unknown becomes computationally demanding for magnetostatic problems
involving complicated model geometries, large nonconducting regions and
nonlinear materials. Obtaining accurate results for these problems is therefore
either limited or elongated by the available hardware resources, thus hindering
the efficiency of the solution.
While the use of the magnetic vector potential as a fundamental unknown

for computation of magnetic fields caused by steady currents is commonly
adopted in numerical magnetostatics [1–3], its extension to the whole problem
domain, including large nonconducting regions, unnecessarily increases the
total number of the model degrees of freedom, thus leading to either higher
memory consumption or longer processing times. In fact, the current-free
regions can be modeled much more economically by using the total scalar
potential instead of the vector potential while leaving the current-carrying
regions for the use of the magnetic vector potential and coupling both
potentials together on their common interfacing boundaries [4–10]. For
consistency of combined formulation with Ampere’s law, the nonconducting
regions must be made however simply connected. This can be ensured via
constructing thin cuts to prevent all paths from linking the currents and
imposing across each cut surface a scalar potential discontinuity equal to the
fraction of the enclosed current. In this way, the computational efficiency of
the finite-element method for solving the resource-demanding magnetostatic
problems in the presence of steady currents and nonlinear magnetic materials
can be considerably improved [11, 12]. Moreover, such problems can be solved
by using the magnetic scalar potential alone when it is only necessary to
compute the field distributions in the current-free regions of the problem
domain and not inside the conductors. To this end, the inductive effect of
conductors to produce the magnetic fields can be modeled by using either
the scalar potential discontinuities as in the vector-scalar formulation [13–15]
or the magnetization of linear and nonlinear permanent magnets similarly to
the development of mechanical antenna propagation [16]. Both can represent
equally well the magneto-motive forces of conductors, thereby allowing either
thin cuts or permanent magnets to substitute the impact of conductors on the
nonconducting regions.
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The benchmarking of these approaches based entirely on the magnetic
scalar potential against the standard approach using the magnetic vector
potential is the purpose of this paper. The computation of the field distributions
is illustrated by using the model of dipole magnet [17] as an example. To
properly deflect, focusing, or correcting the beam of particles in the particle
accelerators, the magnet design and optimization are usually dominated by
the requirements of the extremely uniform fields of the order of 10−4 of
the field amplitude [17, 18]. The precise position of the coil, the wires
inside the coil and the pole profiles are therefore the important geometrical
aspects influencing the field calculations. The magnetostatic field equations
are solved for the magnetic scalar potential in nonconducting regions, where
the inductive effect of conductors is modeled either with the help of the
scalar potential jumps across thin cuts or by using the magnetization of linear
and nonlinear permanent magnets. The analysis of numerical efficiency of
novel approaches is carried out via comparison with the standard approach
for the same modeling example of dipole magnet [11, 12]. Due to substantial
reduction in computational effort, these methods are well-suited for the
finite-element modeling of magnetic systems, where many simulations with
significant variation in geometric shapes are required during the development
of the optimal system design.

1. MODELING FRAMEWORK
FOR USE OF SCALAR POTENTIAL

In general, static magnetic fields are caused by either steady currents or
permanent magnets. The paper focuses on solving the magnetostatic problems
with source currents, while using permanent magnets complementary to
substitute the currents impact and simplify the solution. For these problems,
the magnetic field strength H and the magnetic flux density B are described
by the following set of Maxwell’s equations [19]:

∇×H = J and ∇ · B = 0 in Ω, (1)

where H and B are three-component vector functions to be defined in a
three-dimensional domain Ω. The current density J is solenoidal (∇ · j = 0)
in the case of applied currents and is zero (J = 0) for permanent magnets.
The magnetic properties of materials involved in the problem domain Ω
are accounted for via the appropriate constitutive relations between the flux
density B and the field strength H describing either linear or nonlinear
behavior of the magnetization curves. Assuming all materials to be isotropic,
these relations are expressed respectively as

B = μ0μrH and B = f(H)H/H , (2)

where μ0 is the permeability of a free space, whereas μr and f(H) are the
relative permeability and the nonlinear magnetization curve specified for each
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material. In turn, the following constitutive relations describe respectively the
magnetic properties of linear and nonlinear permanent magnets:

B = μ0μrecH+ Br and B = f(Hs)Hs/Hs, (3)

where μrec is the recoil permeability, Br = μ0μrecHc the remanent flux
density, Hs = H + Hc the shifted magnetic field, and Hc the coercivity
which is the intensity of the reversely applied magnetic field capable of fully
demagnetizing the magnet.
A typical geometry of the computational domain Ω consists of the current-

carrying region Ωc, where the current density J is accommodated, and the
current-free region Ωn, where the current density J is zero and where the
magnetic field is usually computed (see Fig. 1).

Fig. 1. Typical computational domain of a magnetostatic problem

Following the standard approach [1–3], the set of equations (1) can be
solved in the entire problem domain Ω for magnetic vector potential A via the
substitution B = ∇×A. However, the first equation of the system (1) in the
current-free region Ωn is simplified to the form

∇×H = 0 in Ωn (4)

and, therefore, can be solved instead by introducing the magnetic scalar
potential Vm as

H = −∇ · Vm in Ωn. (5)

The potential Vm is defined by a second-order differential equation of Laplace’s
type obtained from the second equation of the system (1) after successive
substitutions of the constitutive relations (2) or (3) and equation (5).
Combining these relations together for brevity as B = B[H] yields the
governing equation in terms of the scalar potential,

∇ · B [−∇Vm] = 0 in Ωn. (6)

The boundary conditions imposed on the potential Vm ensure continuity of
the normal component of the vector B and the tangential component of the
vector H across the boundary ∂Ωn as follows:

n · B[−∇Vm] = 0 on Γb, (7)

Vm = 0 on Γh, (8)
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where Γb and Γh are the two parts of the entire boundary ∂Ωn = Γb

⋃
Γh

and n is the outward normal to ∂Ωn. Conditions (7) and (8) preserve also
symmetry, or anti-symmetry of the model by enforcing the flux density B to
be tangential to Γb, or the magnetic field H normal to Γh.
To reduce the total number of the model degrees of freedom, it is therefore

preferable to solve the set of three-dimensional equations (1) for magnetic
scalar potential Vm in the region Ωn, while leaving the magnetic vector
potential A for the use in the region Ωc and coupling both potentials together
on their common interfacing boundary. However, the potential Vm becomes
discontinuous for applications where the region Ωc with a hole representing,
for example, a circular current-carrying coil is surrounded by the region
Ωn. For such a geometry of the model, the region Ωn becomes multiply
connected where the potential Vm is globally multivalued due to Ampere’s law
(see Fig. 2).
The ambiguity with scalar potential can be resolved as shown in Fig. 2 via

constructing thin cut to prevent any loop from linking the current and thereby
make a nonsimply connected region Ωn simply connected. Simultaneously, a
scalar potential discontinuity ΔVm equal to the value of the enclosed current I
is imposed over two different sides of the cut surface in the agreement with
Ampere’s law,

ΔVm = V +
m − V −

m = I on Γcut. (9)

With Eq. (9), the combined formulation can be solved consistently by the
finite-element method, provided that both potentials are properly coupled
together on their common interfacing boundary [11, 12]. For resource-
demanding magnetization problems with large nonconducting regions, the
use of combined potentials can substantially reduce computational effort as
compared to the approach based entirely on the magnetic vector potential (see
paper [12] for comparison).
An important conclusion behind the cut construction stems from the fact

that the magnetic fields involved in the current-free region Ωn are generated

Fig. 2. A circular coil carrying the current I with and without thin cut Γcut. a) The
scalar potential Vm defined by Eq. (5) is multivalued in Ωn due to Ampere’s law with
no cut. b) Imposing thin cut Γcut with a discontinuity I in Vm from one side of
the cut surface to the other makes the scalar potential Vm single-valued on the cut

complement
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by the prescribed discontinuity in the magnetic scalar potential replicating
the coil current according to Eq. (9). In fact, there exists a surface current
density J = δ(n) ·K which enforces the tangential discontinuity in H-field on
the cut surface due to Ampere’s law,

−n×H = n×∇ · Vm = K on Γcut, (10)

where n is the outward normal to the surface of discontinuity. Integrating (10)
over the contours on this surface recovers Eq. (9). It becomes therefore
possible to extend the use of the magnetic scalar potential Vm to the whole
problem domain Ω by replacing the inductive effect of the coil current with
the potential jump of thin cut equivalent to magneto-motive force (MMF) of
conductor.
The two approaches are proposed to compute the magnetostatic fields

solely in terms of scalar potential in this paper. In the first, the coil current is
substituted with the potential jump of thin cut, while in the second, with the
magnetization of permanent magnet. Although the coil is no longer included
in the computation, its model is accounted for via constructing thin cut
and permanent magnet to reproduce the impact of the coil current correctly.
In the agreement with previous formulations, the model of circular coil
represented as a homogenized current-carrying body with the geometry of the
hollow cylinder is used for construction of thin cut and permanent magnet
(see Fig. 3,a).
According to this coil model, a single cut plane forming a circle with the

diameter equal to the averaged coil diameter is constructed and placed at the
middle of the coil length to substitute the coil impact in the first approach
(see Fig. 3, b). In the second, the geometry of permanent magnet forming
a circular cylinder with averaged coil diameter is constructed and placed at
the center of the coil over its full length to reproduce the same coil impact
(see Fig. 3, c).
By construction, the cut surface and permanent magnet are passing

through various material regions of the model domain specified by either the
relative permeabilities or the nonlinear magnetization curves (see Eq. (2)).
The corresponding parts of the cut surface are then assigned with material

Fig. 3. Substituting coil current with thin cut and permanent magnet: a) model of
a circular coil represented as a homogenized current-carrying body; b) equivalent
model of thin cut with the potential jump ΔVm = I determined by the coil current;
c) equivalent model of permanent magnet with coercivity Hc = I/L determined by

MMF of the coil
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Fig. 4. Different magnetization models for a) cut surface and b) permanent magnet
associated with different material properties of the crossed regions

properties of the crossed regions (see Fig. 4, a). In turn, the parts of
permanent magnet passing through material regions specified by the constant
relative permeabilities are associated with the linear permanent magnets (see
Eq. (3)) and specified by the remanent flux densities Br = μ0μrHc with the
coercivity Hc determined from MMF of the coil (see Fig. 4, b). The other parts
passing through regions of ferromagnetic materials specified by nonlinear
BH-curves f(H) are associated with the nonlinear permanent magnets (see
Eq. (3)) and assigned with the demagnetization curves obtained via shifting
the BH-curves of the crossed regions by the value of coercivity Hc to the left.
The remanent flux densities Br = f(Hc) for nonlinear permanent magnets are
defined as the values of the demagnetization curves at H = 0 (see Fig. 4, b).
Although constructing thin cut and permanent magnets adds modeling

complexity to the problem, it is far overweighed by computational benefits of
using the magnetic scalar potential for its solution.

2. BENCHMARKING SCALAR POTENTIAL
FOR FIELD COMPUTATION

To benchmark the numerical potential of the novel approaches in terms
of magnetic scalar potential (MSP) against the standard formulation with
magnetic vector potential (MVP), we use the model of dipole magnet [17].
The model consists of two poles arranged in parallel at equal distances above
and below the median plane of large spherical air domain used for magnetic
insulation. Either pole of the magnet includes the circular coil driven by the
DC current, as well as the yoke, four spiral sectors and other constituents
made of nonlinear ferromagnetic materials (see Fig. 5).
The model possesses three planes of symmetry allowing us to truncate its

geometry and reduce the computational cost. We explore only the 1/8th part
of the model geometry to obtain the results for the entire model. The mirror
symmetry is used to cut the geometry along the median plane and impose
boundary conditions ensuring the tangential continuity of the B-field (see
Eq. (8)), whereas the fourfold axial symmetry allows us to cut the remaining
parts of the geometry along the (zx) and (zy) planes and impose boundary
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Fig. 5. The 1/8th part of unified geometry of dipole magnet used in FEM simulation
of magnetic fields generated by three equivalent sources shown in the picture: coil,

thin cut, and permanent magnet

conditions ensuring the normal continuity of the B-field (see Eq. (7)) on the
potentials in both formulations. The role of these boundary conditions is to
mimic the entire geometry while exploiting its 1/8th part.
The geometry of the circular coil represents an axisymmetric hollow cy-

linder formed by rotation around the z axis of a rectangle lying in the (zx)
plane. The coil is assumed to be of the multiturn type and therefore modeled
as a homogenized current-carrying body with multiple wires arranged and
placed in a potting material (see Fig. 6). The excitation DC current is applied
to the coil cross-section boundary. A coil numeric analysis is made prior to
the field calculation to compute the magnitude and direction of the current
flow inside conductor.

Fig. 6. Distribution of the current density inside the homogenized multiturn coil
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The geometry of insulating air domain represents a large sphere surroun-
ded by the boundary layer, whose thickness is scaled towards infinity to mimic
virtually the infinite element domain. Additionally, the geometries of the cut
surface and permanent magnet are constructed and added to the air domain
when the magnetic scalar potential is used. In the MVP formulation, the
magnetic vector potential is applied to the whole computational domain of the
model. However, in the MSP formulations with the cut surface and permanent
magnet, the magnetic scalar potential is instead applied while a circular coil
is not modelled.
Three studies based on the same model geometry (see Fig. 5) are perfor-

med and compared with COMSOL Multiphysics software [20]. The first uses
the MVP formulation to obtain the reference results with excellent accuracy.
The second and third repeat similar computations by using the two MSP
formulations with cut surface and permanent magnet for validation. The main

Fig. 7. Reference magnetic field distributions a) over the median plane and b) along
the azimuthal direction
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quantities of interest are the field distributions over the median plane, as well
as along the azimuthal direction of the aperture area. For FEM analysis of
each study, the conforming mesh is generated with almost the same number
of finite elements, despite the fact that the additional constructions of thin cut
and permanent magnet are added to the geometry of the model. The minimal
mesh quality is optimized to ensure the convergence and stability of solutions.
The edge and Lagrange shape functions up to third order are used for
approximation of magnetic vector and scalar potentials, respectively [21–23].
The direct PARDISO solver based on multifrontal factorization of the stiffness
matrix [24] is used for all studies to find numerical solutions for the potentials.
In the MVP formulation, the gauge fixing for A-field is used together with
the direct solver as the necessary condition to ensure the convergence of
solution [25]. In the MSP formulation with thin cut, the magnetic field outside

Fig. 8. Field distributions along the azimuthal direction. The solid curve refers to the
reference field and the points refer to fields calculated using the MSP formulation with

a) the permanent magnet and b) the cut surface
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the coil region is obtained by solving first for magnetic scalar potential and
then taking the negative gradient from the solution result. For this reason,
the scalar potential discontinuity across the cut surface does not violate the
continuity of the magnetic field. The simulation results are shown in Figs. 7
and 8 and summarized in the table.

Summary of formulations used for modeling of dipole magnet

Formulation Element Number Number Memory (Gb) Time Number
order of FEs of DOFs Phys/Virtual of computation of iterations

MSP/PM 3 473 087 2 244 400 25.34/43.15 5 m 19 s 8
MSP/cut 3 438 289 2 095 098 22.97/40.47 6 m 12 s 11
MVP 3 414 840 9 958 301 367.35/414.06 4 h 19 m 8 s 8

Both MSP formulations with thin cut and permanent magnet demonstrate
a satisfactory qualitative and quantitative agreement with the standard MVP
formulation. The relative errors amount to the maximum of only 7 and 5 G,
respectively, as compared to the reference results. On the other hand, these
formulations require much less computational resources for finite-element
modeling of dipole magnet. The reduction of the total number of DOFs
amounts to a factor of 4.5, the random-access memory to a factor of 15, and
the computation time to a factor of 40.

CONCLUSIONS

In this paper, we proposed the novel approaches for finite-element analysis
of magnetostatic fields in terms of magnetic scalar potential where the
inductive effect of conductors is modeled by using either scalar potential
discontinuities of thin cuts or the magnetization of permanent magnets.
The numerical performance of the proposed methods is assessed against the
standard approach based on magnetic vector potential, whose capability of
providing the excellent quality results is well-known. For modeling of dipole
magnet, the comparison demonstrates a substantial reduction in the compu-
tational cost at almost similar accuracy of computations. For this reason, the
novel approaches can be especially well-suited for finite-element modeling of
those magnetic systems where many simulations with significant variation in
geometric shapes are required to develop the optimal system design.
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